10-701/15-781 M achine L earning, Fall 2003

Homework 7
Out: Nov 25, 2003 Due; start of class Dec 4, 2003

If you have questions, please contact Ning+iu nghu+781@s. cnu. edu>.

Note: The goal of this assignment is to help you prepare for the &ram.
1. Gaussian Mixture Models and K-means

(a) You are given a Gaussian mixture model, and all its clasisgbilities and Gaussian
mean locations are learned using EM, but the covarianceaestare forced to be
the identity matrices for each class. Rather than using aumg»of Gaussians, you
evaluate the probability of each of the K classes given tliapdant and take the the
cluster with the highest probability to be the cluster thatdoiced the point. Is this
equivalent to doing using a K-means model?

(b) Suppose you've done K-means and your K is equal to yourbeurof data points
with each cluster defined by a single datapoint. Say that jemsify test data points
as part of the cluster that they would belong to accordingadiorydistance metric.
What model is this equivalent to?



(c) Run K-means manually for the following dataset. Cir@es data points and squares
are the initial cluster centers. Draw the cluster centedstha decision boundaries
that define each cluster. Use as many pictures as you neédamtergence.

Note: Execute the algorithm such that if a mean has no points asgignit, it stays
where it is for that iteration.
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(d) Now run a Gaussian mixture model of three Gaussians osdhee dataset. The
initial cluster centers are the same as for the k-means @mldnd those dashed-line
ellipses represent the size and shape of the initial cavegianatrices. Assume that
the model puts no restrictions on the form of the covarianegrioces and that EM
updates both the means and covariance matrices. Draw (ap@ately) the cluster
centers and the size/shape of the covariance matrices bh#heonverged GMM.
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(e) Is the classification given by the mixture model the samtha classification given
by k-means? Why or why not?

2. Hidden Markov Models

(a) Imagine an HMM with two observation symbols: X and Y. Assag the traditional
notation of Hidden Markov Models, consider the followingpability.

P(giro =5iNquaz = 5 N Oz = X | @ = 8 A @1 = 5 AN Oy = X))

Give an expression for this value in terms of appropriatenel&s of the transition
and observation matrices, A and B.



(b) Foxy lives a simple life. Some days she’s Angry and sonys gdae’s Happy. But she
hides her emotional state, and so all you can observe is whslie smiles, frowns or
yells. We start on day 1 in the Happy state, and there is onsitian per day.

Happy State Angry State

P(smile) = 0.5 p=0.75
P(frown) = 0.25

P(yell) = 0.25

P(smile) = 0.25
P(frown) = 0.5
P(yell) = 0.25

Definitions:
q; = Sstate on day.
O, = observation on day.

i. WhatisP(qx = Angry)?

ii. Whatis P(Oy = smile)?

iii. Whatis P(gy = Angry|Os = smile)?

iv. WhatisP(Os3 = yell)?

v. Write ¢, = P(q, = Happy). Note thatp; = 1. Then¢,,; can be defined
inductively from ¢, by an expressiow;,; = X + Y¢,. Give the numerical
values ofX andY'.

vi. Assume thatD, = Frown, Oy = Frown, O3 = Frown, Oy = Frown, and
Os = Frown. What is the most likely sequence of states?



3. Markov Decision Process

The path to enlightenment is difficult. In each of the stat¢bldrmal), 3 (Hungry) and
5 (Starving), you have two possible actions: either Eat odikd¢e. In the other states
2 (Over-Eating), 4 (Happy), 6 (Buddha), and 7(Dead) thereniy one possible action.
Notice that this MDP is almost completely deterministicg tnly stochasticity appears
when we are in state 5 (Starving) and choose to Eat. Then,switie probability).6, you
are able to attain enlightenment and reach state 6 (Buddagyyith probability0.4 your
ascetic practice has gone too far and you die (state 7): Letl be the discount factor,
which indicates how much you evaluate delayed rewards w#pect to immediate ones.
The rewards arer(1) = 0, r(2) = r(3) = —1, r(4) = 10, r(5) = —10, (6) = 100, and
r(7) = —100.

2:0Over—Eating
Eat r=—1

Proba=0.6

Meditate

1:Normal
6:Buddha

r=0
Eat =100
Meditate @ @ . r
Proba = 04
3:Hungry
r=-— ’ Meditate
5:Starving \_}
r=-10
7:Dead
r=-100

(a) We write: J*(i) = discounted sum of future rewards starting from sta@d using
the optimal policyr*. Express/*(6) andJ*(7) as a function ofy. (Do not useJ*
values on the righthand side of your answer).

J*(6) =

J*(7) =



(b) What is the optimal action in state 57
T (5) =

(c) Express/*(5) as a function ofy (Do not use/* values on the righthand side of your
answer).

J*(5) =

(d) What is the optimal action in state 1?
(1) =

(e) Write Bellman'’s equation for states 1, 3 and 4.
JH(1) =

J(3) =

J(4) =

() We consider an hedonistic person seeking nearly imnede&vards, for whichy =
0.1. What is the optimal action in state 3? And what are the valli€s), J*(2),
J*(3), J*(4), andJ*(5)?
™(3) =
J*(1) =
J*(2) =
J*(3) =
J*(4) =

J*(5) =

(g) Now we consider a self-disciplined person who is inter@sn delayed rewards, for
which~ = 0.9. What is the optimal action in state 3?

™(3) =

(h) Suppose that = 0.9999, which method would you recommend to use for evaluating
the J-values for a given policy: Matrix Inversion or Valuerttion?



