
Homework # 1
15-496/782: Introduction to Artificial Neural Networks

Dave Touretzky, Spring 2004

• Due January 21, 2002.

• Read HK&P chapter 5 first.

• Software you need is in /afs/cs/academic/class/15782-s04/matlab/perceptron

• Answers must be typed. Handwritten answers will not be accepted.

Problems

1. Suppose you want to train a perceptron on the following classification problem:

Patterns =







2 6
1 3
3 9






Desired =







0
1
1







Using inequalities expressed in terms of the weights w0, w1, and w2, prove that the perceptron
cannot learn this task.

2. The proof of the perceptron convergence theorem states that if ŵ is a weight vector that
correctly classifies all patterns, and w(τ) is the weight vector at step τ of the algorithm, then
ŵ · w(τ) increases at each step. Modify the perceptron program to demonstrate this by
displaying the value of this dot product at each step. Turn in your source code and a sample
run.

Note: in order to do this you will need to know the correct weight vector at the start of the
run. You can calculate this vector directly from the slope and y-intercept.

3. Run the bowl demo with learning rates of 0.01, 0.1, 0.142, and 0.15. Hand in a printout of
each run. What can you say about the model’s behavior at each learning rate?

4. Consider the function f(x, y) = exp
(

−(0.6y − 0.7)2 − (x − 0.4)2
)

. The following code will
graph f for you:

pts = 0 : 0.1 : 1;

[x,y] = meshgrid(pts);

z = exp(-((0.6*y-0.7).^2+(x-0.4).^2));

surf(x,y,z)

box on, rotate3d on

Problem: (a) Train an LMS network to approximate f(x, y) over the unit square (0 ≤ x ≤ 1,
0 ≤ y ≤ 1). You may use the code in lms3d.m to get started, if you wish. (b) What is the
shape of your approximation function? (c) By looking at the weights of your trained network,



you can see the first degree polynomial that the neural network has devised to approximate
f . Write down this polynomial, and hand it in along with the code you wrote to solve this
problem.

5. How much information does it take to describe a two-input perceptron? The classical descrip-
tion uses a vector of three real-valued parameters: ~w = 〈w0, w1, w2〉. But the perceptron’s
decision boundary is a line, which can be uniquely specified with just two parameters, e.g.,
slope and intercept.

Jack says: “I claim a perceptron can be described with less information than three real
numbers. Here’s how I would do it with just two real values: set s0 = w0/w2, and s1 = w1/w2.
From the description 〈s0, s1〉, I can construct a weight vector 〈s0, s1, 1〉 that behaves exactly
the same as ~w for all inputs.”

Jill replies: “I claim a perceptron requires more than just two real numbers to describe.
Consider the case where w2 is negative. What will your approach do?”

(a) Whose claim is correct, and why?

(b) How much information does it really take to correctly describe a two-input perceptron?
(Don’t worry about the case where w2 = 0.)

2


