
Machine Learning, 10-701 and 15-781, 2003

Homework 1: Decision Trees

Primary contact for questions and clarifications: Rong Zhang (rongz@cs.cmu.edu)

Due Date: 10.30am Thursday October 2nd
Reading: Chapter 3 of “Machine Learning” By Tom Mitchell

Overview: This assignment gives you an opportunity to review the knowledge you
learned in the class and implement the Decision Tree algorithm on real world data sets.
The assignment consists of two parts. In the first part, you are asked some questions that
help your understanding of information theory and the Decision Tree algorithm. In the
second part, you will implement the ID3 learning algorithm and evaluate your program
with two data sets. There is also an extra credit section for the benefit of people who want
to try out new ideas.

Groupwork: If you wish, you may work in a team of two people. If you’d like to work in
a pair but do not have an obvious partner available, please email Andrew
(awm@cs.cmu.edu) who will act as a lonely-hearts matching service. A pair should hand
in one copy of the homework with both their names and Andrew IDs on the copy.

Cheating. Please do not copy answers from other people (or other pairs). Do not
explicitly collaborate with other individuals or pairs. We will, of course, follow up
aggressively if we detect such cheating or collaboration. You may discuss general issues
relevant to the homework.

What you hand in. Please hand in your work in hard copy form at the start of class on
the day that the homework is due. Please include your first and last names and your
Andrew userids in very clear block capital letters (your Andrew id will be used as the
primary key in our grades database).

Part 1 Problem Set (2 points each small question)
1 Entropy, Conditional Entropy and Information Gain

1.1 Imagine that we have a memoryless source W  of English text, emitting words from
an alphabet },...,,{ 21 nwwwA =  according to a distribution P . The entropy of the source

W  is
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This is the average number of bits required to specify each word in a sequence of words
output by W , assuming P  is known.
Please show that nWH 2log)( ≤ .



(A memoryless source generates symbols from a discrete alphabet },...,,{ 21 nwwwA =  by

drawing independently at random from some distribution P  over A .)
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1.2 Continue 1.1. Now suppose we don’t know P . By observing the output of W  for a
long time, we can come up with a guess at P , which we’ll call Q . The cross-entropy of
P  given Q  is defined as
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2 )(log)()( ,

which is the average number of bits required to specify each word in the output from W ,
under the assumption that the source emits according to the distribution Q .

Please show that )()( WHWH Q≤ .
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1.3 Assume we have a new memoryless source S  that emits word pairs >< yx, , in

which },...,,{ 21 mxxxx ∈  and },...,,{ 21 nyyyy ∈ , according to a probability



),( ji yyxxP == . We have learned the definitions of Specific Conditional Entropy

)|( ixxYH = , Average Conditional Entropy ∑
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Information Gain )|()()|( XYHYHXYIG −= .
Please show that )|()|( YXIGXYIG = .
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1.4 Continue 1.3. Please show that 0)|( ≥XYIG  and describe what situation can lead to
0)|( =XYIG .
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Hint: You may need to use some classical inequalities, e.g. 1ln −≤ xx  for 0>x . You
don’t need to worry about the extreme situation that 0)( == ixxP  when dealing with

)(1 xP ; Just assume this won’t happen.

2 Decision Tree Questions

2.1 A student told me he could build a discrete data set with two classes, and I am
allowed to choose part (not all) of the instances from it to train a Decision Tree. He



claimed that no matter how I choose the data and train the tree, the classification error
that my Decision Tree makes on the instances not contained in the training set will be no
less than 50%. Do you think he is correct? Explain why or give an example.

Any Parity function (i.e. Y = A XOR B).

2.2 Let’s consider a “new” tree growing algorithm for training set with discrete attributes.

Algorithm:

•  Create a Root node that owns all the training instances, and add it to the tree.
•  For each leaf node n in the tree (Leaf node is the node that doesn’t have children):

o If node n has been labeled with class, move to the next available leaf node.
o If there are attributes that haven’t been used by ancestors of n for splitting,

just randomly select one of them. Create children nodes for node n, and
assign training instances owned by node n to the corresponding child
node, according to the values of the selected attribute and instance. Add
the children nodes to the tree.

o Otherwise, label node n with the dominant class in its training instances.
•  Repeat until all the leaf nodes are labeled.

Assume there are sufficient training instances in our training set to ensure that every
possible combination of attribute values will have a non-empty subset of instances. Now
look at one of the leaf nodes (call it l ). By construction, the input patterns for node l are
exactly the same, say ),...,,( 2211 kk aAaAaA === , for all the training instances owned

by l, where iA  denotes one attribute, and ja  is a possible value for attribute jA . It would

be trivial to estimate the distributions (on training set) of ),...,,( 2211 kk aAaAaAP ===
and ),...,,|( 2211 kki aAaAaAcclassP ====  using knowledge we have learned.

Please give an expression for the training error rate of this new algorithm in terms of
),...,,( 2211 kk aAaAaAP ===  and ),...,,|( 2211 kki aAaAaAcclassP ==== .

Training Error Rate:

∑ ====−===
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If we build a Decision Tree using the ID3 algorithm (no pruning) on the same training
set, what do you expect for the training error rate of the Decision Tree compared with the
error rate of the new algorithm? (e.g. ≥  , =, ≤ , > , < , …) Why?

Both (ID3 and this naive algorithm) have the same training error rate.

2.3 Now we have built two trees, one using the new algorithm, another using ID3 (no
pruning). We are told that our estimates for ),...,,( 2211 kk aAaAaAP ===  and

),...,,|( 2211 kki aAaAaAcclassP ====  are not accurate, and we are given a test set



generated by true distributions of attributes and classes. Which tree do you think will
work better on the test set?

Before Pruning, both algorithms have the same test error.

We decide to use post-pruning technique for Decision Tree. We divide the training set
into two parts: a pure training set and a hold-out set. We use the ID3 algorithm to grow a
tree from the pure training set, and then prune it based on the hold-out set. Which tree do
you think will work better this time? The tree built by our new algorithm, or the pruned
ID3 tree? Briefly explain why.

Post-pruning could address the overfitting problem, so usually ID3 with pruning
will work better.

3 Real-Valued Inputs

Assume we are investigating the relationship between the weight of a graduate student
and the degree he or she is studying for (Masters or Ph.D.). The following table shows
some data we collected in CMU. (The records have been sorted on the value of weight in
pounds)

Weight 110.1 122.0 130.5 137.8 150.9 160.6 168.6 195.0 195.0
Degree P P M M P P M M P

3.1 First we want to calculate Information Gain )|( weightdegreeIG . It has been shown
that the value of splitting threshold (cut-point) that maximizes Information Gain must
always lie at class a boundary. (See the textbook “Machine Learning” for reference.)
Please show the candidate cut-points and the value of )|( weightdegreeIG .

Cut-points: (122.0, 130.5), (137.8, 150.9), (160.6, 168.6), (168.6, 195.0)
IG: 0.224788 (log2 based)

3.2 Now we consider a “new” method, “three-way splitting”, which has two thresholds,

1t  and 2t , that could split the input instances into three subsets, 1tweight ≤ ,

21 tweightt ≤<  and weightt <2 . Please show how to calculate the three-way

Information Gain 3IG .
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3.3 Please show that )|()|( 3 weightdegreeIGweightdegreeIG ≤ . (You don’t need to
calculate the explicit value. Instead, we would like a one or two sentence explanation or
proof.)

Assume 0t  is the best splitting point selected by )|( XYIG  and let 021 ttt == .

Obviously, ),:|():|( 210 ttXYHtXYH = .
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3.4 Encouraged by the result of 3.3, we decide to try 4-way splitting, 5-way splitting, …,
N-way splitting. What do you expect for the Information Gain, or will 1−≥ nn IGIG ? Is it
a good idea to use N-way splitting for real-valued attribute? Why or why not?

It is always true that 1−≥ nn IGIG  if we have sufficient training examples for
splitting. However, for a real application, we need to consider the issues like
overfitting and computation cost.

4 Splitting Criteria

Entropy is a natural measure to quantify the impurity of a data set. The Decision Tree
learning algorithm uses entropy as a splitting criterion by calculating the information gain
to decide the next attribute to partition the current node. However, there are other
impurity measures that could be used as the splitting criteria too. Let’s investigate two of
them. Assume the current node n  has k  classes kccc ,...,, 21 .

Gini Impurity: ∑
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4.1 Assume node n  has two classes, 1c  and 2c . Please draw a figure in which the three
impurity measures (Entropy, Gini and Misclassification) are represented as the function
of )( 1cP .

4.2 Now we can define new splitting criteria based on the Gini and Misclassification
impurities, which is called Drop-of-Impurity in some literatures. That is the difference
between the impurity of the current node and the impurities of children. For the binary
category splits, Drop-of-Impurity is defined as

)()()()()()( rrll ninPninPnini −−=∆

where ln  and rn  are left and right child of node n  after splitting. Please calculate the

Drop-of-Impurity (using both Gini and Misclassification Impurity) for the following
example data set in which y  is the class variable to be predicted.

A 1a 1a 1a 2a 2a 2a
y

1y 1y 2y 2y 2y 2y

)(ni∆ (misclassification) = 1/6

)(ni∆ (Gini) = 2/9



4.3 We choose the attribute that can maximize the Drop-of-Impurity to split a node.
Please create a data set and show that on this data set, Misclassification Impurity based

)(ni∆  couldn’t determine which attribute should be used for splitting (e.g. 0)( =∆ ni  for
all the attributes), but Information Gain and Gini Impurity based )(ni∆  can.

Assume we have a node with two classes, 1c  and 2c  that |||| 21 cc ≥ . After splitting, if
we still find |||| 21 cc ≥  for every child node, then 0)( =∆ ni  for Misclassification
Impurity. But )(ni∆  for Gini Impurity or IG may be better than zero.

5 Optimal Growing

The Decision Tree growing algorithm we have looked at so far is a greedy, heuristic
search with one-step look-ahead and no backtracking. Let’s consider how this would
improve if we were to look-ahead two steps.

Originally, we determined which attribute to select for splitting a node by comparing the
information gain of each of the attributes from 1A  to DA  (assume we have D discrete
attributes, each of which has two possible values). Now, for each attribute we will also
consider the best way to split the resulting children. We will try each remaining attribute
for both the left and right child separately, and then pick the pair ),( rl AA  which

maximizes
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where lN  and rN  are the number of data points in the left and right children of the node

which is considered how to split, and lS  and rS  are those two sets of data points

themselves. We will call this )|(2 ASIG , the two-step look-ahead information gain for
attribute A  on data set S .

5.1 Briefly explain why we need the factors 
rl

l

NN

N

+
 and 

rl

r

NN

N

+
.

These factors just account for the different relative sizes of the subsets in the
partition, weighting larger subset more, directly proportionally. This tends to result
in more balanced splits, i.e. tiny subsets having high purity don’t affect the split
decision unduly.

5.2 Assuming there are D discrete attributes with two possible values apiece, how many
information gain computations must be carried out to determine how to split a single
node?

DDDDD −=+− 22)1(2*



5.3 Is this a richer model class (hypothesis language)? That is, does this change allow us
to represent new functions from input variables to classifications that were not previously
representable with Decision Trees? Briefly explain why or why not.

No, the model class is identical. The trees cannot fundamentally represent any
different functions. However, the final choice of tree in the same model class is likely
to be better by doing lookahead.

Part 2 Experiments
In this part, you are asked to implement the Decision Tree learning algorithm, and
experiment your program with the simple PlayTennis learning data described in Chapter
3 of the textbook, and a larger set of data, the UCI Adult census database that aims to
predict whether a person makes over 50k a year. You may program in any computer
language, such as C, C++, Lisp, Matlab, Perl, …

1 The PlayTennis data

The training data for PlayTennis from Table 3.2 in the textbook is available on the file
play-tennis.ssv.

1.1 (18 points) Implement the Decision Tree learning algorithm (for discrete attribute
only).

1.2 (5 points) Take a look at the training data on play-tennis.ssv, and then run your
decision tree learning program on all the training examples to be sure it produces the
correct decision tree for this data (it should produce the decision tree shown in Figure
3.1 of the textbook). Now try running it on a randomly chosen subset containing half
of the examples for training, and using half for test. What are the training and test
accuracies?

The training accuracy should be 100%. The test accuracy should be a multiple of
1/7.

Answer whether or not the actions in the next three questions are possible or not. If
possible, demonstrate it by running the decision tree learner, and turn in the parameter
settings you used and your data set. If impossible, explain why. When answering
questions 1.3, 1.4, and 1.5, assume that (a) the target concept is the concept described by
the decision tree of Figure 3.1 of the textbook; (b) all training examples you add must be
consistent with this target concept (meaning that the classification you include for the
example must be the one with which the tree in Figure 3.1 would label it), and (c) you are
not allowed to include post pruning when learning decision trees.

1.3 (5 points) Is it possible to get ID3 to further elaborate the tree below the rightmost
leaf in Figure 3.1 (and make no other changes to the tree), by adding a single new
correct training example to the original fourteen examples?



No. By the definition of the function, all examples with an outlook of rain and weak
wind will give yes, i.e. they have the same output value. Thus the rightmost node will
never be a candidate for splitting.

1.4 (5 points) Is it possible to get ID3 to learn an incorrect tree (i.e., a tree that is not
equivalent to the target concept of Figure 3.1) by adding new correct training
examples to the original fourteen?

Yes.

1.5 (5 points) Is it possible to produce some set of correct training examples that will get
ID3 to include the attribute Temperature in the learned tree, even though the true
target concept is independent of Temperature?

Yes.

2 The Adult data

The data is extracted from the UCI Adult database that aims to predict whether a person
makes over 50k a year. Originally, each record had 14 attributes (6 continuous and 8
discrete) besides the class label. To make the programming easier, we dropped the 6
continuous attributes from the database. In addition, we also removed the examples with
unknown values. These resulted us a cleaned dataset, in which each example has 8
discrete attributes only.

The dataset used for this experiment consists of two files: training file
adult.train.10k.discrete and test file adult.test.10k.discrete, each of which has 10,000
examples. The first attribute of each example denotes the class it belongs to, either
“>50K” or “<=50K”. The next 8 are the input features:

(1) workclass (8 values): Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-
gov, State-gov, Without-pay, Never-worked.

(2) education (16 values): Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-
acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th,
Preschool.

(3) marital-status (7 values): Married-civ-spouse, Divorced, Never-married, Separated,
Widowed, Married-spouse-absent, Married-AF-spouse.

(4) occupation (14 values): Tech-support, Craft-repair, Other-service, Sales, Exec-
managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical,
Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

(5) relationship (6 values): Wife, Own-child, Husband, Not-in-family, Other-relative,
Unmarried.

(6) race (5 values): White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.



(7) sex (2 values): Female, Male.

(8) native-country (41 values): United-States, Cambodia, England, Puerto-Rico,
Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China,
Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal,
Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia,
Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador,
Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

You task is to learn a decision tree that predicts whether a person’s income exceeds
$50k/yr, based on his/her census data.

2.1 (5 points) Use the Adult training file and your program to train a decision tree. Use
25% of the training data, and all the test data (no pruning). Rerun this experiment several
times and notice the impact of different random selection of the training data. Report the
sizes and accuracies of these trees over half a dozen distinct runs.

2.2 (5 points) Measure the impact of training set size on the accuracy and the size of the
learned tree (no pruning; use all of the test data for testing). Consider training set sizes in
the range 0-60% (include at least the values .02, .1, .2, .3, .4, and .6 for training
fractions). Because of the high variance due to random splits, repeat the experiment with
ten different random seeds for each training set size, then report the mean, maximum, and
minimum accuracies at each training set size. Also measure the mean, max, and min tree
size. Turn in two plots, showing how accuracy varies with training set size, and how the
number of nodes in the final tree varies with training set size. Indicate maximum,
minimum, and mean values for each training set size.

2.3 (18 points) Select one of the post-pruning strategies and implement it in your
program. Measure the impact of pruning on accuracy and size of the learned trees, under
the same conditions as in question 2.2. Use the same training set sizes (.02, .1, .2, .3, .4,
and .6), but this time use 40% of the training data (4000 examples) for pruning, and all of
the test data for testing. Again plot the mean, maximum, and minimum accuracy for each
training set size, and plot the mean, maximum, and minimum tree size for each training
set size. In addition, use all of the training data for tree growing (no pruning), and all the
test data for testing. Report the accuracy and tree size. What is the impact, if any, of post-
pruning the tree?

3 Extra Credit

Investigate one or more improvements to the basic Decision Tree algorithm. Your
investigation might include new splitting criteria or new search methods or novel ways to
prune. You should summarize your idea and results in a clearly written two-page
summary.

What to hand in for experiment

•  Your source code.



•  A brief description of your program that shows me: What is your programming
language? What type of OS does your program need (e.g. Windows NT, XP,
linux, unix, etc.)? How to compile and run your program? And anything special
that you think deserves explanation.

•  Answers or reports for each question.


