Object Recognition

How Do We R i iects?
with Radial Basis Functions ow Do We Recognize Objects

There are many sources of variation in an object's
appearance:

15-496/782: Artificial Neural Networks * Observer's viewpont

David S. Touretzky * Object translation and rotation (pose)
Spring 2004 * Configuration change (for articulated objects)
 Lighting conditions
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Poggio and Colleagues: Use RBFs
99 g . — General RBF Scheme
PSoN /ﬁ =9
/ / / /) N
. . T 0 g,/ = 2. coh(llx-t] + p(x)
Store several views of each object. ™=/ ST -y & i
/6:)\ /6%\ where h(-)is the RBF, t, is a prototype, and
74 4 / .. . . . .
Synthesize a view-invariant ! 2= p/\ 2 ' ¢, is its mixture coefficient (outzput x;ve1ght)
recognizer from a combination of @m < Gaussian case: h(|x—t|) = exp|-|x—t|*/2¢?
view-specific RBFs. SPN ’/@
G50 %’7

From Ullman & Basri (1991):

(a) Three views of VW. (b) Two synthetic
views obtained by linear combination.

(c) Two new views from novel viewing
positions. (d) Superposition of (b) and (c)
images. (e) Best fit linear combination to a
different car: a Saab.

o small: table lookup; o large: function interpolation
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Recognizing Paperclip Shapes

(Poggion & Edelman 1990) Responses of RBF Units in a Module

Vetter, Hurlbert, and Poggio (1995): - HIDDEN IS
Sl LN
)fo F Four RBF units, each tuned to a Semmas | Teew : ~

different view of the object, forma |, 2 -~ .2

“module”. e
Input: vertex positions as (x,y) coordinate pairs. R T
D}?sired output: viewpoint-invariant recognizer for that Module responds strongly to the 4% w /gp m
shape. training object, and only weakly (on .
Can create a “recognition module” from several views average) to a set of 300 distractor ;
of one object. objects.

5
Object Classification Training the GRBF
. fl"ra%’n each module to map an input to a “standard —
view . training views for object Oy standard view
gy x}y:l Desired output

* Given a new image, find which module does the best xy
2

job of mapping that input to the module's standard Xz";z; ‘
view. )A7’ F : . . \PJ

view 1 ... view M — xnyn
o
&

* Can also recover pose information by interpolation X
from known posts of training instances.

training views

} poses of the
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Recovering Pose

RBF module
for object Oy
. 8 — — x¥ .
new view 171 1 standard view
of O  Xh— X¥s of Oy
X Xn
—© recovered
— ¢ pose

High Dimensional Input Space

Vertex Coordinates

Each RBF operates in a
high-dimesional input
space corresponding to
the number of input
features.

What if a feature is
missing?

Example: a vertex could
be hidden by occlusion.

How do we allow for / N
ow do we allow for a output X, ¥, X, %, Xn %

ial h?
partial matc Reconstructed Standard View
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Object Recognition

good match

Reconstructed . " -
std. view of obj. 1 ﬁj d%f ‘aﬁ/ ’%?’ J%:f/)

Views of object 1 }—» ':_7 * =y ¥ s

Reconstructed
std. view of obj. 1
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Use Low-Dimensional Features

A high-dimensional
Gaussian can be
synthesized as a
product of low-dim.
Gaussians.

Each vertex can be
recognized by a 2D
gaussian RBF; take
the product to
recognize the
object.

Omit occluded
features.

products of
receptive fields

output
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Alternative Features

RBFs are an attractive theory of how the brain might
do object recognition.

But (x,y) vertices are not a biologically plausible input
representation.

Alternative: could use slopes of lines, or angles
between pairs of lines.

A sum of line detectors --> paperclip shape detector.

Hyper-Basis Functions
* N [ \
£(x) = 2 ¢ Gllx-tf) + p(x)
i=1
Ix—tlly = (x-t,)" W' W(x-t)
where W is a square matrix.

If W is diagonal, then the elements w;
specify weights on the input dimensions.

In the general case, W is a linear transform of the input,
and the HBF acts like a multi-layer perceptron.

Train t,, c,, and W simultaneously.
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Face Detection / Object Recognition

Build detectors for eyes,
nose, mouth.

“Nice” objects have similar
parameters under a given

transformation.

Train a network to deal
with this transformation.

Faces are “nice” across
viewing positions.

Paperclips are not “nice”.

HBF Networks

first layer nonlinearity second

of weights ‘ ‘ ‘weiqht 1a3‘/er

linear transform

|

e W

Analogy between HBG network and MLP with two
layers of weights (and linear output unit.)

HBFs can sometimes learn viewpoint-invariant
features, when they exist.

David S. Touretzky Spring 2004
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How to Recognize an Object
From a Single Training View
1. Develop view-invariant features by training on

other, similar objects for which multiple views are
available. (Training W in the HBF.)

2. Use “virtual images” generated by learned
transformations to expand the training set for the new
object.

Example transformations:
- Rotation

- Change of expression (smile, frown, etc.)

Smile Transformation
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Rotation Transformation

img, MGy imow
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Duvdevani-Bar & Edelman:
The Chorus of Prototypes Model

Shape space: description of possible 3D shapes.
Can't perceive shape directly.

“Measurement space”: what is perceivable by sensors.
Very high dimensional space: 1 million pixels?

Rotating an object in depth generates a 2D manifold
(surface) embedded in the measurement space.

The 2D manifold is the “view space” of the object.

Proximal shape space: low-dimensional parameterized
description of a shape.

20
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Image Formation

a Lowdtenstonal
PAXInCter space

Describe the shape in a low-dimensional
parameter space.

Use parameter values to generate the shape.

Apply viewpoint and lighting transforms to

generate an image.
21

Chorus of Prototypes Model

XX XX EXX)
s
e

shapes

~
s ™ lowdimensional
' {r ' //' — representation space

mmqwi
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RBF Modules as Parameter Space

Lion, frog, and penguin
shapes form a 3D

parameter space I B—
for describing new W#T }1\

shapes. : ¥

b

The giraffe shape is
synthesized as a
combination of these
prototypes.

Building the Model

Choose 10 reference objects from a CAD database of
3D shapes.

cowl cat2 Al general - fly
#\ r m
{ a3 -4 L |
- ‘ - Y e {n)
;\ L; ‘€ X ny W\ i}
QUADRUPEDS ) FIGURES # * INSECT
Lrov Niss Fle tuna TRex
F— F X
‘ pEETTN — /
Bl o o P=" < - A
\ o k f a
CARS AIR FISH DINO
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Measurement Space

For each object, genereate a set of 169 3D views as
256x256 grayscale images.

Measurement space:
200 elongated Gaussian \
receptive fields placed (™
randomly over the
image.
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Recognition Task

Identify novel views of the 10 trained objects.

Overall error rate: 7%

cowl cat Al pgene tuna Lrov Niss Fi6 £fly TRex
miss rate | 0.11 014 002 001 013 04 003 010 016 0.05
false alarm rate | 0.08 011 007 0.02 011 005 004 012 012 003
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Prototype Set

Use vector quantization
to cluster the 169 views
of each object and
generate a small number
of prototypes.

~ ]~

This set of views
defines a “module”
for recognizing the
object.

Qann
LEnn
ponn
hpnn
pEnon
ppan
EEan
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(The selected views are shown in re

Shape Description

Use the 10 prototypes
to define a 10- N P

: ) . AR @)
dimensional space in iy &

which any shape can ‘
be described. B\ il &

At right is a 2D \:?; . el

projection of this 10D o o B e

space, showing how uio\t/“*f \\ SR “n
multiple views of an = V”rﬁ ) Vo
object cluster tad "
together. D <

Cars, planes, and

quadrupeds form
super-clusters.
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Categorization Task
[;:;" f:*';’ n':_(g }{‘1

Assign 43 novel objects to
categories such as CARS,
FISH, or QUADRUPEDS based

g

QUADRUPEDS

on their locations in the 10-
dimensional feature space.

Several categorization

procedures were tried.

Error rate: around 20%.

P o g -
= g B £l

cans

Descriptions of 20 Objects

Activations of the cowl cat? Al Geme tuna Lrov Niss Fi6  fly Thex
frog 038 028 020 018 035 020 011 009 099 016

10 modules for nortle |0.53 032 038 0.64 039 013 009 013 093 017
each of 20 novel shoe | 051 0.63 006 012 109 046 054 033 059 0.6
: pump 133 144 001 017 237 032 102 040 083 019

0 bJ e Cts N Beetho | 000 005 010 002 007 005 001 001 038 001
givl |2.66 178 013 3.27 255 020 073 107 203 086

lanp |02 048 071 070 041 036 009 009 153 009

Values shown in menate [ 1.49 098 009 036 2.47 035 145 068 081 024
bold are at least dt.lehJ' 114 058 004 031 220 023 068 051 072 0.13
Fiat 151 177 001 012 3.76 046 227 087 079 027

50% of the Toyota [2.16 213 010 025 250 200 229 0.6 08 030
maximum tenk | 1.85 191 009 051 2.50 104 2.36 146 105 056
. . Stego |2.04 213 006 067 3.61 067 245 146 158 098
activation for that camel [2.20 134 004 07 175 030 065 054 102 023
I"OW . giraff | 1.87 1.93 0.03 054 3.24 019 1.04 121 1.63 1.72
Gehaiz | 175 1.69 0.00 0.09 3.04 029 140 076 086 019

Chair |2.64 2.65 002 044 405 082 239 106 178 051

shell [1.89 1.09 025 156 095 044 040 049 1.66 035

Manatee = tuna + ‘bunny 1.07 1.24 023 022 1.10 147 053 028 095 030
cow + Nissan. lion [0.55 059 009 013 054 061 020 009 060 013
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Discrimination Task

frog turtle shoe pump Basthcven

Use the 10D feature space to LY 0

discriminate among 20 novel )/ d &
7 P
girl lanp manatee dolphin shell

objects. W A

Each object is described as a “ﬂ"
point in the low-dimensional i

proximal shape space.
Error rate: 5%. é\{ giraste canel bumny  Stego
hdOen
30
Does the Brain Do It This Way?
There are cells in IT (inferotemporal cortex) tuned to
specific shapes.
monkey brain ™
The “what” (temporal)
and “where” (parietal)
pathways.
temporal sulcus
32
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Representative Stimuli Responses of Cells in IT

Typical effective (left) and - R — Some cells are tuned to particular views of an object.

i/r;er?(ﬂ)eﬁstl\‘/]ieséglg:;e);stlmuh for D I t - Like individual prototypes in Chorus?

V1 = primary visual cortex. P — - N Some cells respond broadly to an object over a wide

ﬂ I _; ) @ range of views.
PIT, CIT, AIT, STPa are parts = @ - Like modules in Chorus?
’ ’ ’ va D: Q ‘sw.
of temporal cortex. T e @ : Responses of cells in IT can change with experience.
ircles sh i f ical " ) . .

Selz(; I()etsi 58 (;i\glzgzes of typica @ @ @@ 2 Psychophysical experiments on humans and monkeys

' L @ © judging shape similarity have been replicated by the

Chorus of prototypes model.

33 34

) A Face Is More Than
Face Cells in IT The Sum Of Its Parts

(A
@’:’-‘ d: < ’-?g‘:m -

i

Some cells in IT are preferentially
responsive to faces.

E

The cells will respond to either
monkey faces or human faces.

They do not respond to degraded

. . N . 100
face stimuli, or non-face stimuli.

504 [

D 9P
i

RESPONSE (SPIKES/SEC)

M

A48 8 & .

o LI 2% | £
35 Whole Eyes Nose Mouth Internal Hair Forehead Control

{
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Summary

Object recognition can be achieved with a surprisingly
low number of prototype views.

“Nice” (transformation invariant) features help.

HBFs can learn viewpoint-invariant features when they
exist.

A collection of prototypes can form a low-dimensional
space for describing novel objects.

The “what” pathway may use an HBF-like mechanism.
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