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Problem 1. No. Couterexample (see Figure 1). If we start with the tree on the left and perform
splay(2), then there is no sequence of splay operations to return to the starting tree. Note that we
have enumerated all possible splay operations from each tree in the right side of the figure, since
there are only 3 possible nodes to splay and one of them is the root (hence splaying it would result
in the same tree); thus, there are only two possible transitions from each tree.

Problem 2. Our O(n) 6-color algorithm is as follows: 1) Find a vertex with 5 or fewer neighbors.
2) Push that vertex onto a stack and remove it from the graph. Repeat. 3) When there are no
more vertices in the graph, pop each vertex from the stack, return it to the graph, and color it
one of the colors not used by its neighbors. Below is a proof of runtime and correctness along with
implementation details:

Data structures: Each vertex has a color and a degree. There is a set of all vertices with degree
less than or equal to five called the eligibleList; because the graph is planar, this set is never empty
if the graph is not empty. There is also a stack of vertices called the stack.

Step 1:
For each edge (u, v), increment degree(u) and degree(v).
For each vertex v, if degree(v) <= 5, add it to the eligibleList.

Runtime Analysis:

These two steps will take total time O(m + n) = O(n) in a planar graph.

Step 2:

Figure 1: Problem 1.
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Remove a vertex v from the eligibleList and from the graph and push it onto the stack.
For each edge (v, u)

If degree(u) == 6 :
Decrement degree(u) and add u to the eligibleList

Else:
Decrement degree(u)

Repeat the procedure above until there is a single vertex left.

Runtime Analysis:

Since v comes off the eligibleList, it must have five or fewer neighbors, so we can remove it
from the graph in constant time. Similarly, updating the degree of each neighbor will also
take constant time. Removing v only changes the degrees of v’s neighbors, so they are the
only nodes eligible to be added to the eligibleList, so we can maintain the eligibleList with
a constant amount of work. Finally, since planar graphs are closed under minor operations,
removing v will result in a new planar graph. Thus, each part takes constant work, and we
perform n-1 iterations (since we remove a vertex at each step and there are only n nodes in
the graph), so the runtime for this step is O(n).

Step 3:
Color the single remaining vertex in G any color.
Pop each vertex from the stack and return it to G,

coloring the vertex one of the colors not used by its already popped neighbors.

Runtime Analysis:

Because vertices are pushed onto the stack only when they have 5 or fewer neighbors, they
will have at most 5 neighbors when they are popped. Hence, inspecting the color of these
neighbors will take O(5) = O(1) time and at least one of the six colors will still be available.
When all the vertices have been popped, the graph is 6-colored. All n vertices have been
colored and each coloring took O(1) time, for a total runtime of O(n).

Since all three steps run in O(n), the entire algorithm runs in time O(n).

Problem 3. Our O(n) 5-color algorithm is the same as our 6-color algorithm except for one
difference: when we remove a vertex v from the graph in Step 2, we find two of its neighbors, u

and u′, that are not directly connected (i.e., (u, u′) is not in the graph). Merge those neighbors so
that they are assigned the same color when they are popped from the stack.

Differences from the 6-color algorithm will be boxed .

Data structures: Each vertex has a color and a degree. There is a set of all vertices with degree
less than five called the eligibleList; because the graph is planar, this set is never empty if the
graph is not empty. There is also a stack of vertices called the stack

Step 1:
For each edge (u, v), increment degree(u) and degree(v).
For each vertex v:

if degree(v) < 5, add it to the eligibleList.
if degree(v) == 5 and four of v’s neighbors have degree less than twelve

add v to the eligibleList.
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Runtime Analysis:

These two steps will take total time O(m + n) = O(n) in a planar graph.

Step 2:
Remove a vertex v from the eligibleList and from the graph and push it onto the stack.
For each edge (v, u)

Decrement degree(u)
For each edge (v, u)

if degree(u) < 5, add u to eligibleList

if degree(u) == 5:
if four of u’s neighbors have degree less than 12, add u to eligibleList

if degree(u) == 11:
foreach edge (u,w):

if (degree(w) < 5) or (degree(w) == 5,
&& four of w’s neighbors have degree less than twelve)
Add w to the eligibleList

By Lemma 3, we know that v must have at least two neighbors with degree ≤ 11 that
are not connected. Find two of these nodes and merge them. Since these two nodes have
constant degrees, we can update the edges in constant time. The merge operation may also
change the degree of the merged nodes and their neighbors, but we can follow the same
procedure as above to keep the eligibleList accurate.

Repeat the procedure above until there is a single vertex left.

Runtime Analysis:
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Since v comes off the eligibleList, it must have five or fewer neighbors, so
we can remove it from the graph in constant time. Similarly, updating the
degree of each neighbor will also take constant time. Since planar graphs
are closed under minor operations, removing v will result in a new planar
graph.

Removing v only changes the degrees of v’s neighbors, so the neighbors
are eligible to be added to the eligibleList. However, if v’s large neighbor
(the only one with degree greater than 11) has exactly 12 edges, then after
we remove v, that large neighbor can now be a small neighbor for other
five-degree nodes, so we must check each of the formerly-large neighbor’s
neighbors for this change. However, there will only be a constant number of
checks, so we can still maintain the eligibleList with a constant amount of
work.
Since v has a constant number of neighbors, we can examine them to deter-
mine which neighbors have degree ≤ 11. Within this set, we can perform
a constant number of checks to find two that are not connected (since each
node in the set has a constant number of edges). Thus, merging the two
nodes takes a constant amount of work.

Thus, each part takes constant work, and we perform n-1 iterations (since
we remove a vertex at each step and there are only n nodes in the graph),
so the runtime for this step is O(n).

Step 3:
Color the single remaining vertex in G any color.
Pop each vertex from the stack and return it to G,

coloring the vertex one of the colors not used by its already popped neighbors.

If the vertex popped off the stack represents two or more merged nodes,
assign them all the same color. Since we only merge nodes that are uncon-
nected, this will still produce a valid coloring.

Runtime Analysis:

Because vertices are pushed onto the stack only when they have 5 or fewer neighbors, they
will have at most 5 neighbors when they are popped. Hence, inspecting the color of these
neighbors will take O(5) = O(1) time and at least one of the six colors will still be available.
When all the vertices have been popped, the graph is 6-colored. All n vertices have been
colored and each coloring took O(1) time, for a total runtime of O(n).

Since all three steps run in O(n), the entire algorithm runs in time O(n). Below, we prove the
lemmas used in our analysis.

Fact 1. In any planar graph, there is at least one node with degree ≤ 5.

Lemma 2. In a planar graph G = (V,E), there must be a node with degree < 5 or there must be
a node with degree == 5 and four of its neighbors will have degree ≤ 11.

Proof Lemma 2: By Fact 1, there must be a node v with degree(v) ≤ 5. If degree(v) < 5, then
we’re done. If degree(v) == 5, then we need to show that there exists such a v where four of v’s
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neighbors have degree ≤ 11. To show this, we will use Kozen’s Theorem 14.10 which says:

m ≤ 3n − 6 (1)

Note that we can rewrite this as:
2m ≤ 6n − 12 (2)

Also, we observe that if we sum over the degree d of each node, then the we get
∑

d = 2m, since
counting degrees counts each edge twice. In addition, let nx be the number of nodes in the graph
with degree x. Since we assume that we have removed all nodes with degree less than five, we can
write the total number of nodes in the graph as:

n = n5 +
∑

6≤i≤11

ni +
∑

j>11

nj (3)

Similarly, we can sum the degrees as:

2m = 5n5 +
∑

6≤i≤11

ini +
∑

j>11

jnj (4)

Now, if we substitute Equations 3 and 4 into Equation 2, we get:

5n5 +
∑

6≤i≤11

ini +
∑

j>11

jnj ≤ 6n5 +
∑

6≤i≤11

6ni +
∑

j>11

6nj − 12 (5)

∑

6≤i≤11

(i − 6)ni +
∑

j>11

(j − 6)nj + 12 ≤ n5 (6)

From Equation 6, we get:

n5 >
∑

j>11

(j − 6)nj (7)

Now, we note that
∑

j>11

(j − 6)nj ≥
1

2

∑

j>11

jnj (8)

Since:
∑

j>11

j

2
nj ≥

∑

j>11

6nj (9)

Combining Equations 7 and 8, we get:

n5 >
∑

j>11

(j − 6)nj ≥ 1

2

∑

j>11

jnj (10)

n5 >
1

2

∑

j>11

jnj (11)

2n5 >
∑

j>11

jnj (12)

Now, assume that every node of degree five has two or more neighbors with degree greater than
eleven. That would imply that there are two edges incident to a node with degree greater than
eleven for every node of degree five. In other words:

2n5 ≤
∑

j>11

jnj (13)
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But this contradicts our result in Equation 12, so our assumption must be false, implying that
there is at least one node of degree five with four neighbors with degree less than twelve.

Lemma 3. In a planar graph G = (V,E), there must be a node with degree < 5 or there must be a
node with degree == 5 and two of its neighbors have degree less than twelve, and are not connected.

Proof Lemma 3: Lemma 2 shows that there must be a node with degree < 5 or there must
be a node v with degree(v) == 5 with four neighbors having degree less than twelve. Assume
that all four of these neighbors are fully connected. Since all of them are also connected to v, this
would imply that we have a complete graph on five nodes. However this would mean that K5 is
a subgraph of G. Since we are given that G is planar, this is a contradiction, so two of the nodes
must not be connected.

[Lemma 2 was inspired by Matula, Shiloach, and Tarjan. Two Linear-time Algorithms for Five-
Coloring a Planar Graph, TR STAN-CS-80-830, Nov. 1980. Theorem 4. However our proof is
original, and we did not use any other part of their work.]

Problem 4. We basically use the 2

3
-
1

3
-Separator algorithm and then apply it recursively to

the larger partition. By intelligently combining the pieces, we mantain that when the recursion
terminates, each portion is less than 1/2 of the nodes and the combined separators are size still
O(

√
n).

Algorithm 1 1

2
-
1

2
-Separator(planar graph G(V,E))

1: i = 0
2: A0, B0, C0 = ∅
3: D0 = V

4: while Di 6= ∅ do

5: i = i + 1
6: {A∗

i , B
∗
i , C∗

i } := 2

3
-
1

3
-Separator(Di−1)

7: Ai = min(Ai−1 ∪ A∗
i , Bi−1)

8: Bi = max(Ai−1 ∪ A∗
i , Bi−1)

9: Ci = Ci−1 ∪ C∗
i

10: Di = B∗
i

11: end while

12: A = Ai

13: B = Bi

14: C = Ci

Specifically, our algorithm is presented in Algorithm 1. 2

3
-
1

3
-Separator is Tarjan’s planar separator

theorem we did in class, which returns {A∗, B∗, C∗} where C∗ is the separator and (w.l.g.) |A∗| ≤
|B∗|.
Correctness:

Lemma 4. In 1

2
-
1

2
-Separator, Di ≤ 2

3
Di−1 for i > 0.

Proof. By the proof for 2

3
-
1

3
-Separator we did in class, each of A∗, B∗ are less than 2

3
Di−1, and

Di = B∗.
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Note that this implies that the algorithm terminates, since eventually the Di set will be 1 and the
Ci+1 separator will contain that one node, leaving Di+1 = ∅.
Lemma 5. At the end of iteration i of 1

2
-
1

2
-Separator:

1. |Ai| ≤ |Bi|
2. |Bi| ≤ |Ai ∪ Ci ∪ Di|
3. There is no edge between vertices in Ai, vertices in Bi, and vertices in Di.

Proof. Proof by induction.

Base Case. (1) |A0| = 0 ≤ 0 = |B0|. (2) |B0| = 0 ≤ |V | = |D0| = |A0 ∪ C0 ∪ D0|. (3) A0 and B0

are empty.

Inductive Step. Assume that |Ai−1| ≤ |Bi−1|, |Bi−1| ≤ |Ai−1 ∪Ci−1∪Di−1|, and there is no edge
between vertices in Ai−1, vertices in Bi−1, and vertices in Di−1.

(1) |Ai| = min(σ) ≤ max(σ) = |Bi|, where σ = (|Bi−1|, |Ai−1 ∪ A∗|).
(2) There are two cases:

� |Ai−1∪A∗| < |Bi−1|. In this case, Bi = Bi−1, implying that Ai∪Ci∪Di = Ai−1∪Ci−1∪Di−1

since all vertices not in Bi must end up in one of the other 3 sets. Hence, (2) holds by the
inductive hypothesis.

� |Ai−1 ∪ A∗| ≥ |Bi−1|. In this case, Bi = Ai−1 ∪ A∗ and Ai = Bi−1. Hence:

|Bi| = |Ai−1| + |A∗| ≤ |Bi−1| + |B∗| = |Ai| + |Di| ≤ |Ai ∪ Ci ∪ Di| .

The first equality holds since Ai−1 and A∗ are disjoint (Ai−1 was disjoint from Di−1 ⊃ A∗).
The first inequality holds since |Ai−1| ≤ |Bi−1| by inductive hypothesis and |A∗| ≤ |B∗| by
construction (w.l.g). The second equality holds since Ai = Bi−1 and Di = B∗. The last
inequality holds since Ai and Di are disjoint (for the same reason as just cited).

(3) A∗ ⊂ Di−1 so by inductive hypothesis Bi−1 does not contain an edge to Ai−1∪A∗ (one of which
becomes Ai and the other Bi). C∗ separates B∗ from A∗ and inductively A∗ ⊂ Di−1 does not have
any edges to Bi−1 or Ai−1, so Di = B∗ does not contain any edges to Ai or Bi.

Since when the algorithm terminates D = ∅, this theorem implies that at the end |A| ≤ n
2

and
|B| ≤ n

2
. (If not, then either |A| + |B| > n or |A ∪ C| + |B| > n which would be a contradiction.)

Theorem 6. The size of the separator |C| = O(
√

n).

Proof. By Lemma 4, at each iteration of 1

2
-
1

2
-Separator, Di is at most 2

3
Di−1, hence at iteration

i |Di| ≤ 2

3

i
n. By Tarjan’s separator theorem we proved in class, Ci = O(1)

√

|Di−1|. Hence,

|C| ≤
∞
∑

i=1

|C∗
i | =

∞
∑

i=0

O(1)
√

|Di| ≤
∞

∑

i=0

O(1)

√

2

3

i

n

= O(
√

n)
∞
∑

i=0

2

3

i

2

=
O(

√
n)

1 −
√

2

3

= O(
√

n)
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Runtime Analysis:

Theorem 7. 1

2
-
1

2
-Separator completes in O(n) time.

Proof. We showed in the proof of Theorem 6 that at iteration i, |Di| ≤ 2

3

i
n. The cost of the call to

2

3
-
1

3
-Separator during iteration i is therefore at most 2

3

i
O(n). The remainder of the steps can be

performed in constant time. The algorithm terminates when |Di−1| = 1, so the total running time
is at most:

∞
∑

i=0

2

3

i

O(n) =
1

1 − 2

3

O(n) = O(n)

[Our solution was derived from Lipton and Tarjan. A Separator Theorem for Planar Graphs, SIAM
Journal of Applied Mathematics, Vol. 36, No. 2 (Apr., 1979), 177-189. Corollary 3.]

Problem 5. Given a weighted undirected planar graph G, we will essentially run a biased version
of Boru̇vka’s Algorithm. By taking advantage of the properties of planar graphs, we can ensure
that we only need a constant number of operations each time we merge two trees, so the entire
algorithms will run in constant time. In designing our algorithm, we will make use of the following
fact, along with Lemma 9.

Fact 8. In any planar graph, there is at least one node with degree ≤ 5.

Lemma 9. In a graph G = (V,E), let X ⊂ V be any subset of vertices, and let e = (u, v) be the
edge of minimum weight connecting X to V − X. Then edge e must be in the minimum spanning
tree.

Proof Lemma 9: Suppose that there exists a minimum spanning tree T that does not include e.
Since a MST must be connected, there must be some edge e′ connecting X to V −X. However, we
specified that e is the minimum weighted edge between X and V − X. Therefore, we can replace
e′ with e and reduce the total weight of T while still maintaining the connection between X and
V − X. Thus, e must be included in any minimum spanning tree.

Analysis We will now show that Algorithm 5 correctly assembles a MST. When we initialize L,
Fact 8 assures us that we must find at least one node with degree less than six. In each loop of the
main outer loop, we consider the edges connecting one vertex to the rest of the graph and select
the edge, e, with minimal weight. According to Lemma 9, this edge must be in the MST. Next,
we merge the selected vertex with the node connected to it by e. Like Boru̇vka’s Algorithm, the
merged nodes become a new node in the graph, and the merged nodes are connected by an MST.
Since planar graphs are closed under the minor operations, the resulting graph must also be planar.
Therefore, there must be at one node of degree less than six in the new graph. The following lemma
shows that the node must be in list L:

Lemma 10. At the top of the main loop, the list L contains all of the nodes of degree less than
six, and |L| ≥ 1.

Proof Lemma 10: At each iteration of the main loop, the graph remains planar, so there must
be at least one node of degree less than six, so if L contains all of the nodes of degree less than six,
then we will always have |L| ≥ 1.
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Create an empty, doubly-linked list L

// Initialize node degrees and L
foreach v ∈ V :

degree(v) = # neighbors of v
if degree(v) ≤ 5 :

Add v to L

Create an empty tree T

while (|V | > 1):
Remove a vertex v from L
Let e = (v, u) be the minimum-weight edge incident to v
Add e to T
// Merge u and v into a single node
// Let N = {w1, w2, w3, w4} be the rest of v’s neighbors
if degree(u) < 12: // Then we’ll merge u into v

foreach edge e’ = (u, z):
if z 6∈ N :

remove e’, add (v, z) to the graph, and increment degree(v)
else: // z connected to both u and v

remove e’ and decrement degree(z)
if degree(z) ≤ 5, add z to L

remove u from V
if degree(v) ≤ 5, add v to L

else: // Then we’ll merge v into u
foreach wi:

remove edge (wi, v)
foreach edge (wi, z):

if z == u : // Then wi connected to both u and v
decrement wi’s degree
if degree(wi) ≤ 5, add wi to L

if wi was not connected to u:
add edge (wi, u) to the graph and increment degree(u)

remove v from V
if degree(u) ≤ 5, add u to L

Return T
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During the first iteration, we have initialized L to contain all of the nodes of degree less than six,
so the base case is true.

During each iteration, the only nodes that change degree are the neighbors of v and the merged
node that combines u and v. Since we check these nodes to determine if their degrees have dropped
below six, we correctly update L to contain all of the nodes of degree less than six.

We will now show that Algorithm 5 runs in linear time. The initialization loop looks at each node
once and each edge twice, so it runs in time O(n + 2m) = O(n). The main loop iterates until the
number of vertices drops to one. Since we remove one vertex at each iteration, there will be O(n)
iterations. Within the loop, v has a constant number of neighbors, so we can find the minimum
connecting edge in constant time. If degree(u) < 12, then we can update the edges out of u in
constant time as well. If degree(u) ≥ 12, then Lemma 2 tells us that the other neighbors of v must
have degree < 12, so if we update their edges instead, we will only need a constant number of
steps. We maintain the list L using a constant number of operations at each step, so we can always
find a node with degree less than six in constant time (see Lemma 10). Thus, we perform O(n)
iterations, and in each iteration, we perform a constant number of operations, so the total running
time is O(n).
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