
CHI 90 Prcmedings April 1990

Automatic, Look-and-Feel Independent Dialog
Creation for Graphical User Interfaces

Brad Vander Zanden
Brad A. Myers

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
bvz@cs.cmu.edu

ABSTRACT

Jade is a new interactive tool that automatically creates
graphical input dialogs such as dialog boxes and menus.
Application programmers write a textual specification of
a dialog’s contents. This specification contains absolutely
no graphical information and thus is look-and-feel inde-
pendent. The graphic artist uses a direct manipulation
graphical editor to define the rules, graphical objects, in-
teraction techniques, and decorations that will govern the
dialog’s look-and-feel, and stores the results in a look and
feel database. Jade combines the application
programmer’s specification with the look-and-feel
database to automatically generate a graphical dialog. If
necessary, the graphic artist can then edit the resulting
dialog using a graphical editor and these edits will be
remembered by Jade, even if the original textual
specification is modified. By eliminating all graphical
references from the dialog’s content specification, Jade
requires only the absolutely minimum specification from
the application programmer. This also allows a dialog
box or menu’s look and feel to be rapidly and effortlessly
changed by simply switching look and feel databases.
Finally, Jade permits complex inter-field relationships to
be specified in a simple manner.

KEYWORDS: Automatic Dialog Layout, Look-And-Feel
Independence, Direct Manipulation, Graphical
Specification

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish requires a fee and/or specific
permission.

0 1990 ACM O-89791 -345-O/90/0004-0027 1.50

INTRODUCTION

Jade is a new tool that automatically creates and lays out
graphical input dialogs, such as menus, palettes, buttons,
and dialog boxes. It does this by combining a textual
specification of the dialog’s contents, written by an ap-
plication programmer, with look-and-feel databases
prepared by a graphic artist or style expert. The dialog
can then be modified by a graphic artist using a direct
manipulation, graphical editor, and Jade will maintain
these edits, even if the original textual specification
changes.

The specification that the application programmer writes
is completely look-and-feel independent. Indeed, there
are no references in the specification to graphics of any
kind. Jade obtains all the graphic information it needs
from the style files prepared by the graphic artists. Thus
the look-and-feel of a dialog can be effortlessly changed
from a Garnet style to an OpenLook style by simply
switching look and feel databases (see Figure 1). No
changes to the textual specification are required. By
eliminating all graphical references from a dialog’s
specification, Jade requires only the absolutely minimum
specification from the application programmer: the
dialog’s contents and the desired interaction techniques
(e.g., menu, single-choice or multiple-choice buttons,
number-in-a-range, etc).

Jade also makes it possible to specify complex inter-
relationships in a compact, simple form. For example, the
programmer can specify that certain sections of the dialog
should be disabled (e.g., grayed out) unless another por-
tion of the dialog has been selected. This feature can be
used to gray out the buttons that control the parameters in
a move or grow operation unless the corresponding opera-
tion is selected. It is also easy to specify how the be-

27

CHI 90 Proceedings April 1990

havior of various groups of buttons are related. For ex-
ample, to control a move operation, the application
programmer may present the user with three buttons-a
“left” button that specifies that the x coordinate of the
object should be changed, a “top” button that specifies
that the y coordinate of the object should be changed, and
a “formula” button that specifies that a formula will
decide which coordinates should be changed. The
programmer can easily specify that the “left” and “top”
buttons are mutually exclusive with the “formula” button,
but that the “left” and “top” buttons can be simultaneously
selected.

The graphic artist creates the look-and-feel for a dialog
using a direct manipulation, graphical editor called
Lapidary [5]. To create a look-and-feel, the designer
works with an example dialog that has been generated by
Jade. The style expert can change the look-and-feel’s
graphics by creating custom graphical objects and as-
sociating them with interaction techniques that Jade
recognizes, such as menu or number in a range behaviors.
Or if the interaction technique does not exist, the designer
can make use of a number of tools that are provided with
the graphical editor to create the desired behavior.

The graphic artist specifies the look-and-feel’s layout by
either selecting positioning rules from a dialog box or by
demonstrating the rules graphically. For example, a
group of buttons that controls the dialog, such as “OK”
and “Cancel”, can be positioned by selecting a rule from
the rules dialog box, or by moving the group to an ap
prop&e position on the screen and asking Jade to infer
the desired rule. The graphic artist is also free to add
decorations to the look and feel, such as enclosing menus
in rectangles or placing the word “or” between mutually
exclusive items. Thus the graphic artist can visually ex-
periment with different combinations of layout rules,
decorations, and objects to obtain the desired look-and-
feel.

Finally, the graphic artist is allowed to edit any dialog
generated by Jade, using the same graphical editor that
creates the looks and feels. Jade will remember these
changes and ensure that they are applied to the dialog,
even if the original textual specification is modified.

Jade, which stands for (a Judgement-based Automatic
Dialog Editor), is one of the tools that is being developed
as part of the Garnet project at Carnegie Mellon Univer-
sity [?I. Garnet seeks to provide a comprehensive en-
vironment for creating direct manipulation, graphical in-
terfaces. Garnet currently provides an object and con-
straint package, a graphics package, and an interactors
package that handles input devices at a high level [6].
Also under active development is a graphical editor,
called Lapidary [5l, that allows all pictorial aspects plus
most behavioral aspects of user interfaces to be specified
graphically. Jade currently generates all the dialog boxes
used in Lapidary, such as the one in Figure 2. All of
Garnet, including Jade, is implemented in Common Lisp

A Garnet style (a) and an OpenLook style (b) for
specifying the properties of a text object and controll-
ing an application. The “Edit” menu item has an as-
sociated submenu whose presence is indicated in a
look-and-feel specific manner. The Garnet and Open-
LoOk dialogs were generated from the same textual
specification.

on top of the X Window System. It is currently available
under Allegro, Lucid, and CMU Common Lisps and it
runs on both IBM RT and SUN workstations. Garnet is
designed to be portable so it should not be difficult to
compile it under other versions of common lisps or to
make it run on other machines. The lower levels of Gar-
net (not including Jade and Lapidary) are available for
free under license. Contact the authors for more infor-
mation.

RElATED WORK

Interface builders such as NeXT’s, the Macintosh
Prototyper by Smethers Barnes, and DialogEditor
131 allow a designer to select objects from a predefmed

set and position them by hand. However, this can be a
slow, inaccurate pmcess. Jade improves this by automati-
cally positioning and aligning objects, while still provid-
ing the graphic artist with a direct manipulation editor that

28

CHI 90 Proceedings

Figure 2.
A dialog box created by Jade that is used by Lapidary to specify a move or grow behavior. The application programmer has
instructed Jade to gray out the parameters associated with the move or grow interactor unless the button corresponding to that
interactor is chosen, and the graphic artist has enhanced the Jade-created dialog box by placing a rectangle around the
Start-Where group and placing the word “or” between that group’s items.

can change the resulting layout. Jade also permits the
graphic artist to quickly create new objects that can be
immediately used in the dialog.

Tools such as Mikey [S], the Interactive Transaction Sys-
tem [l, lo], Scope [2], and Chisel [9] automatically
generate dialog boxes from textual specifications. Mikey
generates Macintosh dialogs from the type descriptors
found in a Pascal program and Scope generates dialogs
based on the Athena toolkit from C++ programs. The
Interactive Transaction System generates dialog boxes
from a specification of the dialog’s content and a set of
style rules created by a style expert. Chisel automatically
lays out the presentation component of an interface based
on a specification, of the dialog’s contents, a set of
guidelines established by a designer, and a list of user
preferences. Jade differs from these systems in a number
of ways: by providing a direct manipulation editor that

allows a graphic artist to modify the dialog once it has
been created and retaining these edits if the original
specification is modified, by making it easy to create and
add new objects to the dialog, and by allowing the graphic
artist to create new looks and feels via a direct manipula-
tion, graphical editor. Jade also differs from Mikey and
Scope iu that it permits dialog specifications to be used
with multiple looks and feels.

A HIGH-LEVEL OVERVIEW OF JADE

Figure 3 presents a high-level overview of Jade’s ar-
chitecture. Jade takes a textual specification prepared by
an application programmer, an optional file of exceptions,
and a look-and-feel graphics file and a look-and-feel rules
file prepared by a graphic artist. As output it generates a
graphical layout for a dialog. The look-and-feel graphics
file contains graphical objects and decorations and is

29

CHI 90 Prrxsediw I$Xil1990

created using Lapidary; the look-and-feel rules file con-
tains positioning information and is created using the Jade
rule editor. The Jade rule editor obtains its rules from a
master rule database, which can be augmented by rules
that are demonstrated to Jade by the graphic artist and by
interaction techniques that the graphic artist demonstrates
or that the application programmer writes using Garnet’s
interactors package.

An application programmer writes a specification by
giving the labels for the dialog items and the names of the
interaction techniques that these items represent. Labels
are provided as lists. For example, the list
("underline" "bold" "italic") might denote the
options for the style of a font. Since several groups of
options may be combined to produce one final result,
label lists can be nested to obtain subgroups. For ex-
ample, a font is determined by its family, its size, and its
style. Thus the portion of the dialog that determines the
font might be written as:

("Standard-Fonts"
("Family" ("times" "helvetica"

"courier" "symbol"))
("Size" ("small" "medium" "large"))
("Style" ("reman" "bold" "italic")

(:behavior :multiple-choice)))

Jade will indent the Family, Size, and Style groups so that
users can visually recognize that they are related to Font,
as shown in Figure 1.

After listing the contents of a group, the application
programmer can provide a number of slot-value pairs that
define the group’s interaction technique. The : behavior
slot selects one of the following seven built-in interaction
techniques:

l Single-Choice: Allows a user to select only
one item at a time from a group of items.

l Multiple-Choice: Allows a user to select mul-
tiple items from a group of items.

l Text: Allows the user to input a string of text.

l Single-Choice-With-Texu Allows the ap-
plication programmer to associate a type-in
text field with the single-choice interaction
technique so that the user can input a string of
text. This interaction technique is used in the
“Start Where” portion of Figure 2.

l Multiple-Choice-With-Text: Allows the ap-
plication programmer to associate a type-in
text field with the multiple-choice interaction
technique so that the user can input a string of
text.

. Command: Allows the user to select items
from a menu.

l Number-in-a-Range: Allows the application
programmer to specify a slider-like inter-

action technique that will permit the user to
input a number in a specified interval.

Jade automatically selects the appropriate graphical object
based on the value of the :behavior slot and infor-
mation in the look-and-feel graphics file. If these
parameters are omitted, Jade will provide the default in-
teraction technique, single-choice. .single-choice
and :multipl.e- choice may be optionally followed by
a list of items, which may be the labels of dialog objects
and groups, or lists themselves. Every item on this list
will exhibit the single-choice or multiple-choice behavior,
depending on the prefixing keyword. For example, sup-
pose that in the fumity group in Figure 1, the bold and
italic options can be chosen simultaneously, but neither
can be selected if the underline option is chosen. This
behavior can be easily written as

(:behavior :sinqle-choice
("underline"

(:multiple-choice "bold*' "italic")))

Jade will also automatically generate code to enable or
disable groups of items based on the value of the
: enable slot. Disabled items might be “grayed out” (the
graphic artist determines the actual appearance of dis-
abled items). The value of the :enable slot will
generally depend on whether some other item in the
dialog is selected. Therefore, the application programmer
will write a “formula” that expresses a relationship be-
tween the value of the :enable slot and the “enabling”
item. A formula can be any arbitrary Lisp expression.
The constraint layer of Garnet provides a special com-
mand called gv that can be used to access the value of a
slot in Garnet o’bjects (gv stands for get value). The Gar-
net constraint system automatically reevaluates a formula
when the value of the referenced slot changes.

In writing formulas it is also important to know that Jade
uses a tree structure to represent a dialog, with the groups
as interior nodes and the items as leaves. Jade labels
these nodes with the names given to groups and items.
The application programmer can access these nodes
through slots that are stored in the nodes’ parents. In this
case, the names of the slots are the names of the nodes
they point to. For example, the Standard Fonts group in
Figure 1 will have a slot named : standard-fonts in its
parent that contains a pointer to the Standard Fonts group.
Thus, to access the “times” button in Figure 1 from a
sibling of the Font family, the expression (gv : self
:parent :standard-fonts :family :times) SUf-
iiCeS.

As an example of how formulas might be used in the
:enable Slot, consider the move/grow operation
represented by Figure 2. The group represented by
Width, Height, and Formula should be enabled when
the grow button is selected. To accomplish this, the ap-
plication programmer would write the formula (gv
:self :parent :move-grow-group : grow
:selected). This formula instructs Jade to go to the

30

CHI 90 Proceedir~S April 1990

Figure 3.
Architecture of the Jade system. Processes are denoted by diamonds inscribed in ovals and input and output are denoted by
roundtangles inscribed in rectangles. Jade’s final output, a dialog box or menu, is part of the run-time environment.

parent of the Width-Height-Formula group, then to the
Move-Grow group, and then to the grow button where it
will check if the grow button is selected. If so, it will
enable the Width-Height-Formula group, otherwise it will
disable it (represented by the grayed out group in Figure
2).

Yet another slot that the application programmer may
provide is the : stop-action slot, which gives the name
of a function that should be called when the user selects
one of the items in a group. This function is called with
the name of the selected object. It may also access any
other object in the dialog using the tree structure outlined
earlier. As an alternative to using stop action functions,
the application programmer may place formulas that
depend on the items in the dialog in application objects.
The objects will then be automatically updated by
Garnet’s constraint system when the user makes a new
selection.

Constraints and stop-actions allow the application
programmer to manage the flow-of-control in a larger ap-
plication context with many dialogs. For example, the
application programmer can provide a stop action that

makes another dialog visible when a button is hit. Or the
application programmer can place a constraint in the
: enable slot of a button that causes it to be dim unless a
button in another dialog is selected.

Finally, a specification may have a special stop-group slot
that specifies the functions that control the dialog, such as
“OK” and “Cancel”. Jade treats the stop-group as a com-
mand behavior, To assist the programmer in implement-
ing the stop functions, Jade maintains a list of the groups
whose selections have been modified and passes this list
to the stop action. Jade also positions the stop-group
specially, using different layout rules than the rules used
to lay out the other dialog groups.

The specification in Figure 4 generates the dialog box and
menu shown in Figure 1. The sublist (llcopy" "cut"
"paste" "delete") causes a submenu for “edit” to be
created, which will appear after “Edit” has been selected.
In contrast, the sublist (**times I1 "helvetica"
"courier" l-~ymb~l*v) causes a string of buttons to be
laid out, prefixed by the non-selectable label Family.
The selectability of labels is determined by the interaction
technique they are associated with.

31

CHI 90 Proceedw mil1990

(create-dialog
((("Font"

(("Standard-Fonts"
(("Family" ("times" "helvetica" "courier" "symbol"))

("Size" ("small" "medium" "large"))
("Style" ("reman" "bold" "italic")

(:behavior :single-choice
("underline" (:multiple-choice "bold" "italic")))))

("Font From File"
(:behavior :text))

"Formula")))
(("Edit Text" "Generate Text from FormuLa" "Remove Text Formula")

(:behavior :command)
(:stop-action text-handler)))

(:stop-group ((WKn "Cancel" "Go Away")
(:stop-action 'font-stop-action)))))

(create-dialog
((("open" ("edit" ("copy" "cut" "paste" "delete")) "save" "quit")

(:behavior :command)
(:stop-action control-menu-handler))))

Figure 4.
Textual specification of the dialog box shown in Figure 1.

AUTOMATICALLY GENERATING DIALOG BOXES

In order to automatically lay out a dialog, Jade uses
several heuristics based on the particular look-and-feel,
such as where to position the stop group, whether to start
each group on a new line, how to position subgroups, and
how to position items within a group. It also needs to
know what types of graphical objects to use. To help it
make these decisions, Jade consults a rule base that is
maintained in a look-and-feel file. The rules in this look-
and-feel file are in turn derived from a master rule base
that Jade maintains. A graphic artist can use a graphical
editor, as described in the next section, to create new rules
or the application programmer can write new interaction
techniques using the Garnet interactors package.

There are rules for placing objects, determining when to
break a line, for specifying horizontal and vertical offsets,
and for determining what type of font should be used.
These rules are of the form:

(rule-name rule-body parameters)

The parameters are optional and may include things like
objects and offsets that help the placement rules position
objects with respect to another object. Sometimes the rule
body is as simple as a number indicating how many pixels
should vertically separate two groups of items or how
many pixels a subgroup should be indented. Other times
the rule body consists of a list of slot-names, such as
: left or : top, that parameterize an object, and defini-
tions for these slots, such as a formula indicating that the
top of an object should be a certain number of pixels
below the bottom of another object. An example rule
might be

(at-right-rule
((:left (formula (+ (gv obj :right) offset)))

(:top (formula (gv obj :top))))
obj offset)

This rule positions an object to the right of the reference
object. The formula for : left finds the right margin of
the reference object and adds to this a number of pixels
equal to the offset. The formula for : t op finds the top
margin of the reference object. Jade places these for-
mulas and values directly into the dialog groups and ob-
jects. The Garnet constraint system then evaluates the
formulas and the results dictate the layout of the dialog.

The look-and-feel fire associates rules with layout
parameters that Jade uses to position objects in the dialog.
These bindings may also restrict the scope of a rule. For
example, a rule may apply to the layout of a specific
group of items, such as the Family group in the text
properties dialog box, or to an interaction technique, such
as single-choice items, or to the whole dialog. These
bindings have the form:

(parameter-name rule-name applies-to)

For example, if at-right-rule applies only to the alignment
of single-choice items, the binding would be:

(.-alignment at-right-rule :single-choice)

When multiple bindings apply, Jade chooses the most
restrictive one. Thus, when laying out a single-choice
group, Jade will prefer the at-right-rule binding over a
binding that applies to the whole dialog.

32

CHI 90 l’mceedngs Aplil1990

It is assumed that the graphic artist who creates these
rules and bindings will not have much, if any, program-
ming experience. Therefore, as discussed in the next sec-
tion, Jade provides a special editor that allows the
graphics artist to demonstrate rules and bindings. Jade
stores the demonstrated rules and bindings in the format
just described. In the event that a rule or binding cannot
be expressed in this editor, the graphic artist can enlist the
services of a programmer, who can write the rules or
bindings using the above format, and add them to the
appropriate database (for simplicity, the rules and binding
syntax mirrors the syntax used in Garnet).

ADJUSTING DIALOGS, RULES, AND STYLES

Once Jade has laid out a dialog, a graphic artist may want
to modify it. For example, the designer may want to add
decorations, such as rectangles around groups, or modify
some aspect of the layout, such as the way items within a
group are positioned with respect to one another. Jade
needs to remember these changes so that it can apply
them, even if the application programmer edits the
original specification. The designer may also want some
of these changes to modify the look-and-feel so that other
dialogs can be modified in the same manner. Finally, the
designer may want to change the graphical objects that
represent the various interaction techniques or create new
interaction techniques.

All of these adjustments can be accomplished using the
Lapidary editor. To modify the rules governing the layout
of a dialog, the graphic artist can use a rule dialog box
that shows the rules in the master rule base, or the desig-
ner can demonstrate the rule. Related rules are grouped
together by the rule dialog box and the one that is cur-
rently used in the dialog is highlighted. For example, the
rules that can affect how items in a group are positioned
will be displayed together. When the designer selects a
new rule, the Jade generated dialog is immediately up
dated to reflect the change.

The graphic artist can also change the rules in a direct
manipulation manner by repositioning dialog objects,
such as moving a stop-group to the bottom of the dialog
and aligning it horizontally. Jade will then use Peridot-
style inferencing [43 to guess which rule from the master
rule base should be applied. If none of the rules seems to
apply, Jade will ask the &signer if it should create a new
ruIe to cover this situation. The designer can then give
this rule a name and Jade will record the rule in its rule
database. The designer is then free to incorporate this
rule into the current look-and-feel, other look-and-feels,
or only into this dialog.

To add decorations to a dialog, the graphic artist draws
the objects in Lapidary and then positions them using
Lapidary’s constraint menus. The constraints refer to the
group’s or item’s name, so Jade can remember the excep
tions by saving the decorations, the constraints, and the
group’s or item’s name. As long as the names do not

change when the original specification is edited, Jade will
be able to position the decorations correctly, even if the
size or position of the items changes. If a name changes
or disappears, Jade will ask the designer whether the
decoration should be deleted, or whether it should be
keyed to a new name.

The designer can also change the graphics that represent
the various lade interaction techniques by creating new
graphical objects using Lapidary and then linking them to
the appropriate Jade interaction technique. Jade will im-
mediately insert the new graphical object into the dialog
using the look-and-feel rules that the designer has
defined. If the desired interaction technique is not recog-
nized by Jade, such as a two-choice behavior that allows
the user to select exactly two items, the graphic artist can
either demonstrate the interaction technique using
Lapidary, or ask the application programmer to code the
interaction technique using Garnet’s interactors package.
This interaction technique can then be added to Jade’s
rule base and incorporated into other look-and-feels.

The changes the designer makes to the layout rules,
decorations, graphical objects, and interaction techniques
can affect multiple levels in Jade. Graphical changes can
be stored in an exceptions file, in which case they will
only apply to the dialog being edited, or they can be
stored in a look-and-feel graphics file, in which case they
will apply to all dialogs created with that look-and-feel.
Rule changes can be stored in an exceptions file, a look-
and-feel rules file, or the master rule base. If they are
stored in the master rule base, they will affect all look-
and-feels.

Within a dialog, the designer can control whether a rule
change has a local or global effect through the selection of
dialog groups. If the designer preselects one or more
groups, the rule change will only apply to these groups,
otherwise the rule change will apply to the entire dialog.
Alternatively, the designer may want a rule change to
apply to a specific kind of group, for example, any group
that consists entirely of multiple-choice text objects. In
this case, the designer can select a representative group,
apply the rule to it, and then ask Jade to generalize it to all
groups of that type.

CURRENT STATUS AND FUTURE WORK

Jade is currently used to create the dialog boxes in
Lapidary and was used to generate all the dialog figures in
this paper. The present implementation of Jade consults
look-and-feel databases to determine which rules and
graphical objects it should use. Rules can also be
changed locally so that the modifications only apply to a
particular group.

The master rule base has not been implemented so it is
not currently possible to extend Jade by adding new rules
or interaction techniques. The Jade rule editor has also
not yet been implemented so Jade cannot yet infer rules or

33

CHI !3O proceedings &%ill990

have rules demonstrated to it. However, it is possible to
modify rules textually by placing the names of the ap
propriate rules in a look-and-feel file, Similarly, graphi-
cal objects can be created using Lapidary, and then linked
textually with Jade interaction techniques.

A possible future extension is to use Jade to generate a
special editor for creating a Jade specification. Of course
this editor would use Jade created menus and dialog
boxes. For example, the :behavior, stop-action
and : enable slots could be placed in a dialog box along
with fields for a group’s label and the graphical objects’
labels. A mechanism for defining subgroups could also
be established by creating multiple copies of the dialog
box, one for each subgroup. The advantage of this ap
preach is that it would be easier for the designer to create
a’syntactically correct specification. The disadvantage is
that it would not be as fast as simply typing in the
specification.

CONCLUSIONS

Jade presents a new technique for rapidly creating graphi-
cal dialogs with the same look-and-feel, allowing a
graphic artist to modify the resulting dialog, and remem-
bering these modifications even if the original specifica-
tion is edited. By providing look-and-feel databases, Jade
allows the dialog specification itself to be completely
look-and-feel independent. Thus an application program-
mer can create dialogs by simply listing the contents of
the dialog, and a graphic artist or style expert can create
the rules, graphics, decorations, and interaction tech-
niques that govern the look-and-feel of these dialogs. In
addition to allowing the style expert to alter the dialogs
once they have been created, Jade will permit the style
expert to create new rules, graphics, interaction tech-
niques, and decorations using a graphical, direct
manipulation interface. Thus Jade will be extendable and
will permit the graphic artist to visually experiment with
different looks and feels when designing an application’s
graphical user interface.

ACKNOWLEDGEMENTS

We are grateful for the help we received from the other
Garnet project members in designing Jade: Dario Giuse,
Roger B. Dannenberg, David Kosbie, Philippe Marchal,
and Ed Pervin.

This research was sponsored by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No.
4976, Amendment 20, under contract F33615-87-C-1499,
monitored by the Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Aeronautical Systems Divi-
sion (AFSC), Wright-Patterson AFB, Ohio 45433-6543.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or im-

plied, of the Defense Advanced Research Projects Agency
or the US Govlemment.

REFERENCES

1. William E. Bennett, Stephen J. Boies, John D. Gould,
Sharon L. Greene, and Charles F. Wiecha. Transfor-
mations on a Dialog Tree: Rule-Based Mapping of Con-
tent to Style. Proceedings of the ACM SIGGRAPH Sym-
posium on User Interface Software and Technology, Wil-
liamsburg, VA, Nov., 1989, pp. 67-,75.

2. Clifford M. Beshers and Steven Feiner. Scope:
Automated Generation of Graphical Interfaces. Proceed-
ings of the ACM SIGGRAPH Symposium on User Inter-
face Software and Technology, Williamsburg, VA, Nov.,
1989, pp. 76-85.

3. Luca Cardelli. Building User Interfaces by Direct
Manipulation. Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software, Banff, Alberta,
Canada, Ott, 1988, pp. 152-166.

4. Brad A, Myers. Creating User interfaces by
Demonstration.. Academic Press, Boston, 1988.

5. Brad A. Myers, Brad Vander Zanden, and Roger
B. Dannenberg. Creating Graphical Objects by
Demonstration. Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software and Technology,
Williamsburg, VA,Nov., 1989, pp. 95-104.

6. Brad A. Myers, Dario Giuse, Roger B. Dannenberg,
Brad Vander Zanden, David Kosbie, Philippe Marchal,
Ed Pervin, and John A. Kolojejchick. The Garnet Toolkit
Reference Manuals: Support for Highly-Interactive,
Graphical User Interfaces in Lisp. Tech. Rept. CMU-
CS-89-l%, Carnegie Mellon University Computer
Science Department, Nov., 1989.

7. Brad A. Myers. An Object-Oriented, Constraint-
Based, User Interface Development Environment for X in
Common Lisp. 4th Annual X Technical Conference, Bos-
ton, MA, Jan., 1990. To appear.

8. Dan R. Olsen, Jr. A Programming Language Basis for
User Interface Management. Human Factors in Comput-
ing Systems, Proceedings SIGCHI’89, Austin, TX, April,
1989, pp. 171-176.

9. Gurminder Singh and Mark Green. Chisel: A System
for Creating Highly Interactive Screen Layouts. Proceed-
ings of the ACM SIGGRAPH Symposium on User Inter-
face Software and Technology, Williamsburg, VA, Nov.,
1989, pp. 86-94.

10. Charles Wiecha, William Bennet, Stephen Boies, and
John Gould. Generating user interfaces to highly inter-
active applications. Human Factors in Computing Sys;
terns, Proceedings SIGCHI’89, Austin, TX, April, 1989,
pp. 277-282.

34

