Mixture Models and the EM Algorithm

15-496/782: Artificial Neural Networks David S. Touretzky

Spring 2004

2

Probability Densities	
$P(j) = prior \ probability \ of \ class \ c_j$ so $\sum_j P(j) = 1$	
Probability density of the mixture: $p(\boldsymbol{x}) = \sum_{j=1}^{M} p(\boldsymbol{x} j) P(j)$	
Posterior probability: $P(j \boldsymbol{x}) = \frac{p(\boldsymbol{x} j)P(j)}{p(\boldsymbol{x})}$	
so $\sum_{j} \mathbf{P}(j \mathbf{x}) = 1$	4

David S. Touretzky

Conditional Density

Assume covariance matrix is diagonal with equal elements. Then:

$$\mathbf{p}(\mathbf{x}|\mathbf{j}) = \frac{1}{(2 \pi \sigma^2)^{d/2}} \cdot \exp\left\{\frac{-\|\mathbf{x} - \boldsymbol{\mu}_{\mathbf{j}}\|^2}{2 \sigma^2}\right\}$$

How can we determine the "most probable" values of μ_j and σ_j and P(j), given the dataset $\{\boldsymbol{x}_i\}$?

Likelihood of a Dataset

What is the likelihood L that a dataset $\{x_i\}$ was generated by a given mixture model?

$$p(\mathbf{x}) = \sum_{j=1}^{M} p(\mathbf{x}|j) \cdot P(j)$$
$$p(\{\mathbf{x}_i\}) = \prod_{i=1}^{n} p(\mathbf{x}_i) = L$$

6

Log Likelihood

For gradient descent, we want a sum, not a product, because the derivative of a product is messy. So take the negative log.

$$E = -\log L = -\sum_{i=1}^{n} \log p(\mathbf{x}_i)$$
$$= -\sum_{i=1}^{n} \log \left\{ \sum_{j=1}^{M} p(\mathbf{x}_i|j) P(j) \right\}$$

$$\begin{split} & \textbf{B} = \sum_{i=1}^{n} \log p(\mathbf{x}_{i}) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{M} p(\mathbf{x}_{i}|j) P(j) \right) \\ & \boldsymbol{E} = \sum_{i=1}^{n} \log p(\mathbf{x}_{i}) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{M} p(\mathbf{x}_{i}|j) P(j) \right) \\ & \boldsymbol{E} = \sum_{i=1}^{n} \left(\frac{1}{p(\mathbf{x}_{i})} + \sum_{k=1}^{M} P(k) - \frac{\partial}{\partial \mu_{j}} p(\mathbf{x}_{i}|k) \right) \\ & = \sum_{i=1}^{n} \left(\frac{1}{p(\mathbf{x}_{i})} + p(\mathbf{x}_{i}|j) P(j) + \frac{\|\mathbf{x}_{i} - \mu_{j}\|}{\sigma} \right) \\ & = \sum_{i=1}^{n} P(j|\mathbf{x}_{i}) + \frac{\|\mathbf{x}_{i} - \mu_{j}\|}{\sigma} \end{split}$$

5

 $E = -\log L$ is our error function.

Do gradient descent on E:

$$\frac{\partial \mathbf{E}}{\partial \mu_{j}} = \sum_{i=1}^{n} \mathbf{P}(\mathbf{j}|\mathbf{x}_{i}) \cdot \frac{\|\mathbf{x}_{i} - \mu_{j}\|}{\sigma_{j}^{2}}$$
$$\frac{\partial \mathbf{E}}{\partial \sigma_{j}} = \sum_{i=1}^{n} \left(\mathbf{P}(\mathbf{j}|\mathbf{x}_{i}) \cdot \left(\frac{\mathbf{d}}{\sigma_{j}} - \frac{\|\mathbf{x}_{i} - \mu_{j}\|^{2}}{\sigma_{j}^{3}}\right) \right)$$

David S. Touretzky

Williamson: Gaussian ARTMAP

1. Use an RBF network to do pattern classification:

Each unit votes for one class. Tally votes from all active units. The class with the most votes wins. No LMS training.

2. Use a variant of EM to train the gaussians.

Characteristics of EM

- Learns in a small number of iterations.
- Can get stuck in local minima.
 - But you can add heuristics to help unstick the algorithm.
- Must decide in advance how many Gaussians.

"Match Tracking" in ARTMAP

Establish a match threshold ρ .

Units count as "active" only if $P(\mathbf{x}_i|j) > \rho$.

All other units are reset to zero; they do not vote.

If the network guesses the wrong class, increase $\boldsymbol{\rho}$ slightly and try again.

If ρ gets too high and all units are reset, then add a new unit to handle this data point.

Performance of Gaussian ARTMAP

Note: EM is a batch (offline) learning algorithm. Guassian ARTMAP uses an online variant.

Did well on several tasks:

- Letter image classification
- Landsat satellite image segmentation
- Speaker-independent vowel recognition

Match tracking helps Gaussian ARTMAP outperform EM by "backpropagating" the effects of erroneous classifications.

17

19

Offline Calculation of μ and σ^2

$$\mu = \langle \mathbf{x} \rangle$$

$$\sigma^{2} = \langle (\mathbf{x} - \mu)^{2} \rangle$$

$$= \langle \mathbf{x}^{2} - 2\mathbf{x}\mu + \mu^{2} \rangle$$

$$= \langle \mathbf{x}^{2} \rangle - 2\langle \mathbf{x} \rangle \mu + \langle \mu^{2} \rangle$$

$$= \langle \mathbf{x}^{2} \rangle - 2\mu^{2} + \mu^{2}$$

$$= \langle \mathbf{x}^{2} \rangle - \langle \mathbf{x} \rangle^{2}$$

On-line Calculation of
$$\mu$$

$$\mu_{n} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\mu_{n+1} = \frac{n \cdot \mu_{n} + x_{n+1}}{n+1}$$

$$= \frac{n}{n+1} \mu_{n} + \frac{x_{n}}{n+1}$$

$$= \left(1 - \frac{1}{n+1}\right) \mu_{n} + \frac{1}{n+1} x_{n+1}$$
22

On-line Calculation of σ^2

$$\sigma_n^2 = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - \mu_n)^2$$

$$\sigma_{n+1}^2 = \left(1 - \frac{1}{n+1}\right) \sigma_n^2 + \frac{1}{n+1} \left(x_{n+1} - \mu_{n+1}\right)^2$$

 $\sigma_{\rm n}^2$ is slightly biased because $\mu_{\rm n}$ changes, but the effect is not significant.

Split and Merge EM (Ueda, Nakano, Gharamani, and Hinton)

• Split a component if it does a poor job estimating the local density.

• Example: a component stuck between two clusters will have low density near its mean and high density near the true cluster centers.

• To split, make two copies, and perturb each one away from the mean by a small amount.

David S. Touretzky

21

Split and Merge EM (cont.)

• Merge two components if their paramaters are close. Set the merged component's parameters to the weighted average.

$$(\mathbf{b}) \rightarrow (\mathbf{b})$$

• Combine one merge step with one split step, so the number of mixture components M stays the same.

Combined Split and Merge Steps

Old components:

New components:

26

Run a mini-EM step to adapt elements i', j', and k'. Then run full EM to asymptote.

If overall likelihood is not improved, undo the split/merge and try a different set of candidates.

Candidates are ranked heuristically; only need to look at about 5.

David S. Touretzky

25

Spring 2004

Image Reconstruction

(c) MFA with EM

(d) MFA with SMEM

29

Cheapo Heuristic

Not as good as SMEM, but easy to program:

If a component captures fewer than 1/(2M) points, reset its μ to a random \boldsymbol{x}_i and recalculate its $\sigma^2.$

Assumes the P(j) values are roughly equal.

EmHeuristic = 1 emdemo