
10-701/15-781 Machine Learning, Fall 2003

Homework 7
Out: Nov 25, 2003 Due: start of class Dec 4, 2003

If you have questions, please contact Ning Hu<ninghu+781@cs.cmu.edu>.

Note: The goal of this assignment is to help you prepare for the finalexam.

1. Gaussian Mixture Models and K-means

(a) You are given a Gaussian mixture model, and all its class probabilities and Gaussian
mean locations are learned using EM, but the covariance matrices are forced to be
the identity matrices for each class. Rather than using a mixture of Gaussians, you
evaluate the probability of each of the K classes given the datapoint and take the the
cluster with the highest probability to be the cluster that produced the point. Is this
equivalent to doing using a K-means model?

No. GMM uses prior class probabilities P (wi) for evaluating the probability of
each of the K classes given the datapoint, while K-means does not consider
prior class probabilities (or it can be deemed as all the prior class probabilities
are equal.)

(b) Suppose you’ve done K-means and your K is equal to your number of data points
with each cluster defined by a single datapoint. Say that you classify test data points
as part of the cluster that they would belong to according to your distance metric.
What model is this equivalent to?

1-Nearest Neighbour
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(c) Run K-means manually for the following dataset. Circlesare data points and squares
are the initial cluster centers. Draw the cluster centers and the decision boundaries
that define each cluster. Use as many pictures as you need until convergence.

Note: Execute the algorithm such that if a mean has no points assigned to it, it stays
where it is for that iteration.
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(d) Now run a Gaussian mixture model of three Gaussians on thesame dataset. The
initial cluster centers are the same as for the k-means problem, and those dashed-line
ellipses represent the size and shape of the initial covariance matrices. Assume that
the model puts no restrictions on the form of the covariance matrices and that EM
updates both the means and covariance matrices. Draw (approximately) the cluster
centers and the size/shape of the covariance matrices of thefinal converged GMM.

(e) Is the classification given by the mixture model the same as the classification given
by k-means? Why or why not?

No. In the mixture model, soft associations (through the weights) are made
with every data point by every gaussian, so it can’t happen that the cluster
center isn’t associated with any data point. It was also ok to point out that
the algorithms use different distance metrics, or that mixture models with full
covariance matrices allow more flexibility in fitting a cluster. It wasn’t enough
to state the result of each algorithm on the example data (that doesn’t say
anything about why the result was like that).
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2. Hidden Markov Models

(a) Imagine an HMM with two observation symbols: X and Y. Assuming the traditional
notation of Hidden Markov Models, consider the following probability.

P (qt+2 = si ∧ qt+3 = sj ∧ Ot+3 = X | qt = sk ∧ qt+1 = sm ∧ Ot = X)

Give an expression for this value in terms of appropriate elements of the transition
and observation matrices, A and B.

amiaijbj(X)

(b) Foxy lives a simple life. Some days she’s Angry and some days she’s Happy. But she
hides her emotional state, and so all you can observe is whether she smiles, frowns or
yells. We start on day 1 in the Happy state, and there is one transition per day.

Happy State

P(smile) = 0.5
P(frown) = 0.25
P(yell) = 0.25

Angry State

P(smile) = 0.25
P(frown) = 0.5
P(yell) = 0.25

p = 0.25

p = 0.25

p = 0.75

p = 0.75

Definitions:
qt = state on dayt.
Ot = observation on dayt.

i. What isP (q2 = Angry)?

0.25

ii. What isP (O2 = smile)?

P (O2 = smile) = P (O2 = smile ∧ q2 = Happy) + (O2 = smile ∧ q2 = Angry)

=
7

16

iii. What is P (q2 = Angry|O2 = smile)?

By using Bayes rule and previous results,

P (q2 = Angry|O2 = smile) =
1

7
≃ 0.143
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iv. What isP (O53 = yell)?

0.25
As P (Qt = yell|qt = Happy) = P (Qt = yell|qt = Angry) = 0.25, the prob-
ability of observing yell is always 0.25 no matter which state it is in at any
time.

v. Write φt = P (qt = Happy). Note thatφ1 = 1. Thenφt+1 can be defined
inductively fromφt by an expressionφt+1 = X + Y φt. Give the numerical
values ofX andY .

φt+1 = (1 − φ) × 0.25 + φ × 0.75 =
1

4
+

1

2
φt

So X = 1

4
and Y = 1

2

vi. Assume thatO1 = Frown, O2 = Frown, O3 = Frown, O4 = Frown, and
O5 = Frown. What is the most likely sequence of states?

HAAAA

5



3. Markov Decision Process
The path to enlightenment is difficult. In each of the states 1(Normal), 3 (Hungry) and
5 (Starving), you have two possible actions: either Eat or Meditate. In the other states
2 (Over-Eating), 4 (Happy), 6 (Buddha), and 7(Dead) there isonly one possible action.
Notice that this MDP is almost completely deterministic, the only stochasticity appears
when we are in state 5 (Starving) and choose to Eat. Then, withsome probability0.6, you
are able to attain enlightenment and reach state 6 (Buddha),but with probability0.4 your
ascetic practice has gone too far and you die (state 7). Letγ < 1 be the discount factor,
which indicates how much you evaluate delayed rewards with respect to immediate ones.
The rewards are:r(1) = 0, r(2) = r(3) = −1, r(4) = 10, r(5) = −10, r(6) = 100, and
r(7) = −100.

Meditate

Eat
Meditate

Eat

Eat

Meditate

1:Normal

r = 0

3:Hungry

r = −1

r = −1

4:Happy

r = 10

6:Buddha

r = 100

7:Dead

r = −100

5:Starving

r = −10

Proba = 0.6

Proba = 0.4

2:Over−Eating

(a) We write: J∗(i) = discounted sum of future rewards starting from statei and using
the optimal policyπ∗. ExpressJ∗(6) andJ∗(7) as a function ofγ. (Do not useJ∗

values on the righthand side of your answer).

J∗(6) = 100

1−γ

J∗(7) = − 100

1−γ
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(b) What is the optimal action in state 5?
π∗(5) = Eat

(c) ExpressJ∗(5) as a function ofγ (Do not useJ∗ values on the righthand side of your
answer).
J∗(5) = −10 + 20γ

1−γ

(d) What is the optimal action in state 1?
π∗(1) = Meditate

(e) Write Bellman’s equation for states 1, 3 and 4.
J∗(1) = γJ∗(3)

J∗(3) = −1 + γmax[J∗(4), J∗(5)]

J∗(4) = 10 + γJ∗(1)

(f) We consider an hedonistic person seeking nearly immediate rewards, for whichγ =
0.1. What is the optimal action in state 3? And what are the valuesJ∗(1), J∗(2),
J∗(3), J∗(4), andJ∗(5)?
π∗(3) = Eat

J∗(1) = 0

J∗(2) = −1

J∗(3) = 0

J∗(4) = 10

J∗(5) = −70

9
≃ −7.78

(g) Now we consider a self-disciplined person who is interested in delayed rewards, for
whichγ = 0.9. What is the optimal action in state 3?
π∗(3) = Meditate

(h) Suppose thatγ = 0.9999, which method would you recommend to use for evaluating
the J-values for a given policy: Matrix Inversion or Value Iteration?

Matrix Inversion
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