
Project Description

We propose to develop the theoretical and engineering basis for the trustless dissemination
of software. We seek to develop the means to distribute and execute software among literally
thousands of networked computers without compromising their integrity, while minimizing the need
for trust among participants and maximizing the usage of their collective computational resources.
To make this possible, we propose to undertake a comprehensive investigation into the use of
certifying compilers to produce efficient machine code that is equipped with a checkable certificate
of compliance with the security, integrity, and privacy requirements necessary for its safe execution
on unknown computers. We propose not only to develop the enabling technology, but also to build
a demonstration system that allows developers to deploy, rapidly and reliably, applications that
make use of the idle computing and storage resources of a network of computers, perhaps spanning
the entire Internet.

The general concept of making productive use of idle computational resources has been around
for decades. With the advent of the Internet, the sum total of all idle resources is thought to be
many times greater than the fastest supercomputers. Therefore, the prospect of harnessing this
power has attracted an increasing number of researchers, and in recent years some substantial
progress has been made. Many of the early successful applications have been devoted to solving
basic problems in number theory and cryptography, such as computing the digits of Pi [3, 44],
computing the factors of large numbers [53], and finding large primes [15]. In just the last three
years, however, the range of problems being attacked has been expanding rapidly, to include global
climate modeling [1], protein folding [42], AIDS drug research [25], the search for extraterrestrial
life [57], video animation [21], cancer research [43], and more.

Participation by computer users has also been increasing. For example, in 1997 the Search
for Extraterrestrial Life project created SETI@Home, in the hopes that thousands of computer
owners might volunteer their excess CPU cycles. The response has been extremely enthusiastic; in
May of 2000 the SETI@Home project reported that over two million users were actively running
their software. This success has sparked a large number of related developments, leading most
recently to the formation of the Global Grid Forum [16], which is a consortium of researchers and
developers intended to foster the development of a world-wide distributed computing fabric. Indeed,
interest in this mode of computing has reached the point where several commercial enterprises have
launched with business models predicated on the ability to harness the Internet’s idle computing
cycles [11, 12, 13, 43]. This all seems to happen at an opportune time, as developer demand
for large-scale computing resources is growing, exemplified not only by SETI@Home, but also by
such projects as the National Virtual Observatory [32], which plans to build a massive database of
astronomical information and requires large-scale parallel computation to achieve its goals.

While some researchers and commercial enterprises have successfully used the Internet as a mas-
sive computer, significant technical hurdles prevent the full benefits of Internet-scale distributed
computing to be realized. One set of fundamental problems lies in the nature of distributed com-
puting itself, because it is often extremely difficult or even impossible to divide a large computation
into many small pieces in a way that avoids large communication overheads. Interprocess commu-
nication is particularly problematic in Internet-scale computing, since many of the volunteering
hosts might have slow or occasional links to the Internet (for example, some hosts might connect
once a day by modem), and any application that depends on rapid and reliable communication
between hosts is therefore not likely to work well.

We do not propose to develop new algorithmic techniques for building distributed applications,
but rather to investigate the means by which a distributed computing fabric might be provided.
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Specifically, we propose to investigate the problem of how the components of a distributed applica-
tion may be disseminated to as many hosts as possible and with the greatest exploitation of their
resources. In our view a fundamental technical obstacle to achieving this goal is how to establish
an appropriate trust relationship between an application developer and the owners of the host com-
puters. This trust relationship is crucial for several reasons. Firstly, host owners need to know
before any software is installed that their safety and security requirements will be respected by any
applications that are to be hosted on their computers. Secondly, host owners furthermore require
a measure of protection against invasion of privacy, so that any uses of personal information can
be carefully controlled. Finally, developers must be able to modify and upgrade their applications
freely, and as a practical matter, it is important that installing upgrades causes minimal risk and
inconvenience for the host owners.1 (See the SETI@Home web page [54] for a glimpse into the
inconveniences of performing upgrades.)

Establishing these trust relationships is especially important for exploiting computing resources
on the network. Since users derive little or no direct benefit from the application software installed
on their computers, they may be expected to be especially sensitive to the reliability, security, and
maintainability of the software. Standing in the way of the establishment of the necessary trust
relationships is the fact that the Internet environment simply provides no justification for such
trust. Malicious application developers abound, and even benign developers are still often unable
to produce safe, reliable software. When an application is run for the host’s benefit (as is ordinarily
the case), the host’s owner is typically willing to assume the risks of unreliable software. But if it
is to be run for the benefit of others, the host owners should and will demand strong privacy and
security guarantees. In other words, for the purposes of exploiting its idle computational power, the
Internet is essentially a trustless environment. The fundamental problem, then, is how to generate
the necessary trust in a trustless environment.

Today, trust is a matter of faith. Furthermore, in many cases, host owners are forced to
reexamine their trust each and every time the developer makes a software upgrade. This is because
the host owner is often asked to go through the hassle of downloading and installing the upgraded
software explicitly. In other cases, an organization, essentially acting as a “cycle broker” for the
developers and as a “quality assurance team” for the host owners, gives a statement of assurance, the
value of which is based on the organization’s reputation. Sometimes this assurance is buttressed
by the use of Java [22] or other technologies, which help to convince the host owners that the
assurances can actually be at least partially enforced.

We envision a new paradigm in which developers freely disseminate their software to willing
hosts, and where trust is established via rigorous, mathematical proof of the security and privacy
properties of software. This paradigm would operate in concert with the already established eco-
nomic and social incentives given to owners to make their excess resources available. In a nutshell,
our vision is that the developers should gain control over the installation of their software, and the
host owners should be relieved of the burden of having to do it themselves and of the worry over
whether the software will follow the rules.

1There is an additional trust requirement, which is that developers need to know that their application software
will not be modified or tampered with in any way that will unknowingly corrupt the results of execution. This
problem is typically dealt with in practice by arranging for multiple hosts to work on the same subproblem and then
comparing their results. We plan to use the same approach to this so-called agent integrity problem, and hence our
proposed research will focus on host integrity.
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A Framework for Trustless Software Dissemination

It is our contention that realizing this vision of Internet-scale computing requires the establishment
of appropriate trust relationships. We believe that the following ideas will be essential components
of an enabling technology for establishing trust in trustless environments:

1. The precise formal expression and enforcement, by the host computer, of the safety, resource-
bound, and access control properties it requires of all applications programs.

2. The developer’s use of certifying compilers to generate optimized object code equipped with
a mechanically checkable certificate of compliance with host’s safety and security properties.

At the core of these ideas is the concept of certified code, in the forms of proof-carrying
code [33, 36] and typed assembly language [29, 27]. Certified code is code that comes with additional
information—essentially a kind of certificate—that allows a host computer to verify, quickly and
reliably, the code’s safety and security properties. This is in contrast to digital signatures and fin-
gerprints, which are limited to verification of extrinsic properties such as the code’s author or point
of origin, and in some cases require communication with trusted third parties. It is the intrinsic
nature of the certificates that permits trust to be established in trustless environments such as the
Internet. Because certified code can be automatically verified for what it will and won’t do when
executed, it matters much less who wrote it or how it was created or transmitted.

Two important realizations of certified code are proof-carrying code (PCC) and typed assembly
language (TAL). In both instances, the code is written in a machine or assembly language that
can be highly optimized using conventional compilation techniques. The use of certified machine-
level code also means that PCC and TAL programs can access low-level machine resources, and
can even be run in kernel mode [33]. This is in contrast to methods based on abstract machines,
such as the Java Virtual Machine (JVM) [22], which rely on high-level instructions that are either
interpreted to ensure well-behavior, or are translated using a complex (and possibly buggy) just-in-
time compiler. Conventional operating system protection techniques suffer from a similar drawback,
but at an even coarser level of granularity. Operating systems, by their very nature, provide only
very general protection mechanisms, such as address spaces, that are enforced at run-time by a
combination of hardware and software checks. Moreover, in practice neither operating systems nor
virtual machines may be tailored to specific tasks.

We have been deeply involved in the invention and development of both PCC and TAL in our
prior research, and have developed them into richly expressive and highly practical technologies [8,
41]. At present, PCC and TAL provide type safety assurances for object code that ensure that the
program is confined to its own data and instruction space, and that guarantee that data structures
and the run-time stack are not corrupted during execution.

For certified object code to be useful to application developers, there must also be a convenient,
flexible means for producing it. Since it is prohibitively difficult to analyze machine code and
to determine whether it is safe, much less to produce evidence of its safety, we propose instead
to generate safety certificates automatically using certifying compilers [30, 38, 37]. A certifying
compiler determines that a program is safe by examination of the source code (which is invariably
simpler than the ultimate executable), and then uses that information together with its knowledge
of its own compilation process to produce security evidence for its output executable. This shifts the
burden of proof from the code recipient, who is offering computing resources, to the code producer,
who wishes to exploit them.

Current certifying compilers are Popcorn [26], Touchstone [35] and SpecialJ [8]. Popcorn and
Touchstone are certifying compilers for safe, C-like, low-level languages that provide little support
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for modularity but are fairly lightweight. SpecialJ is a compiler for full Java that can compile and
certify the safety of applications programs as complex as the Hotjava browser and the StarOffice
application suite with acceptable overhead in certificate size. We expect the source code of SpecialJ
to be available from a commercial source this year. All of these certify type safety and control-flow
safety, which are basic prerequisites for all other more complex policies.

Present technology is inadequate to permit trustless dissemination of software in a safe, reliable,
efficient, and secure manner. In order to address the demands of such an architecture, we propose to
develop the underlying science, testbed implementations, and prototype applications. This requires
the synergistic development of these technologies:

• formal policies that guarantee not only safety, but also resource-bound and access control
properties of certified code;

• programming language mechanisms that can effectively verify the necessary properties at the
source level; and

• certifying compilers that can propagate such source properties and evidence for their validity
to low-level code.

As a tangible realization of the basic technology, we propose to build a demonstration system
encompassing the necessary basic infrastructure and some demonstration applications. We envision
the following experimental framework:

1. A host owner installs a steward on his or her machine that runs as a daemon and listens
to incoming installation or upgrade requests. During the steward’s installation the host
owner chooses a host policy specifying the security parameters, initially from a fixed menu of
choices. This could allocate resources and impose certain access control and authentication
requirements. Internally, the host policy is translated into proof- or type-checking obligations
that are sufficient to ensure conformance with the host’s requirements.

2. An application developer requests resources on various machines by posting software or soft-
ware upgrades. The posted software is certified with respect to a developer policy stating
those security and safety assurances that are offered by the developer. Hosts that have avail-
able computing resources will consider the request by examining the application binary, which
is equipped with a certificate of compliance with the developer’s policy. If the application
can be proved to conform to the host policy, the binary is accepted and executed (without
intervention by the user) on the host machine, with results reported back to the developer
via the steward.

3. It will be necessary, especially in early stages of development, to update the steward itself. For
this we envision equipping the steward with a “hot swap” capability based on conventional
authentication techniques that allows new versions of the steward to be installed without
explicit intervention by the host.

This architecture provides the basic infrastructure to achieve trustless software dissemination
based on certified object code. The combination of code certification and proof- or type-checking
provides a practical framework for the host to state and verify the basic trust relationships required
for distributed applications. Whether this framework is useful depends crucially on the policies that
can be succinctly expressed and enforced within this overall framework. (We will discuss various
possibilities in this direction below.) It should be stressed, however, that the effectiveness of these
policies is directly dependent on the integrity of the host system. Faulty or compromised operating
environments can negate the guarantees provided by our experimental framework. This limitation
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is shared by any method for ensuring host integrity, whether it be based on abstract machines,
authentication techniques, or the methods we propose to investigate here.

As an initial experimental testbed, we plan to install our dissemination infrastructure on a
collection of desktop computers in the School of Computer Science (SCS) at Carnegie Mellon
University. This will allow us to exploit the pre-existing culture of deployment of experimental
software within SCS, as well as permit early experiments on a controllable and manageable scale.
We also envision extending our infrastructure to include hosts at other universities with whom we
have established working relationships.

The remainder of this document presents the details of our proposed research project. We
organize this presentation into sections, with each section giving an overview of a specific major
subproblem, its relationship to the overall research goal, and our plans for addressing it. These
major subproblems are as follows: the development of resource-bound and access-control policies
and enforcement mechanisms, the design of programming languages for application development,
the design and development of certifying compilers, and the use of logical frameworks for efficient
proof representation. We conclude the proposal with a brief discussion of our overall research plan
and our approach to disseminating our software and research results.

Resource-Bound Policies

A key advantage of both the PCC and TAL approaches to code safety is that they exploit our current
understanding of formal type systems. This advantage provides us with substantial leverage, both
in our ability to define and reason precisely about code safety properties, and in our ability to
obtain well-engineered implementations of safety enforcement mechanisms. Also crucial is the fact
that current type systems suffice to express a variety of simple but fundamental properties, such
as the type-correctness of memory accesses and the safety of all possible control paths through the
program. In a nutshell, type correctness ensures that programs do not violate the integrity of the
host system, for example by writing to unallocated memory or by providing illegal arguments to the
operating system. This level of safety is extremely important, because real-world experience shows
that most system security breaches are caused by programs that either cause buffers to overflow or
provide illegal arguments (often intentionally) to system calls.2

The practical evidence shows that type safety is essential and has enormous impact on computer
security, and indeed it is (approximately) this level of safety that is provided by other systems such
as the Java Virtual Machine [22] or Software Fault Isolation [62]. Nevertheless, we believe that
more is required in order to achieve the level of trust necessary for people to relinquish full control
of their hosts. Specifically, for the purpose of trustless dissemination of software on large networks,
we believe that the host systems must be able to constrain the quantity of system resources used by
untrusted applications. The resources in question include processor cycles, memory, disk space, and
network bandwidth used, as well as the length of time that any such resource—such as the CPU,
a block of allocated storage, or network device—can be held before yielding it to another process.
We refer to limits on the use of system resources as resource-bound properties of applications.
To achieve the necessary level of trust, host owners must be able to specify the resource-bound
properties they require and have those properties enforced by the steward.

2See http://www.cert.org/summaries/CS-2000-04.html for a recent summary of reported security violations. In
addition to buffer overflow and illegal arguments, a third major category of security breaches is due to Microsoft
Visual Basic scripts. We avoid this category of problems in our proposed system simply by avoiding Visual Basic.
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In previous work [34], we conducted some preliminary investigations into one approach to con-
trolling the use of CPU, memory, and network resources. In essence, this approach involved inserting
dynamic checks into the untrusted code in order to render it “easy to prove,” and then optimizing
away the checks while at the same time deriving the (more complicated) proof or typing annotation
of the optimized program.

Before describing the application of this idea to resource bounds, let us begin with a simpler but
analogous situation. Consider the problem of determining the safety of accesses to the elements of
an array. In general it is extremely difficult to prove that an array access is within the bounds of
the array. However, there is a way to render it easy to prove, namely by inserting code just before
the array access that dynamically checks that the array access will be within bounds. Of course,
checking every array access in this manner is both naive and inefficient,3 and hence most good
compilers try to minimize such checks. The point is that the compiler (if it is correct) performs
optimizations for a sound reason, so if the compiler is able to perform such an optimization for an
array access, then it is also able to generate a proof or a typing annotation that makes it easy for
the host system to conclude that the array access is within bounds.

Now, in the case of resource bounds, we can approach the problem in a similar way. Consider,
for example, the problem of limiting the use of the CPU by specifying an upper bound on the
total number of instructions executed. A naive approach is simply to insert code before every
instruction in the program that increments a global counter and checks whether the counter exceeds
the specified upper bound, and then aborting execution of the program if this should ever happen.
For code such as this, it is not at all difficult to construct a proof that the program runs within the
specified bounds. A compiler can then attempt to optimize away such checks and, as with array
bound optimization, when the compiler is able to do so, it can also construct a proof justifying
the optimization. Performing such optimization for straight-line code is trivial, and as we have
shown in previous work, simple loops are also relatively easy to optimize into single checks that are
executed once per iteration or, in some cases, hoisted out of the loop altogether. Much harder is
the problem of optimizing the instruction-counting checks in programs that contain nested loops,
though there seem to be similarities, at least on the surface, to compiler optimizations such as
software pipelining [6, 49] and loop transformations for improving cache performance [65].

Note that the combination we propose of static verification (using proofs) and dynamic veri-
fication (using run-time checks) is necessarily more efficient than dynamic verification alone, and
likely much more efficient. This is for two reasons. Firstly, there is the practical matter that a
purely dynamic regime usually requires a context switch (associated with either a system call or an
interrupt) before any dynamic check can be performed, whereas in our approach all dynamic checks
are performed by the application itself. More fundamentally, however, a purely dynamic regime
must perform every single check, while in our approach many checks can be optimized away.

A variety of other resource-bound properties can be certified in a similar way. For example,
similar techniques can be used to limit the amount of memory allocated, disk space used or the
number of bytes written to the network. For another example, it is also possible to use this approach
to deny access to the network device unless a specified minimum number of instructions have been
executed since the last network access [34], thereby limiting bandwidth usage.

Despite the potential difficulties in optimizing away the dynamic resource checks, particularly in
programs that exhibit complex control flow, the underlying approach in its simplest form appears
to be easy to understand and straightforward to implement. Furthermore, we have found that it is
possible to capture this approach in a resource bound calculus, and use this to create an extension

3Despite the naivete of checking every array access, some systems for enforcing code safety, such as the Java
Virtual Machine, do in fact check every array access. This is further evidence of the importance of even the most
basic safety properties.
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to the TAL type system [9]. From this point, it seems clear that recent work on typechecking for
languages with restricted forms of dependent types, such as DML [69] and DTAL [67], will allow this
calculus to capture some forms of optimizations. This suggests a clear plan for our proposed research
in this area. We begin with the simple approach that we have taken already, suitably extended
for the steward application. This will provide a basic level of support for resource bounds, allow
larger-scale experience to be gained, and provide a concrete target for formalization of the breadth
of resource bounds required by donors. This experience will then provide us with guidance on
the shortcomings of the approach and the need for optimizations that will likely require significant
development, along the lines of major control-flow transformations such as software pipelining. It is
also possible that the programmer could assist in the optimization of resource checks by supplying
resource-usage annotations in the original source program [9]. Finally, we plan to study the general
question of more complex specification and verification of resource-bound properties in parallel with
the experimental activities in this area.

Access Control Policies

In its usual form, type safety protects sensitive operations by denying access to such operations
entirely. For example, system calls can only be made when used in a manner consistent with their
specification in the type system (thereby ensuring that appropriate arguments are used); by simply
omitting a system call from the type system, that system call is made completely inaccessible.
Hence, it is easy to ensure that verified applications cannot (say) format the host’s hard disk. How-
ever, complete inaccessibility is inappropriate for some sensitive operations. For such operations,
we must provide access, but provide it in a controlled manner to avoid damaging the host’s owner’s
interests.

For the most part, the controlled access we require can be provided using ordinary type safety
techniques. For example, if applications are permitted to create files for temporary storage, then
applications will probably also be permitted to delete those files so as to clean up after themselves
(indeed, a resource-bound policy will probably require them to do so). Nevertheless, the host’s
owner certainly will not desire to give applications the unfettered ability to delete files. A natural
policy is to allow an application to delete only files it created. This can be enforced using ordinary
type safety by taking advantage of type abstraction [50]: The type system specifies that the delete
file system call requires a handle to the file to be deleted, and the only way to obtain a handle
is using the system call to create a file. If the type of file handles is made abstract, then the
application cannot forge a handle, and consequently applications are limited to deleting only files
they can legitimately obtain handles to, those it created.

Another access control issue that is important in many mobile code applications, but that does
not arise for our proposed system, is the so-called “luring” attack [51]. In luring attacks, trusted
code calls untrusted code, providing it a callback (back into trusted code), which the untrusted
code abuses to perform an unsafe operation.4 In a sense, the blame for such attacks can be assigned
to the original trusted code for providing an abusable callback to untrusted code, but it can be
very difficult in practice to program in a manner immune to such attacks, which has led developers
to desire additional protection against such attacks. Java implementations typically do so using
a technique called stack inspection [64] in which the system, before performing a possibly unsafe
operation, checks that no untrusted stack frames lie below a trusted stack frame that authorized
the operation. This can be costly, and a variety of alternatives have been proposed [64, 55]. In

4The idea behind the term is that the untrusted code “lures” some trusted code into providing the abusable
callback.

7



any case, luring attacks do not arise in our proposed system. Luring attacks can occur only when
trusted code calls untrusted code, but in our proposed system the only trusted code that will ever
call untrusted code is the steward itself.

Type safety provides a notion of unforgeable capabilities—in the above example the capability
to delete a file. In some circumstances it is useful to extend this facility to revoke capabilities,
for example, a host owner might wish to grant the application the capability to write to the
network only when network load is light. Revocable capabilities can be supported using standard
dynamic means [66], in which capabilities are checked for validity (i.e., for not having been revoked)
at run time before operations are performed. For most applications, dynamic validity checking
is satisfactory, but if run-time checking were to be too costly (such as with a memory-mapped
network interface, perhaps), validity checking can also be performed statically using a type system
of capabilities [63, 59]. The same sort of type system can also enforce cleanup properties [63]; for
example, it can ensure that applications delete any files they open.

A final issue related to access control is that of information flow properties. An information
flow property dictates would dictate that, although an application may be permitted access to
some piece of information, it is not permitted to propagate that information to any agent not
permitted access, such as the application’s developer. Information flow properties are very useful
in settings of cooperative computation, but have not the same degree of importance here, since
applications have little legitimate reason to require access to the host’s data at all. Nevertheless, a
few legitimate reasons do arise; for example, an application may wish to consult the host’s system
configuration in order to optimize its own behavior or install software updates, but the host’s owner
may not wish to allow the configuration to be reported to the outside world. The current work
in this area [20, 31, 61, 71] has made some strides toward enforcing information flow properties,
but none yet seem flexible enough for practical use in large applications. For our initial testbed
and applications, we expect to enforce information flow using access control; thus, applications will
simply not be permitted to consult the system configuration.

Programming Language Design

Our approach to trustless software dissemination is based on code certification. At present the
most practical way to certify that a program complies with a stated policy is to use a certifying
compiler that equips its object code with a checkable certificate of compliance with source code
safety and security policies. For this to be feasible, the compiler relies on a combination of theorem
proving techniques and the insertion of run-time checks in the object code. In essence a theorem
prover is used to determine whether a run-time check can be eliminated, and the object code is
augmented with a formal proof of this fact.

While this strategy has proved effective for relatively simple source-level safety policies [36, 29],
it is a significant open question whether it can be made to work for properties such as resource
bounds without incurring unacceptable performance penalties. An important part of our proposed
research is to explore the design of new programming language constructs that support certification
of distributed applications software. We propose to address this problem in two stages. Early on
we intend to focus on low-level languages that support the construction of small, efficient programs
that make few demands on the ambient computing context. These will work best for compute-
intensive applications, with little or no communication or storage requirements. Here the emphasis
will be on support for resource-bound and access-control certification. Later in the project we
expect to shift attention to high-level languages that support modular programming, richer forms of
policy specification, and mechanisms for mobile computing. Here the emphasis will be on providing
linguistic support for building applications that take full advantage of a rich, distributed computing
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environment.
In the early stages of the project we intend to build applications using extensions of either

Popcorn [28] or Touchstone [36, 38], both of which compile safe C-like languages. These are well-
developed certifying compilers that are suitable for experimenting with new certification techniques,
and which support development of relatively simple, compute-intensive applications.

Safety in this context refers to memory safety (no illegal memory accesses), control-flow safety
(no illegal jumps), and type safety (no violation of data integrity). These safety properties are
mutually dependent and form the basic requirements for any certification of higher-level properties.
They are guaranteed by a combination of source language restrictions and run-time checks that are
eliminated when provably redundant.

Since program properties are much easier to specify than to discover, we plan to extend the
source language so that resource-bound properties and restrictions can be expressed by the pro-
grammer within the program text. Concretely, these will most likely take the form of logical as-
sertions (pre-conditions, post-conditions, and other invariants). However, unlike basic type safety,
fine-grained bounds on resource consumption are not intrinsic to the source program, but require
a combination of information from the source program and the compiled code. By keeping the
operational model of the source language simple, for example, by avoiding garbage collection, we
can keep this gap small.

In the later stages of the project we intend to investigate the design of more sophisticated
high-level languages with richer type systems (or other specification formalisms). For example,
our previous research on refinement types (both in the form of sorts for data structures [14, 10]
or dependent refinements [69, 70, 67, 68]) can be expected to play an important role. Refinement
types provide a flexible and expressive means of stating and verifying program invariants such as
the range of values of an integer expression or the assertion that an object reference is non-null. Our
previous research focuses on the use of refinement types as a software engineering tool. We intend
to investigate the use of refinement types in a certifying compiler to enable efficient certification of
safety and security policies needed for trustless distributed computing.

Besides our experience with lower-level languages from the first phase of the project, work on
type-based compilation for ML [58] and certifying compilation for Java in the SpecialJ compiler [8]
will provide a point of departure for the second phase.

In the longer term it will also be important to provide language support for building distributed
applications. This will involve not only establishing the assurances required by hosts, but also the
mechanisms for propagating tasks on the network, communicating among them, and collecting their
results. Here we envision the need for network-sensitive languages such as Cardelli and Gordon’s
mobile ambients [4], which make explicit concepts such as movement into and out of security
domains. Current, experimental type systems for ambients [5] are able to express properties about
the communication and mobility of ambients. It would be interesting to consider how to build a
certifying compiler for mobile ambients that would extend these properties to distributed object
code.

Certifying Compilation

The third area of focus for our proposed research is the design and implementation of certifying
compilers for high-level source languages, as described above. The certifying compilers we propose
to develop are intended to be the primary tools used by application developers. They will provide
the means for automatically generating certified target programs from high-level source programs.
In order to describe our proposed work in this area, we begin by describing our prior research
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accomplishments, and then discuss the open research questions that are directly relevant to the
goals of this proposed project.

We have considerable prior experience, having established this research area in our development
of the concepts of type-directed compilation [30, 58] and typed intermediate languages [18]. Cur-
rently, we have an ongoing large-scale implementation effort to develop a type-directed compiler for
Standard ML, called TILT. These concepts later inspired the Touchstone [37] and Popcorn [28, 29]
certifying compilers, which automatically generate certified native-code binaries. We have also been
involved in the development of SpecialJ [8], a commercially developed high-performance compiler
for Java that is scheduled to become an open-source resource later this year. It generates optimized
PCC binaries for the Intel x86 architecture and is in a late stage of its development. Also related
is our development of certifying theorem proving technology [40, 7], which is used in both the
Touchstone and SpecialJ compilers.

In this prior work, we have focused first and foremost on developing the theoretical founda-
tions of certifying compiler technology, and then on investigating its applicability to programming
languages of realistic size and complexity. The TILT compiler effort, for example, is in part an inves-
tigation into the suitability of the Harper-Stone type-theoretic interpretation of Standard ML [19]
as the basis for the design of a typed-intermediate language for an ML compiler.

A second major focus of our prior work has been on the generation of very high-performance
certified code. In principle, certifying compilers ought to be able to generate highly optimized
native-code binaries whose certificates ensure their safety. To this end, the Touchstone and Popcorn
compilers have devoted considerable effort into techniques for automatically certifying optimized
machine code, with encouraging early results [38].

Despite our extensive prior work in this area, there are several key aspects of the problem of
trustless software dissemination that are not addressed by this prior work. Specifically, relatively
little has been done, to-date, on the propagation of resource bounds and access controls in a
certifying compiler, and the development of corresponding enforcement mechanisms for the steward.
Furthermore, the problem of providing a flexible and possibly extensible framework for security
policies in a certifying compiler has been largely ignored. In the context of Internet-scale computing,
however, it seems that such flexibility is essential, as it would allow some level of customization of
security policies by both host owners and developers. Finally, there are practical system-engineering
issues, for example having to do with how to determine and maintain the consistency of compilers
and stewards in a system where thousands of stewards and compilers might be deployed.

Besides these open research questions, which are largely specific to the goals of this proposal,
there are also several substantial open research problems in the underlying theory and engineering
of certifying compilers, and these are also directly relevant to the research goals of this proposal.

One major set of questions concerns the practicality of the certificates. In the case of TAL-based
certificates, there are questions regarding the size of the typing annotations, the time required to
perform typechecking, and the complexity of the typechecker. In the case of PCC-based certificates,
there are corresponding questions regarding the size of join-point annotations and the time and
space required for proof-checking. The TAL typing annotations and PCC join-point annotations
can become extremely large, in principle reaching exponential proportions. While the problem of
optimally controlling this growth is not tractable, we have some experience in appropriate heuristics,
and find that there is substantial room for research on this problem.

Another major question is the interaction between the steward and the compiler. The compiler
certifies the object code to comply with a developer policy stating safety properties of the program.
The steward requires compliance with the host policy, which states the conditions under which
the host is willing to execute applications. How are these to be reconciled, and how might they
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evolve over time? In the framework we envision it is the obligation of the steward to check that the
developer policy logically entails the host policy. In principle this could involve arbitrary deduction,
which would, of course, be impractical. In the early stages of the project we intend to limit this
entailment by limiting the specification of host policies to a few simple conditions that can be
easily checked against the developer policy. In the longer term it is a significant research problem
to develop more flexible methods for ensuring compliance with a richer variety of host policies.

Logical Frameworks

The representation and verification of safety proofs plays a critical role in any architecture for
distributed computing based on proof-carrying code. Consequently, proof-carrying code has become
a major application area for logical frameworks, that is, meta-languages for the representation of
deductive systems. In a logical framework language, the basic elements of proof systems, including
the syntax of predicates, the axioms and inference rules for constructing proofs, and even aspects of
the meta-theory, can all be represented and manipulated as objects. The logical framework LF [17]
is particularly well suited for such applications, since proofs can be represented as first-class objects
and, importantly for the PCC application, checking the validity of a proof reduces to typechecking
its LF representation.

In our previous investigations, we discovered that pure LF representations of proofs, while fast
and easy to validate by using a simple LF typechecker, were unreasonably large. In practice, some
proofs would be thousands of times larger than the programs whose safety they were proving. One
of our earliest advancements to overcome this problem was based on previous developments in
logical frameworks and logic programming [23]. This led to techniques for proof compression and
efficient verification of a useful fragment of LF [39], called LFi, and formed the basis of the first
practical implementations with manageable proof sizes and fast validation. In practice, the LFi

representation of proofs led to proof sizes roughly the same size as the code and near-linear-time
validation, even for Java-based applications of realistic size and complexity [8].

Although LFi made it possible to claim a certain level of practicality for PCC, a 100% overhead
is still significant, especially when compared to technologies such as cryptographic signatures. In
later work, Necula and Rahul developed the oracle-based representation of proofs for PCC [41].
In this approach, the validation is performed by a logic-programming interpreter for a fragment
of LF, in which nondeterministic choice and higher-order unification are guided by “oracle bits”
provided with the code. Essentially, the oracle bits thus represent the proof. This approach has
been implemented in the SpecialJ system, with extremely good results. Typically, for realistic Java
applications, the number of oracle bits is only a small fraction (usually less than 5%) of the code
size.

Despite the major progress that we have made in proof representation and validation, there are
significant new challenges posed by the problem of trustless software dissemination. Resource-bound
and access-control certification will require more complex arithmetic reasoning than is required in
present safety policies. (One intuition for this is to observe that array accesses are based primarily
on addition of small non-negative integers and multiplication by 4 or 8, whereas resource bounds
may involve reasoning about arbitrary nested loop iterations.) In this case, it is possible that the
oracle-string representation will turn out to be brittle, with small changes in a signature having a
major impact on the size of the oracle string. Moreover, oracle strings are not compositional, which
means that adding two signatures, or adding a single new declaration to a signature requires that
the oracle strings be completely redone. In the context of trustless software dissemination, this
may lead to significant practical difficulties in the maintenance and upgrade of the disseminated
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software.
Indeed, the pure LF-based encodings have many nice properties. Besides being fast and easy

to validate, they are compositional and therefore locally checkable (in contrast to oracle strings,
which are only globally checkable). While this seems to come at a high price in terms of size of the
representation, we see significant possibilities for developing new compression techniques. 5

We therefore plan to investigate techniques for highly compact LF representations of PCC
proofs. We believe the basic architecture of higher-order constraint logic programming [24] and
certifying decision procedures [40] in the context of LF is sufficiently robust to permit such richer
domains, but significant further research will be required both in theoretical foundations and imple-
mentation technology. We propose to develop these foundations based on some initial results [60, 45]
and integrate them into the Twelf system [46] which is already used for projects in proof-carrying
code and certifying decision procedures at Princeton [2], Yale, and Stanford [56], as well as at CMU.
One approach that seems possible is to investigate the use of signature transformation and other
meta-theoretic tools. Another approach is to prove the decidability of certain predicates by LF ter-
mination arguments and then reconstruct them during the validation process. Ultimately, we plan
to develop a range of approaches that allows us to “tune” the tradeoff between size of representation,
the time required to validate proofs, and the ability to compose and maintain them.

Since the verification of certificates is at the heart of the trusted computing base in our proposed
architecture, there is also a strong need for the formal analysis of safety and resource bound policies
and their specifications. These may have the form of a logic (as in proof-carrying code) or a type
system (as in typed assembly language). We propose to develop techniques for reasoning about
properties of such specifications. Initial steps in this direction have been taken [47, 52], but further
fundamental advances are required, for example, to integrate constraint domains into meta-theoretic
reasoning.

Research Plan and Dissemination

There are two primary means for dissemination of our research results: publication of scholarly
papers and distribution of software artifacts. The construction, maintenance and documentation
of our implementation components requires a major engineering effort. At the beginning of the
project we plan to implement a primitive steward that can receive work requests, verify the type
safety of binaries in the TAL language, and return results. This establishes the basic framework for
our project, which can be roughly divided into three phases to be accomplished over the five-year
grant period.

The first phase can be characterized as group internal development and experimentation. We
plan to build several demonstration applications such as a program for prime factorization and a
distributed theorem prover. We propose to evaluate the costs of certification and checking and the
practicality of the initial programming model while at the same time advancing the certified code
framework. This includes work towards richer policies (for example, access control and resource
bounds), more flexible policy specification and verification, and designing and implementing a
certifying compiler for more expressive policies.

The second phase includes the local deployment of a prototype steward at CMU and by close
colleagues elsewhere and the joint development of distributed applications with local domain experts
such as distributed ray tracing or other algorithms from the graphics and scientific computation
domains. At the same time we will evolve the theoretical foundations, the certifying compiler, and

5The term “compression” is not quite right, since our intention is to achieve small proof representations that
are directly checkable, thereby avoiding the complexity and overhead of an explicit decompression step in the host
computer.
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the steward based on the results from early experimentation. In the realm of language design we
plan to provide language support for distributed computation and incrementally enrich the source
language to satisfy the demands of more complex applications.

The third phase will be focused on the work necessary to permit world-wide deployment of the
stewards, additional support for application developers, and continued evolution of certification
and verification techniques and their implementations. Furthermore, in order to allow formal
and informal evaluation and foster trust and scientific inquiry, the documentation will have to
be significantly more rigorous than is typical in both the research and commercial domains. It
will include, among other items, a formal specification of resource bound certificates and their
verification.

Broader Impact

The proposed work draws upon mathematically deep, theoretical foundations such as type theory
and logic. Through our significant experience with the engineering of practical compilers, theorem
provers, and run-time systems, these can be put to use in order to exploit vast untapped resources
in our national and international computing infrastructures.

There are a variety of incentive models for donors of computing resources. The simplest is a
policy decision within an organization such as a business or a university which has a vested interest
in exploiting its own resources to the fullest extent possible. Currently, security concerns and a lack
of trust are indeed a major obstacle to such internal adoptions of distributed computing models
and can be overcome with our proposed research.

Another is a general desire by many to further science and the welfare of society. Currently, this
is the model under which SETI@Home operates successfully on a world-wide basis. The scope of
such efforts that rely on scientific computations amenable to distributed computing methods could
be extended significantly if one could make confident assurances as to the safety, reliability, and
unobtrusiveness of such software.

Recently, there have also been a number of business models in which services such as free e-mail
or Internet access are bartered for computing cycles of idle machines [48]. Such efforts are generally
viewed with justifiable distrust by consumers, and the risks are becoming well publicized in the
popular press [48]. We believe that our proposed work can make a difference in this arena as well.
The commercial success of the Java model for mobile code is at least a partial testimony to the
increased attention to safety.

Finally, it is clear from the distributed computing efforts mentioned in the introduction, that
there are many computational problems of scientific and even commercial interest that are amenable
to distributed algorithms and would greatly benefit from the infrastructure we are proposing to
provide. Programming should be significantly easier, resulting in programs safe and significantly
more reliable than possible with present technologies.

Ultimately, the proposed research, in addition to extending the field of programming languages
and especially the applications of formal semantics and type theory, has the potential to create a
software infrastructure that can serve the needs of major, large-scale computing efforts.

Education and Training

Besides the direct impact in the domain of distributed computing, we believe our work will sig-
nificantly advance our understanding of programming languages and the application of formal
semantics to real-world problems. As a project that will support six graduate students and a
post-doctoral researcher, it provides an ideal laboratory for education in computer science.

13



We also plan to offer three summer and part-time jobs for enterprising undergraduates at
Carnegie Mellon University and other institutions that provide a sufficiently broad background. In
this way the project will also directly contribute to undergraduate training.

We also plan to collaborate with clients who are interested in writing software and executing it
in a distributed fashion. This requires additional educational effort for students in other disciplines
is part of the current proposed work.
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