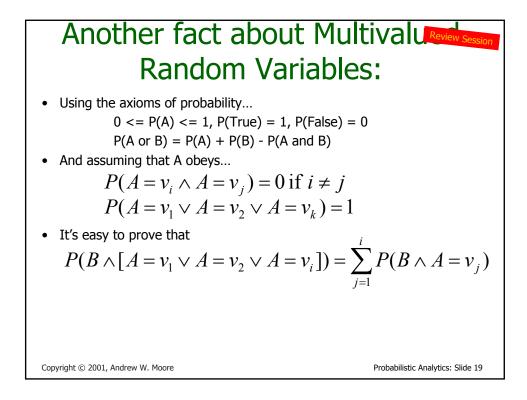
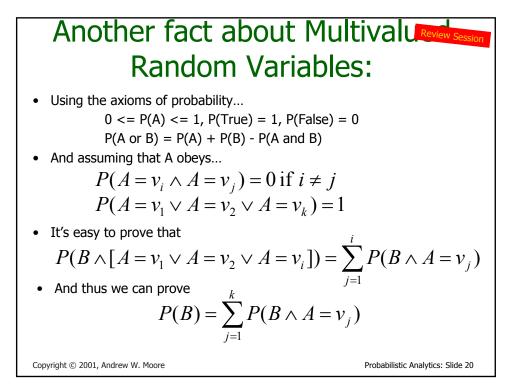
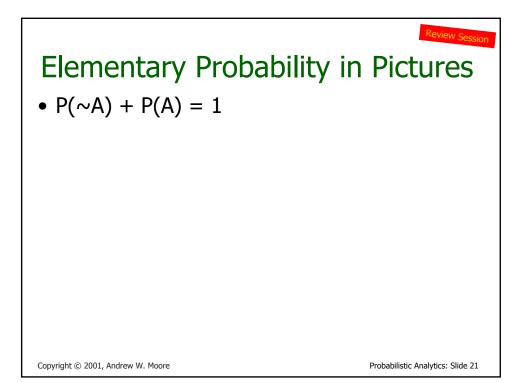
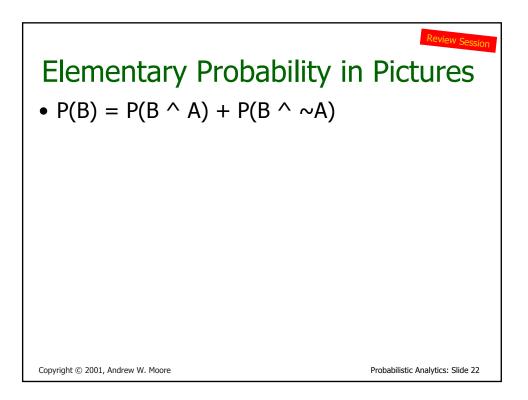


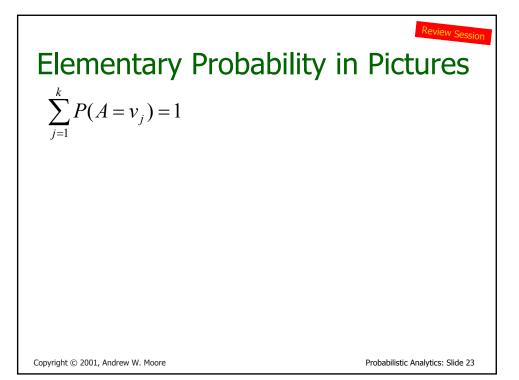
An easy fact about Multivalue version Random Variables. • Using the axioms of probability... 0 <= P(A) <= 1, P(True) = 1, P(False) = 0 P(A or B) = P(A) + P(B) - P(A and B)• And assuming that A obeys... $P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$ $P(A = v_i \land A = v_2 \lor A = v_k) = 1$ • It's easy to prove that $P(A = v_i \land A = v_2 \lor A = v_i) = \sum_{j=1}^{i} P(A = v_j)$ • And thus we can prove $\sum_{j=1}^{k} P(A = v_j) = 1$

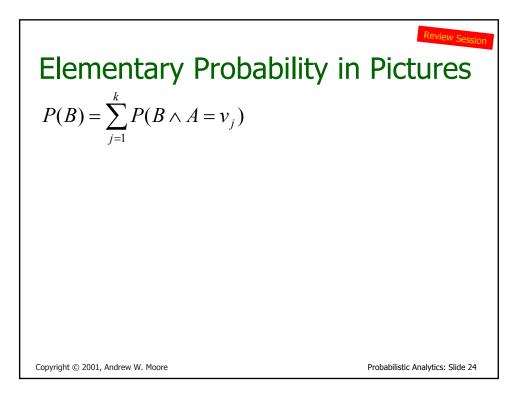


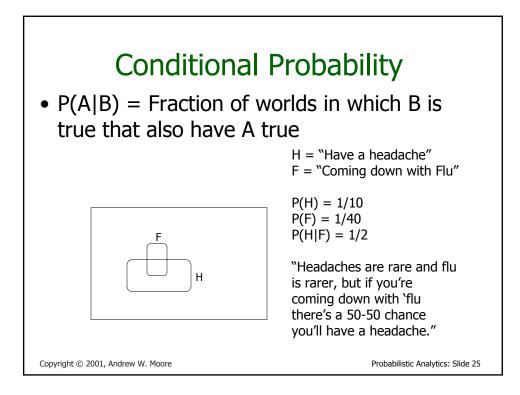


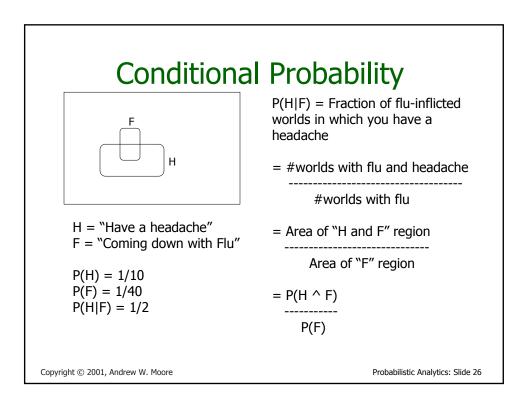


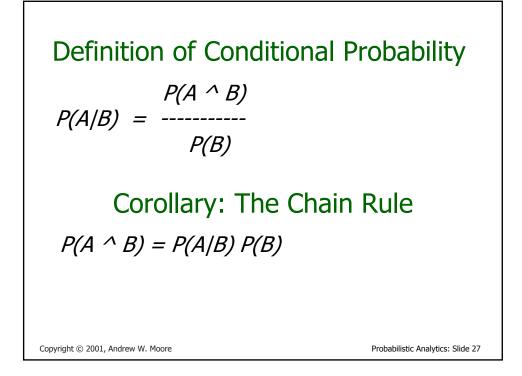


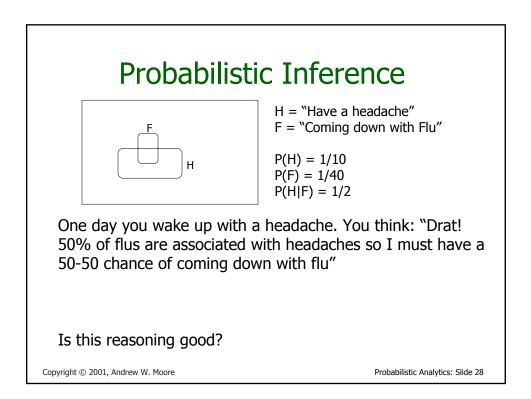


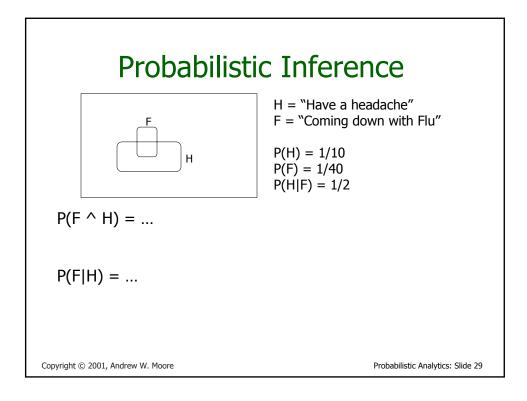


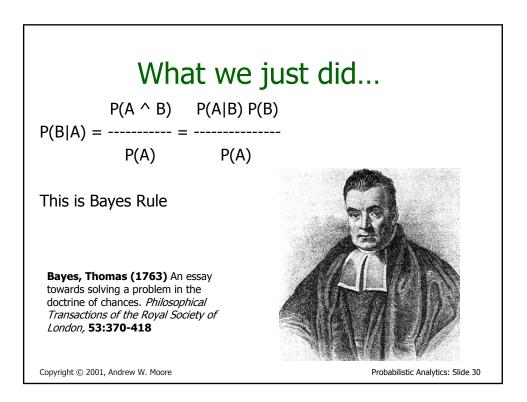


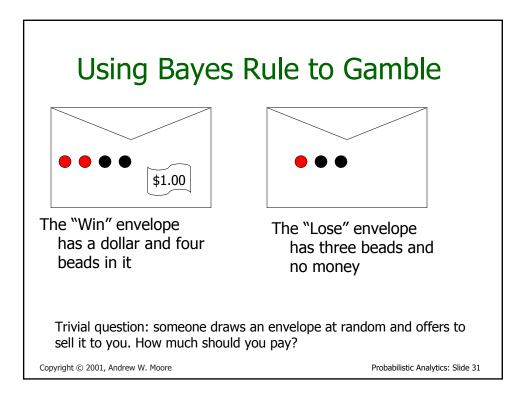


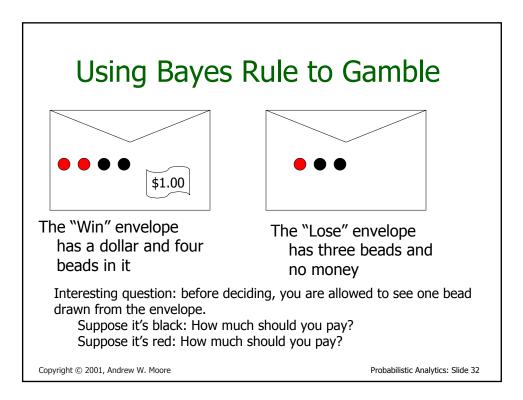


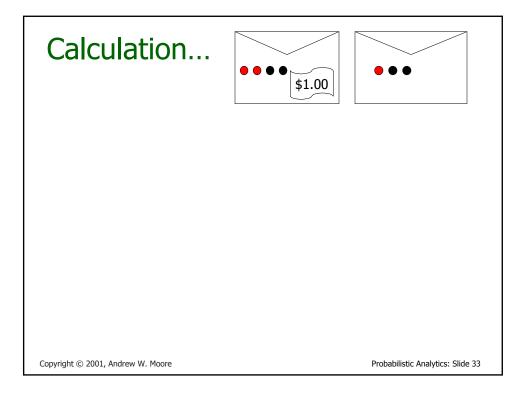


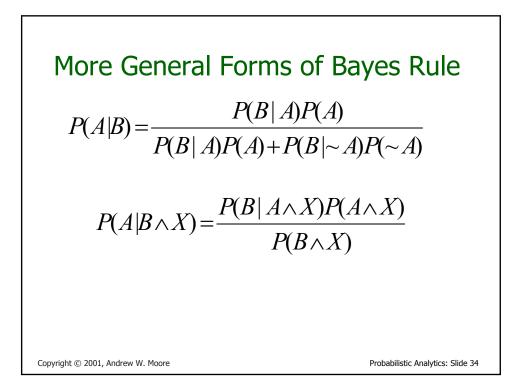


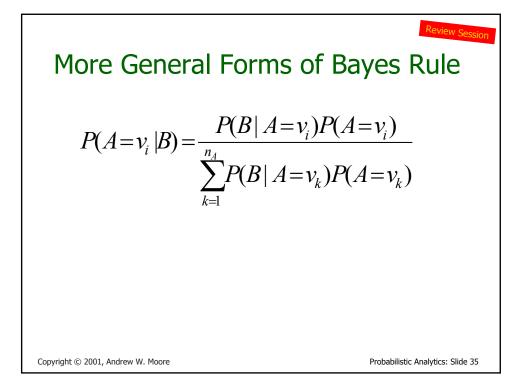


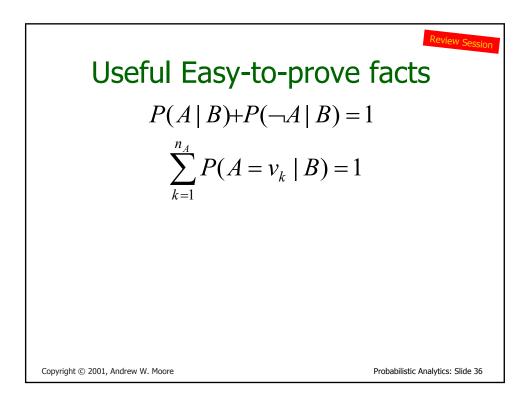


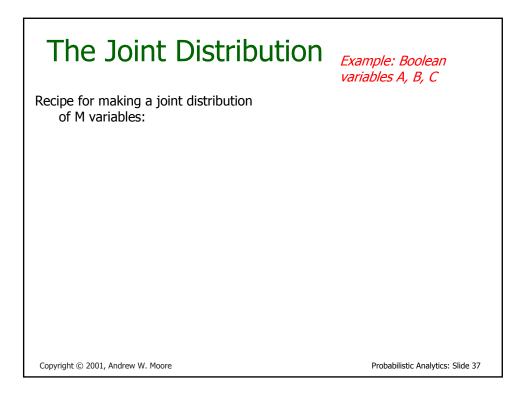


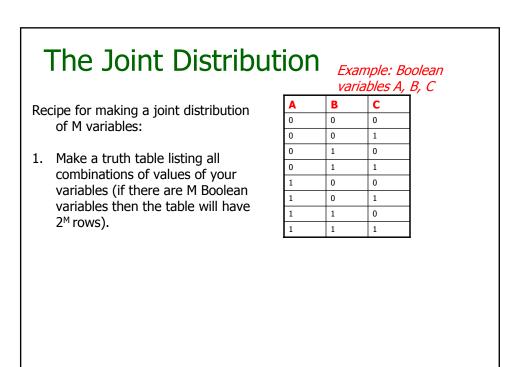












Probabilistic Analytics: Slide 38

The Joint Distribution Example: Boolean

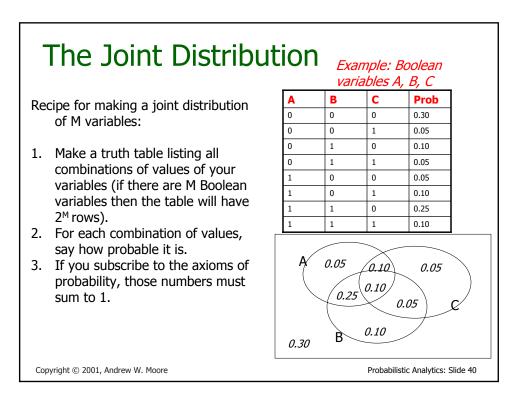
Recipe for making a joint distribution of M variables:

- Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).
- 2. For each combination of values, say how probable it is.

variables A, B, C				
Α	В	С	Prob	
0	0	0	0.30	
0	0	1	0.05	
0	1	0	0.10	
0	1	1	0.05	
1	0	0	0.05	
1	0	1	0.10	
1	1	0	0.25	
1	1	1	0.10	

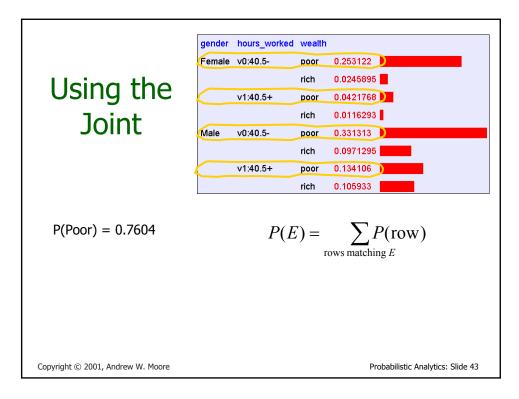
Probabilistic Analytics: Slide 39

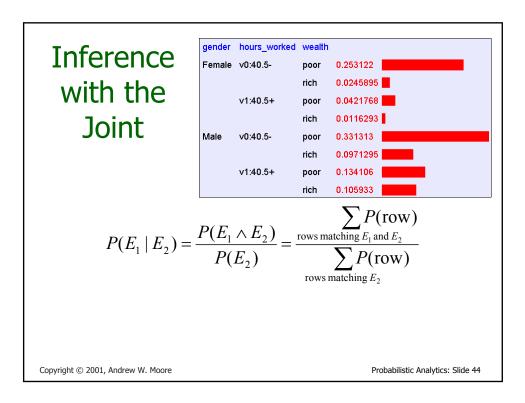
Copyright $\ensuremath{\mathbb{C}}$ 2001, Andrew W. Moore

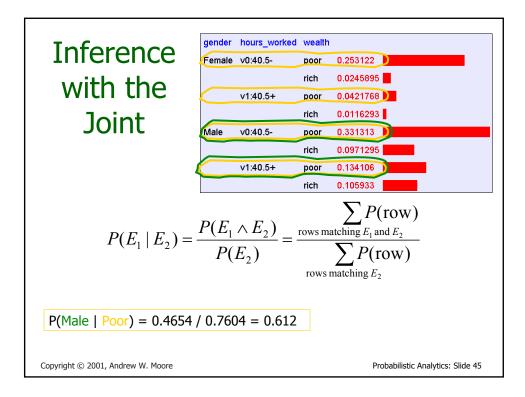


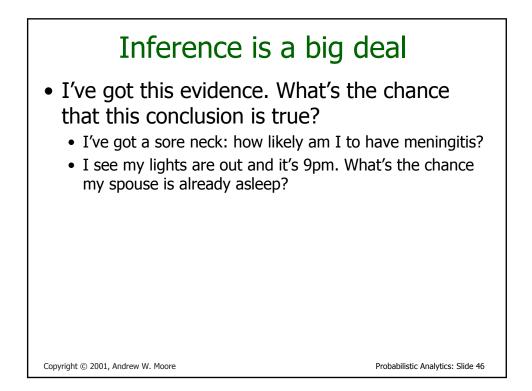
	nondor			
	-	hours_worked		0.052422
Using the	remale	VU.4U.0-	poor rich	0.253122
		v1:40.5+		0.0245895
•		V1:40.5+	poor	0.0421768
Joint	Male		rich	0.0116293
50110		v0:40.5-	poor	0.331313
			rich	0.0971295
		v1:40.5+	poor	0.134106
			rich	0.105933
One you have the JD you can ask for the probability of any logical expression involving your attribute $P(E) = \sum_{\text{rows matching } E} P(\text{row})$				
Copyright \textcircled{C} 2001, Andrew W. Moore				Probabilistic Analytics: Slide 41

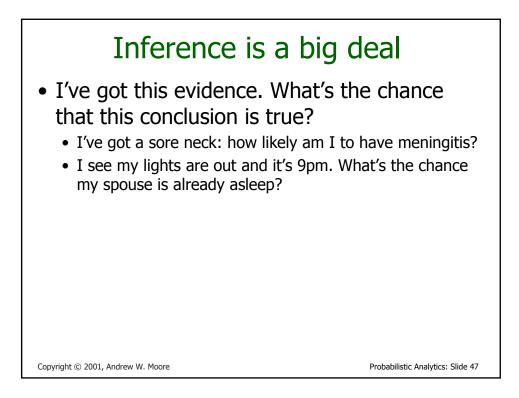
	gender	hours_worked	wealth	
	Female	v0:40.5-	poor	0.253122
Lloing the			rich	0.0245895
Using the		v1:40.5+	poor	0.0421768
Joint			rich	0.0116293
JUIIL	Male	v0:40.5-	poor	0.331313
			rich	0.0971295
	\sub	v1:40.5+	poor	0.134106
			rich	0.105933
P(Poor Male) = 0.4654		P(E		$\sum_{\text{rows matching } E} P(\text{row})$
Copyright $\ensuremath{\mathbb{C}}$ 2001, Andrew W. Moore				Probabilistic Analytics: Slide 42

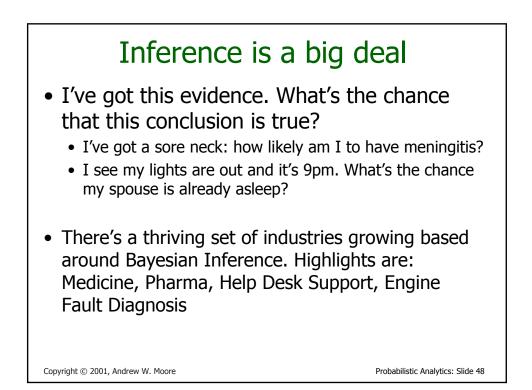


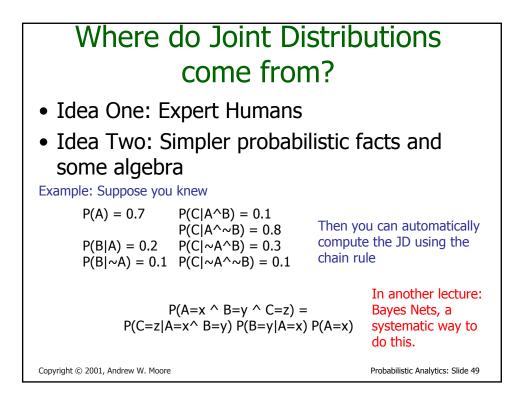


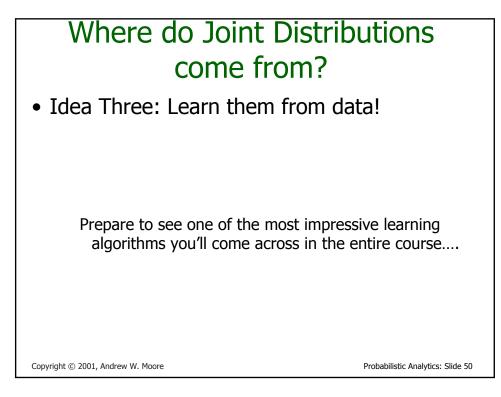




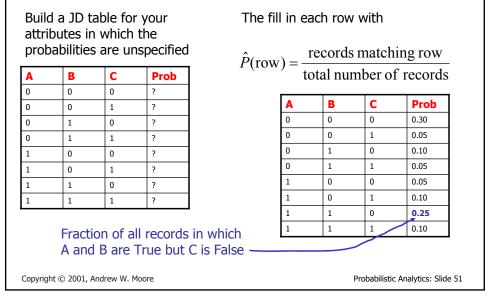


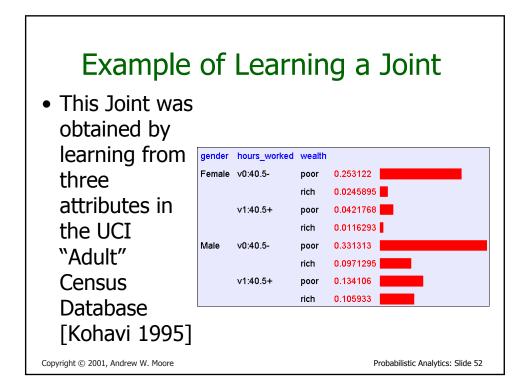


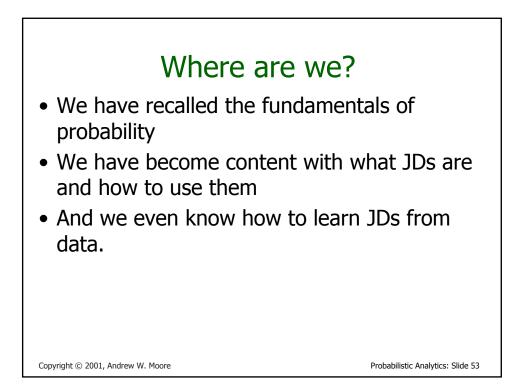


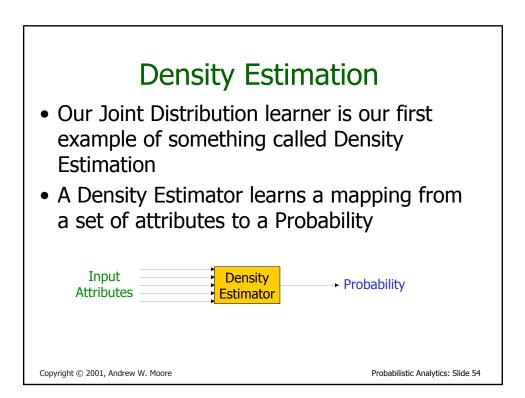


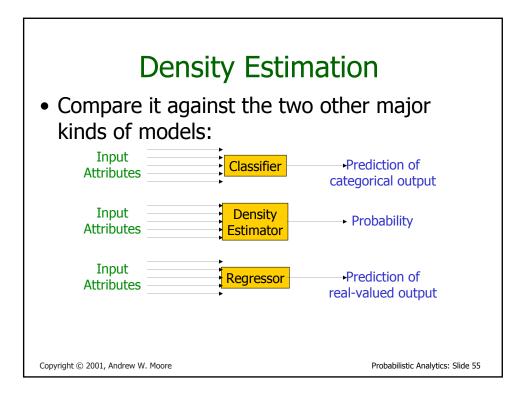
Learning a joint distribution

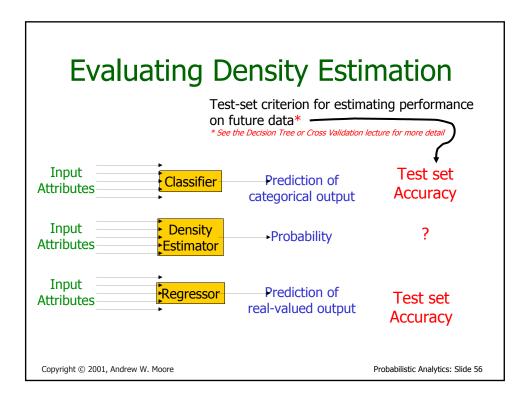


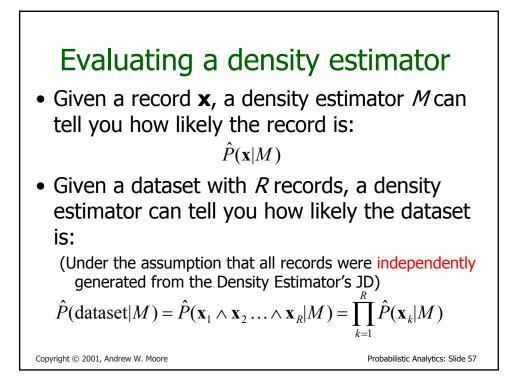


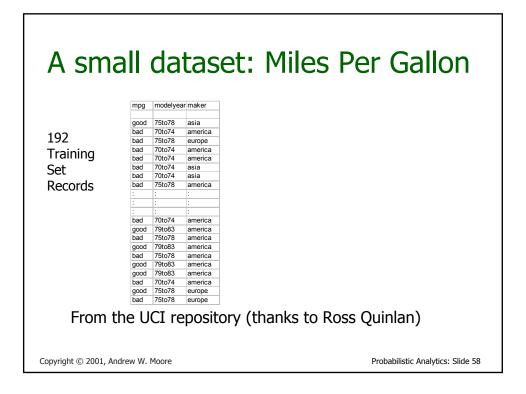


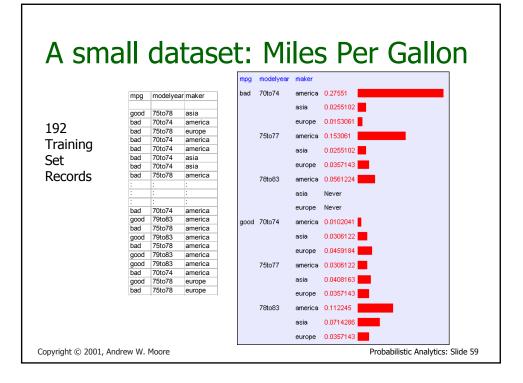


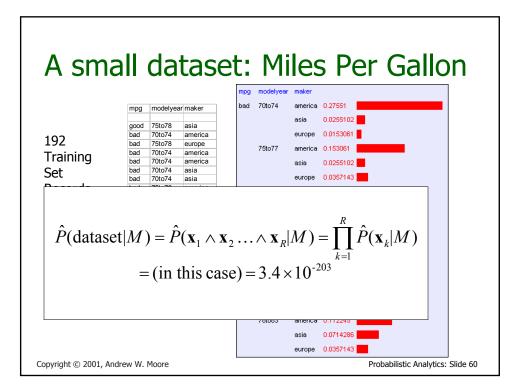


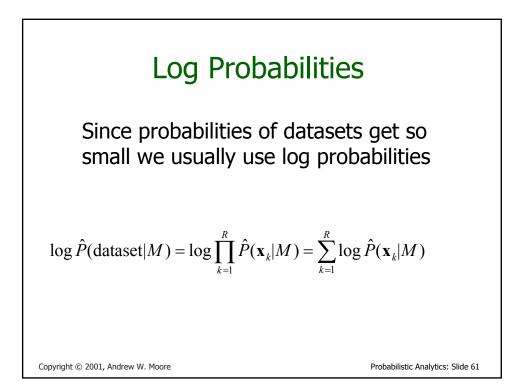


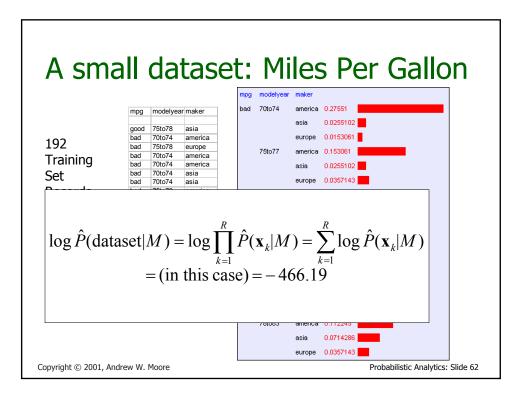


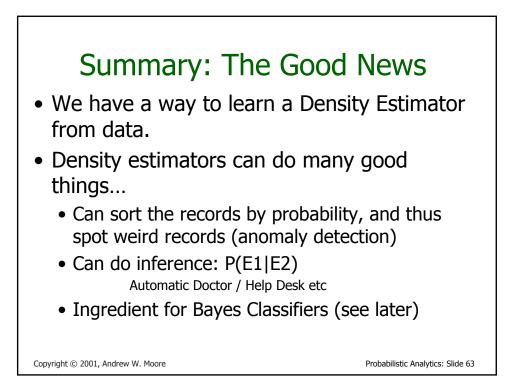


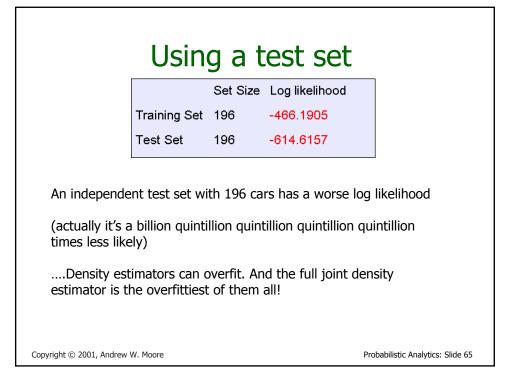


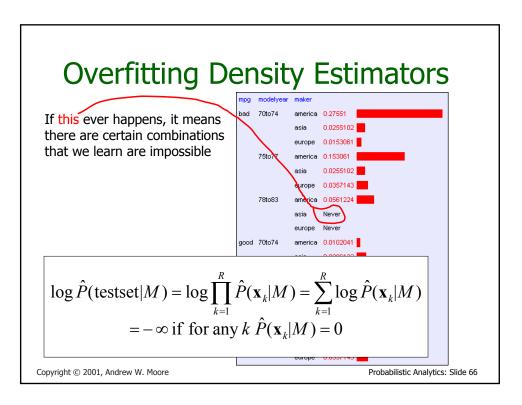












Using a test set

	Set Size	Log likelihood
Training Set	196	-466.1905
Test Set	196	-614.6157

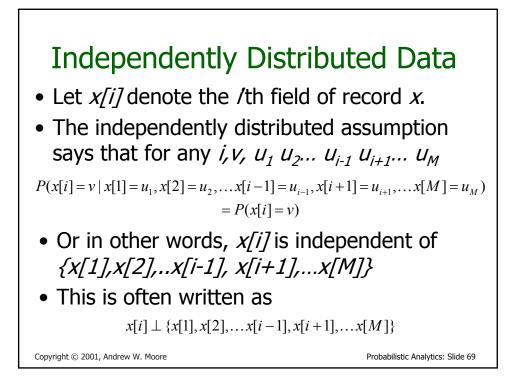
The only reason that our test set didn't score -infinity is that my code is hard-wired to always predict a probability of at least one in $10^{20}\,$

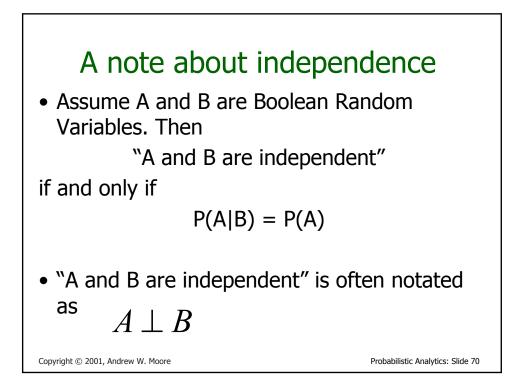
We need Density Estimators that are less prone to overfitting

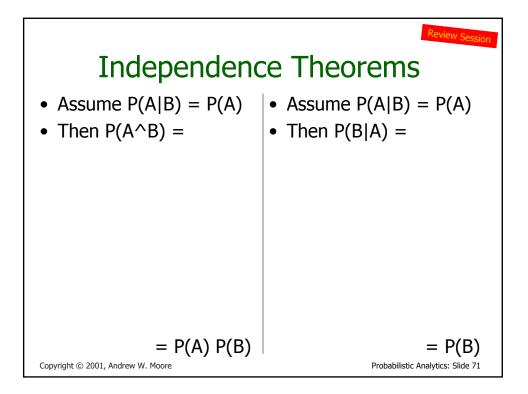
Copyright © 2001, Andrew W. Moore

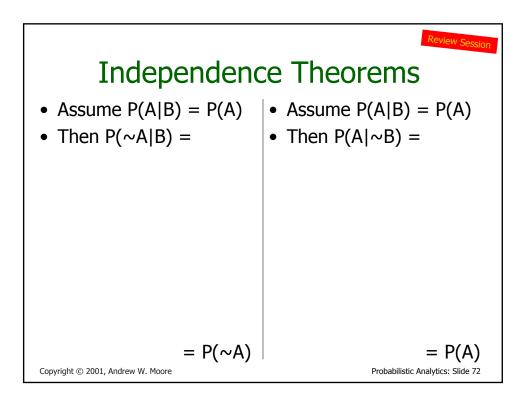
Probabilistic Analytics: Slide 67

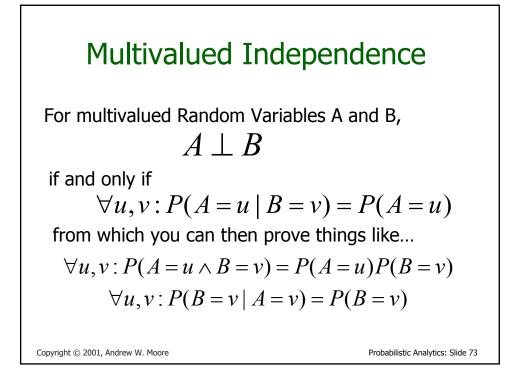
<section-header><text><text><text><text><text><text>

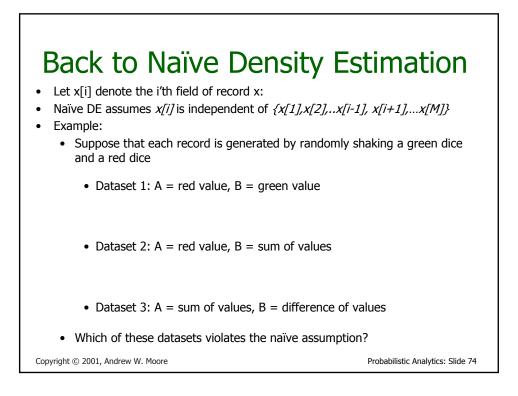


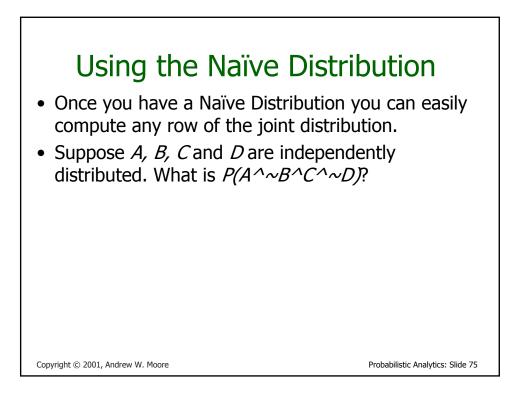


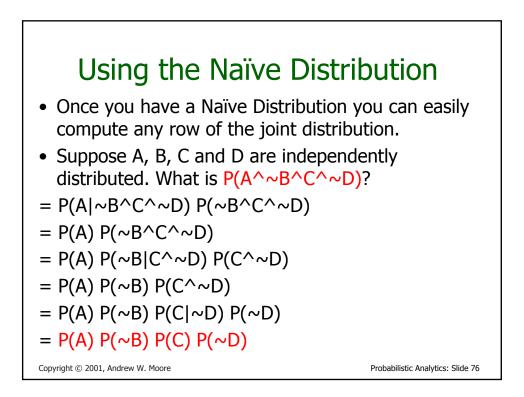












Naïve Distribution General Case

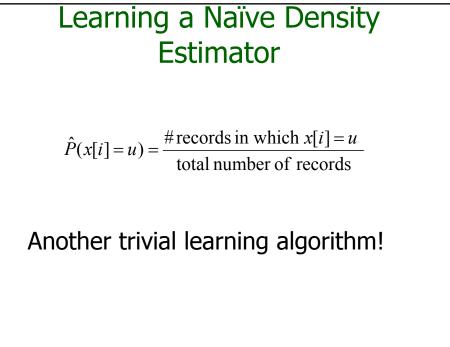
• Suppose *x[1], x[2], ... x[M]* are independently distributed.

$$P(x[1] = u_1, x[2] = u_2, \dots x[M] = u_M) = \prod_{k=1}^M P(x[k] = u_k)$$

- So if we have a Naïve Distribution we can construct any row of the implied Joint Distribution on demand.
- So we can do any inference
- But how do we learn a Naïve Density Estimator?

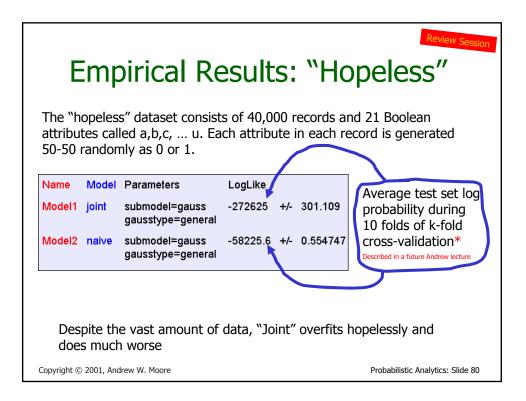
Copyright \circledast 2001, Andrew W. Moore

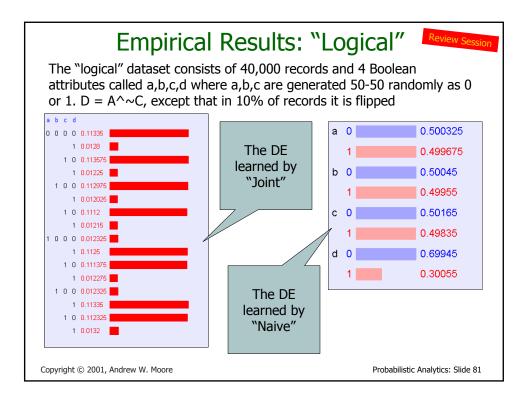
Probabilistic Analytics: Slide 77

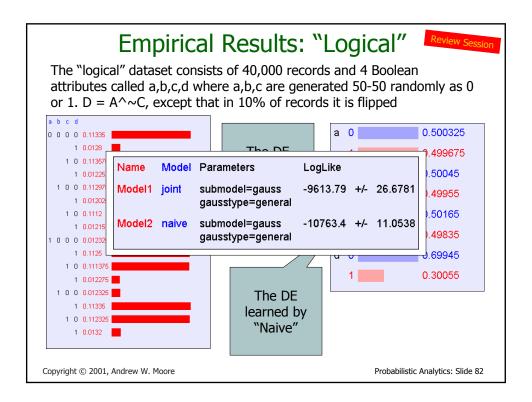


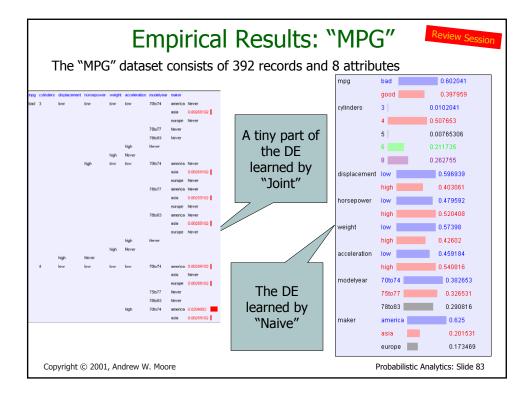
Copyright © 2001, Andrew W. Moore

Joint DE	Naïve DE
Can model anything	Can model only very boring distributions
No problem to model "C is a noisy copy of A"	Outside Naïve's scope
Given 100 records and more than 6 Boolean attributes will screw up badly	Given 100 records and 10,000 multivalued attributes will be fine

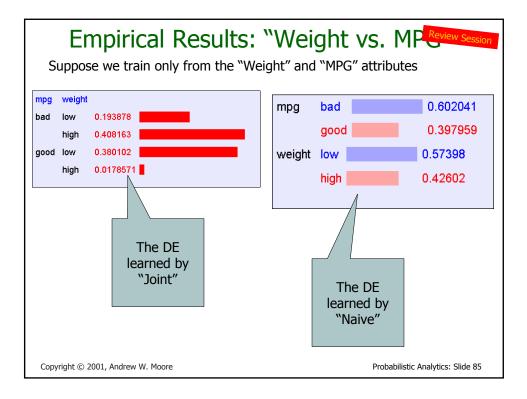


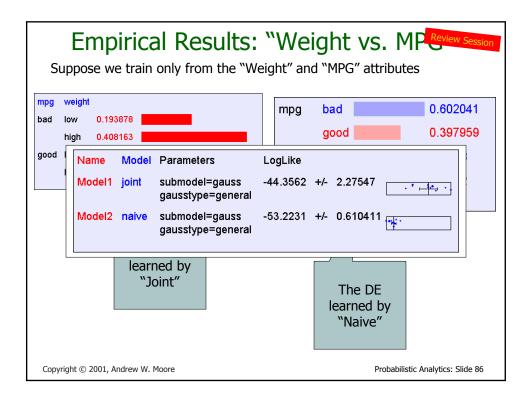


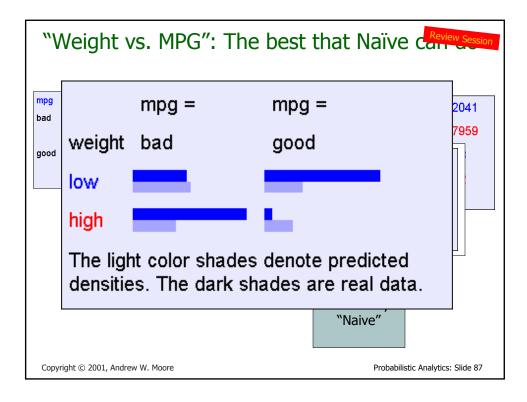


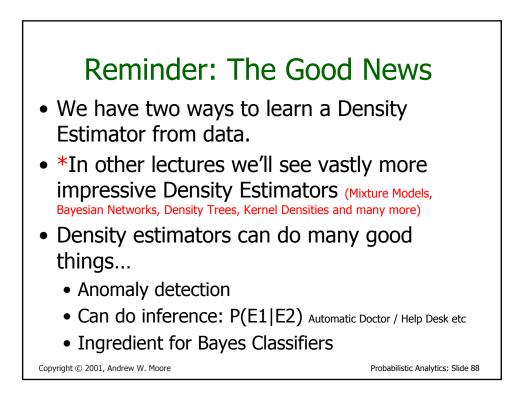


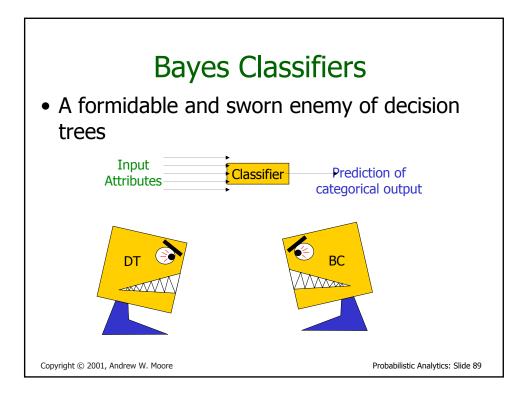
	Empirical Results: "MPG" Review Session							
The `	The "MPG" dataset consists of 392 records and 8 attributes							
mpg cylinders displacement bad 3 low	t horsepower weigh low low	t acceleration mode low 70to7			mpg cylinders	bad good 3	0.602041 0.397959 0.0102041	
_		75ko7 76ko6 histo histo	europe Never 7 Never	A tiny part of		4 5	0.507653	
	Name Model1	Model joint	Parameters submodel=gau		77.2184		k9 	
ľ	gausstype=general Model2 naive submodel=gauss -257.212 +/- 3.02246 gausstype=general							
high	Never				acceleration	low	0.459184	
4 kow	low kow	kow 70ko7	asia Never europe 0.00265102 7 Never	The DE	modelyear	high 70to74 75to77	0.540816 0.382653 0.326531	
		78tof high 70to7		learned by "Naive"	maker	78to83	0.290816 0.625 0.201531	
Copyright	© 2001, Ar	ndrew W. M	loore			europe	0.173469 malytics: Slide 84	



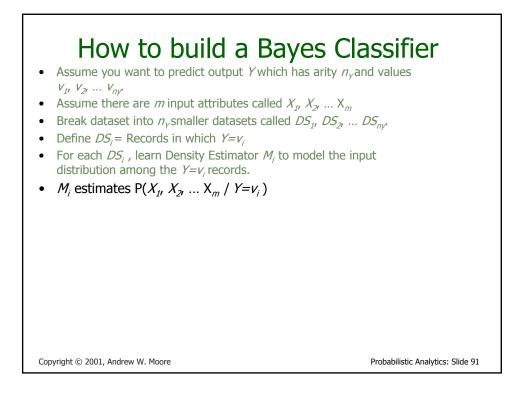


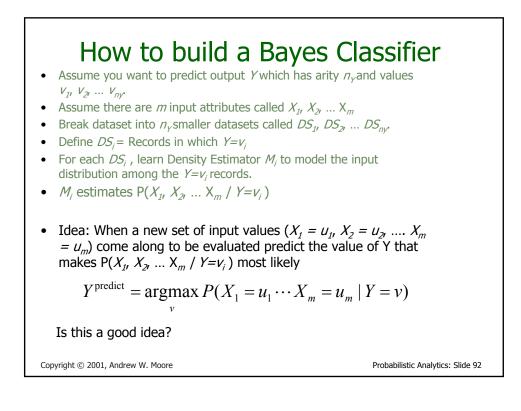


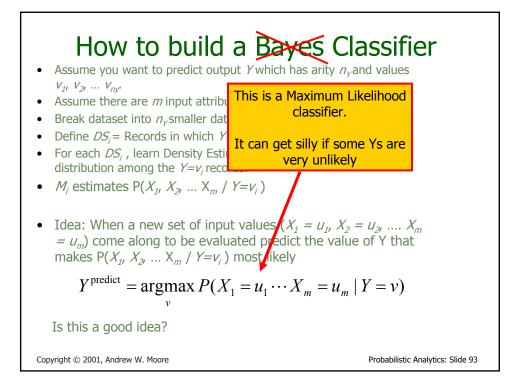


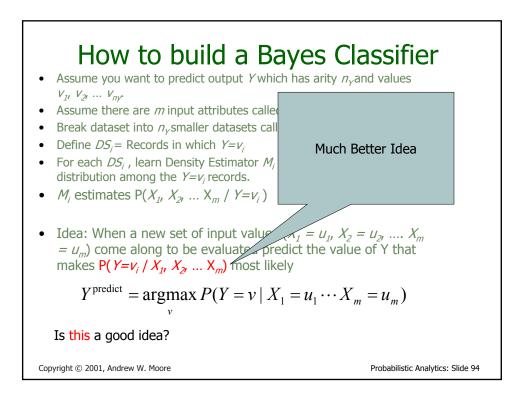


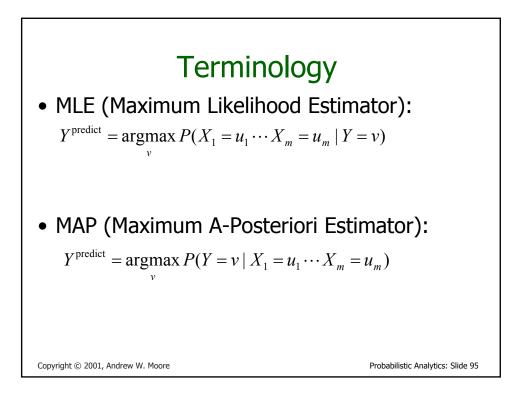
Control Control Cont

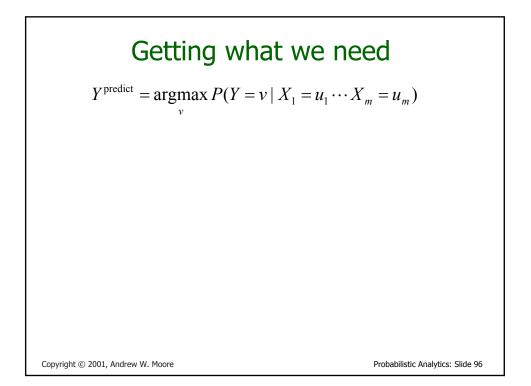




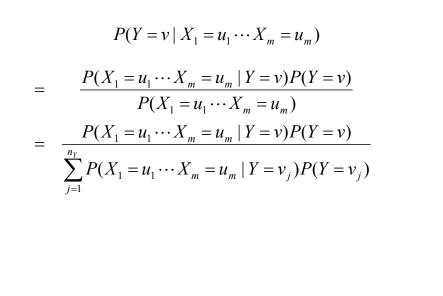








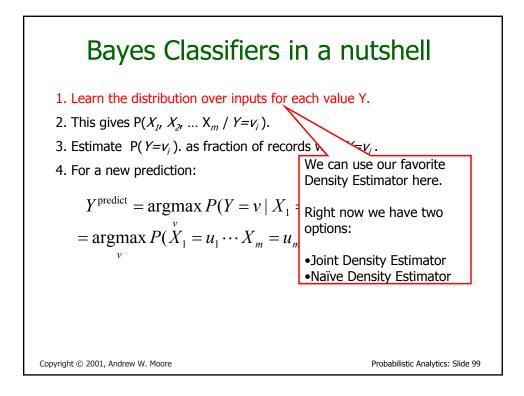
Getting a posterior probability

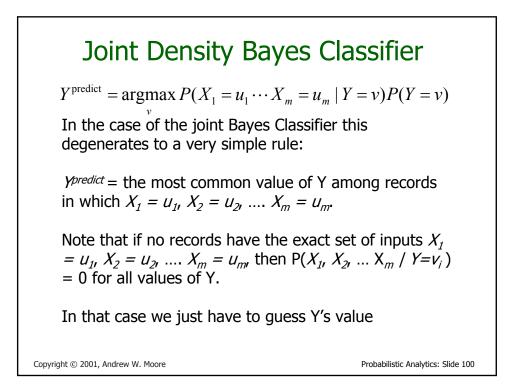


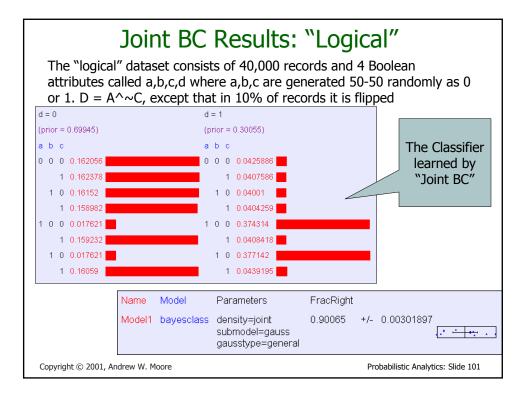
Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 97

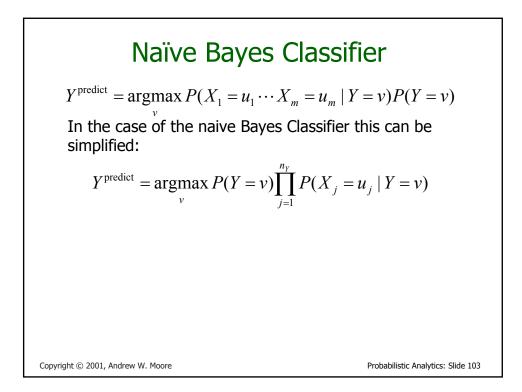
<section-header>**Bayes Classifiers in a nutshel**1. Learn the distribution over inputs for each value Y.2. This gives $P(X_{I'}, X_{2'} \dots X_m / Y = v_i)$.3. Estimate $P(Y = v_i)$ as fraction of records with $Y = v_i$.4. For a new prediction: $Y^{\text{predict}} = \operatorname{argmax}_{V} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m)$ $v_{V} = u_1 \cdots X_m = u_m \mid Y = v) P(Y = v)$



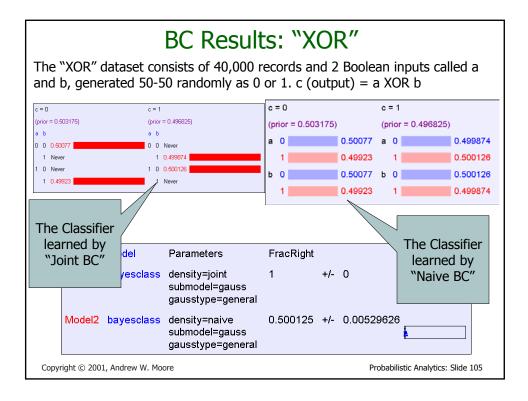


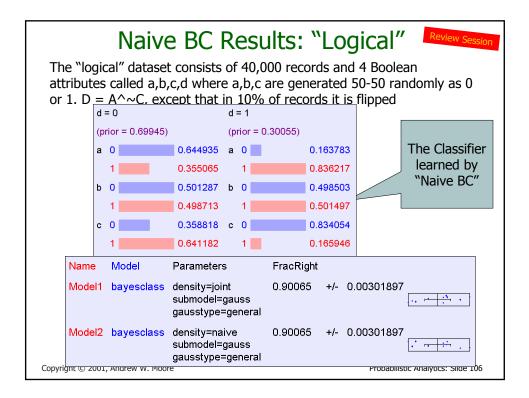


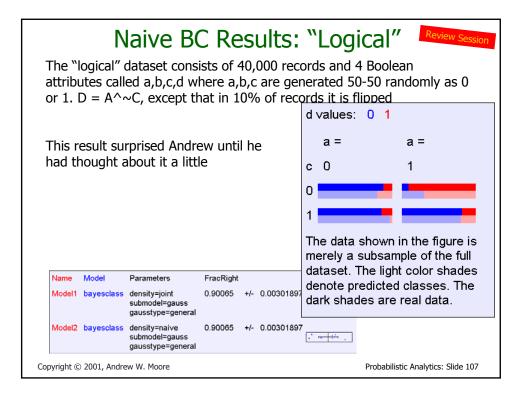
Name	Model	Parameters	FracRight		
Model1	bayesclass	density=joint submodel=gauss gausstype=general	0.70425	+/-	0.00583537

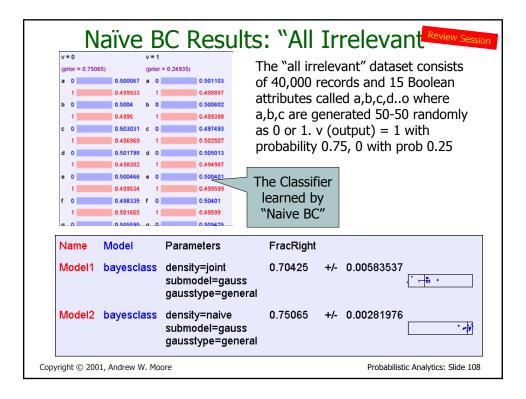


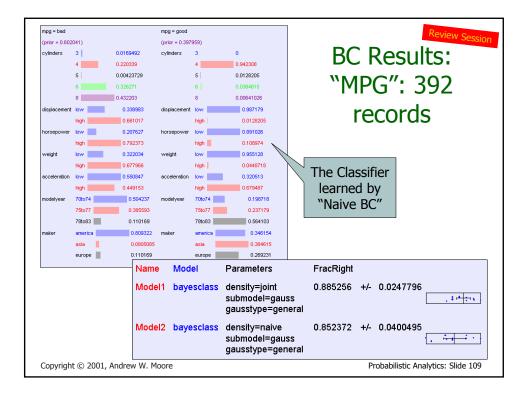
Naïve Bayes Classifier $Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v) P(Y = v)$ In the case of the naive Bayes Classifier this can be simplified: $Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v) \prod_{j=1}^{n_y} P(X_j = u_j \mid Y = v)$ Technical Hint: If you have 10,000 input attributes that product will underflow in floating point math. You should use logs: $Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} \left(\log P(Y = v) + \sum_{j=1}^{n_y} \log P(X_j = u_j \mid Y = v) \right)$ Copyright © 2001, Andrew W. Moor











					`` [Review Session C Results: MPG": 40 records
	Name	Model	Parameters	FracRight		
	Model1	bayesclass	density=joint submodel=gauss gausstype=general	0.725	+/-	0.114333
	Model2	bayesclass	density=naive submodel=gauss gausstype=general	0.8	+/-	0.122227
Copyright © 2001	, Andrew V	V. Moore				Probabilistic Analytics: Slide 110

More Facts About Bayes Classifiers

- Many other density estimators can be slotted in*.
- Density estimation can be performed with real-valued inputs*
- Bayes Classifiers can be built with real-valued inputs*
- Rather Technical Complaint: Bayes Classifiers don't try to be maximally discriminative---they merely try to honestly model what's going on*
- Zero probabilities are painful for Joint and Naïve. A hack (justifiable with the magic words "Dirichlet Prior") can help*.
- Naïve Bayes is wonderfully cheap. And survives 10,000 attributes cheerfully!

Copyright \odot 2001, Andrew W. Moore

*See future Andrew Lectures Probabilistic Analytics: Slide 111

