
15-859(M): Randomized Algorithms Homework 5
Date: Nov 15, 2004 Due: Nov 29, 2004

Ground Rules

Please let us know, for each question, if you have seen the question before. And do prove claims that you
make. This assignment should also be done individually: no collaboration is allowed. Also, we will be
strict with the deadline on this one as well: due in class on Monday Nov 29th.

Questions

1. (Small Inner Products.) Show that there exist N = 2cε×n unit vectors {v1, v2, . . . , vN} in 1√
n
{−1, 1}n

such that the mutual inner products |〈vi, vj〉| ≤ ε for all 1 ≤ i 6= j ≤ N . (Here cε is a constant that
depends on ε, but not on n.)

2. (Vertex Cover.) Given a graph G = (V, E), a vertex cover of G is a set of vertices C ⊆ V such
that each edge has at least one endpoint in C. Finding the vertex cover of the smallest cardinality is
NP-complete.

(a) Consider the following algorithm for Vertex Cover:

i. Start with C ← ∅.

ii. Pick an edge {u, v} such that {u, v} ∩ C = ∅. Add an arbitrary endpoint to C.

iii. If C is a vertex cover, halt, else goto Step (ii).

Give an instance on which this algorithm may return a set which is Ω(n) times worse than the
smallest vertex cover.

(b) Now suppose we randomize the algorithm thus: when we pick an edge {u, v}, we flip an unbiased
coin to decide which endpoint to add to C. If k is the size of a smallest vertex cover, show that
E[|C|] ≤ 2k.

(c) Suppose each vertex v had a weight w(v), and the objective was to pick a set of smallest weight.
Give an example to show that the above algorithms do not work for this problem. Now alter the

algorithm thus: on picking an edge {u, v}, add u to the cover with probability w(v)
w(u)+w(v) . If W is

the weight of a least-weight vertex cover, show that E[w(C)] ≤ 2W .

3. (Streaming and frequency moments.) Given a stream of m numbers a1, a2, . . . , am, with each
ai ∈ {1, 2, · · · , n}, we would like to compute some statistics on this data.

In particular, let qi = |{j | aj = i}| be the frequency of item i, i.e., the number of times the number i
appears in the stream. Then the kth frequency moment Fk is defined as Fk =

∑
i qk

i . In this question
we will construct a randomized algorithm for approximating the second moment F2 while processing
each element only once, and using only O(log n log m) bits of space.

(a) Let ~v = (v1, v2, . . . , vn) be an n-bit vector with each vi picked u.a.r. from {−1, 1}. Consider the
random variable Xv = (~v · ~q)2, where ~q is the vector of frequencies. Prove that the expected value
of Xv is equal to F2.

(b) Determine the variance of Xv.

(c) Give an FPRAS for F2 based on the above two parts. (Don’t worry about space issues yet.)

(d) Briefly (one or two lines) describe how to compute the random variable Xv , given the vector v,
while using a workspace of only O(log m log n) bits and a single pass over the stream.
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(e) (Extra Credit) A näıve implementation of the algorithm requires us to store n bits of space for
the vector v. How can one implement the algorithm for part (c) using storage only O(log n) bits
per vector?

4. (Random walks on spanning trees.) Given a connected graph G = (V, E) with |V | = n, our goal
is to pick a random spanning tree of G. To do this, we construct a directed random walk on the space
of all spanning trees.

First note the following property of random walks on any directed graph.

(a) Given a strongly-connected directed graph H = (U, E ′) with the in-degree of every vertex equal
to its out-degree, define the degree of vertex u as d(u) = in-degree(u) = out-degree(u). Prove that
a stationary distribution of a random walk on such a graph is given by π∗(u) = d(u)/|E′|.

Next we study random walks on rooted spanning trees. A rooted spanning tree is tuple (T, r), where
T is a spanning tree of G and r is the root of T . Given the root, the parent parent(v) of any vertex
v 6= r is the second vertex on the unique path from v to r (the first vertex being v itself).

Consider the following Markov chainM on the rooted spanning trees of G. Starting from a rooted tree
(T, r), pick a random neighbor of the root r in G (u.a.r.), say v. With probability 1/2, stay at (T, r).
Otherwise move to (T ′, v), where T ′ is the spanning tree obtained by removing the edge (v, parent(v))
and adding the edge (r, v).

(b) Prove thatM is ergodic (irreducible and aperiodic). Give an upper bound on its diameter.

(c) What is the stationary distribution π∗ of M?

(d) Suppose we sample from the stationary distribution π∗ ofM: if we get (T, r), we just output the
spanning tree T . What is the resulting probability distribution on unrooted spanning trees of G?

Finally we will use a coupling argument to prove that the above Markov chain mixes fast.

(e) Consider the following coupling (X, Y ) for the chainM. Let X = (TX , rX ) and Y = (TY , rY ).

• If the roots of X and Y are different (i.e., rX 6= rY ), then pick the next state for X and Y
independently.

• If rX = rY = r, then pick a neighbor of r u.a.r. and use this to obtain the next state in both
X and Y .

Using this coupling, prove that the chain M mixes in time τM(ε) ≤ C(G)O(log 1/ε) + Mε/2(G),
where C(G) is the cover time of the natural random walk with self loops on the graph G, and
Mε(G) is the ε-meeting time of G, defined as follows. For nodes x, y ∈ V , consider two independent
natural random walks on G starting at x and y: txy is the least time such that

Pr[the two walks occupy the same node in V at some time t′ ≤ txy] ≥ 1− ε.

The meeting time of G is defined to be Mε(G) = maxx,y∈V txy.

(f) (Nothing to do here.) Note that we have related the mixing time τM(ε) to two parameters that
depend only on the underlying graph G. A theorem of Aldous shows that Mε(G) ≤ 2C(G) log 1

ε ,
and hence τM(ε) ≤ O(C(G) log 1

ε ). Of course, C(G) = O(n3), and thus we have shown that M is
rapidly mixing.
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