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Abstract

In this paperwe describe an algorithm for obje&oayni-
tion that plicitly models and estimates the posteriooka-
bility function, P(objectimage) . We have hosen a functional
form of the posterior mbability function that captes the
joint statistics of local appeance and position on the object
as well as the statistics of local appaace in the visual world
at large. W& use a dis@te epresentation of local appeance
consisting of apmximately 168 patterns. W compute an esti-
mate of P(objectimage) in closed form by counting theefr
quency of occuence of these patterns/er various sets of

appearance is discrete eWare partitioned the space of local
appearance into a finite number of patterns. The discrete nature
of this representation alls us to estimate theverall statisti-

cal model, P(objec{image), in closed form by counting the
frequeng of occurrence of these patterngepvarious sets of
“training” images.

In this paper we deré a functional form for the posterior
probability functionP(objectimage) that combines these rep-
resentational elements.e/then describe lmowe hae applied
this model to the detection dcddes in frontal vie and profile.
We bagin in section 2 with a xéew of Bayes decision rule. &V
then describe our strafe for derving the functional form of

training images. V& have used this method for detecting humanhe posterior probability function in section 3 and perform the

faces fom fiontal and pofile vievs. The algorithm for émtal
views has shown a detectioate of 93.0% with 88 false alarms

actual dewation in section 4. In section 5, we describe luse
training images to estimate a specific probability function

on a set of 125 inges containing 483 faces combining the MIT within the framevork of this functional form. In section 6 and

test set of Sung andbyio with the CMU test sets of Rowyle
Baluja, and KanadeThe algorithm for detection of gfile
views has also demonsated ppmising esults.

1. Intr oduction

In this paper we deré a probabilistic model for object rec-

7 we gire our results for frontalate detection and profile
detection, respeetely. In section 8 we compare our represen-
tation with other appearance-based recognition methods.

2. Review of Bayes decision rule

The posterior probability functiongs the probability that
the object is present\gn an input image. Kndedge of this

ognition based primarily on local appearance. Local appeaftnction is all that is necessary to perform object recognition.
ance is a strong constraint for object recognition when thgor a given input image gion, x = image, we decide whether

object contains areas of distinidetailing. Bbr example, the
human &ce consists of distingg local rgions such as the

eyes, nose, and mouth. tever, local appearance alone is usu-

ally not suficient to recognize an objectoFexample, a human
face becomes unintelligible to a human obsewhen the ar-

the object is present or absent based on which probability is
larger, P(objecix) or P(objecix) = 1—P(objec{x), respec-
tively. This choice is knon as the maximuna posteriori
(MAP) rule or the Bayes decision rule. Using this decision
rule, we achiee optimal performance, in the sense of mini-

ious features are not in the proper spatial arrangement. Ther@um rate of classification errors, if the posterior probability
fore the joint probability of local appearance and position otfunction is accurate.

the object must be modeled.

Nevertheless, representation of only the appearance of tf& Model derivation strategy

object is still not sdfcient for object recognition. Some local

patterns on the object may be more unique than others. F

example, the intensity patterns around theseof a humarete

Unfortunately it is not practically feasible to fully represent
P(objectimage) and achiee optimal performance; it is too

are much more unique than the intensity patterns found on t{g9€ and complea function to represent. The best we can do

cheeks. In order to represent the “uniqueness” of local appe

ance, the statistics of local appearance in tbddnat lage
must also be modeled.
The underlying representation wevhachosen for local

ds.choose a simplified form @&f(objeciimage) that can be reli-

ably estimated using theailable training data.
Although a fully general form oP(objectimage) is intrac-
table, it provides a useful starting point for deation of a sim-



plified probabilistic model. In our destion, we tak this  regionof fixed size, foq X Creg

general form and apply succas&ssimplifications to it until it

is in a computationally feasible form. At each stage of this derP(objeciregion) = _ _ )

ivation we mak our modeling decisions on the basis of domain P(objectpixel(1, 1), pixel(1, 2), . . ., pixel(rreg Creg))

knowledge and intuitie preferences. where, pixel (i, j) is the scalar intensityalue at piel location
This stratgy of dervation pravides an gplicit record of all (i, j) in theregion,

the representational simplifications made in\deg such a In order to detect an object atygposition in an image, we

functional form. V& then knav not only those relationships we must then ealuate P(objectregion) for every overlapping

hase modeled bt those we hee not modeled. 6f example, we  region of this size within the image boundaries. Additionally

malke the implicit modeling decision not to represent the jointo detect the object at warsize, we must repeat this process

statistics of appearance across the full spatiggng of the over a range of magnification scales of the original image.

object. This simplification along withavious others become  We model &ces that are normalized in size to 64x64. This

explicit through this deviation process. size vas chosen to be @ enough to capture the detailed

L appearance of a humaeack.
4. Model derivation

In this section, we deré a functional form of the posterior 4.4. Decomposition into class conditional mbabilities

problem of frontal éce detection in mind,ub is generally  propability function into the class conditional probabilities for

applicable to a wider range of objectsorRhis reason, we  the objectP(region|objec) , and non-objecty(region|objec ,
describe the specific modeling choices we enfak face detec-  and the prior probabilities2(objec andP(objech) :

tion after we hee described the general nature of the simplifi-
cation in each folling section. Oerall, we dene this
functional form by applying approximately 13 simplifications
and modifications to the general form of the posterior probabil-
ity function. \ariations on these modeling choices faicd pro- Where the unconditional probability of the imagegioe,
file detection are described in section 7. P(region), is given by:

P(region|objecfP(objec

P(objecfregion) = P(region) (3)

4.1. Notation P(region|objecP(object) + P(region|objec)P(objec) (4)

Throughout this document we mekise of seeral nota- This decomposition alles us to separately estimate each of
tional coventions. Randomariables are indicated in italics, the class-conditional probability functiong(region|objec
e.g.,image. When these randomasiables assume a specific @hd P(region|objec) from object and non-object training
value, the wlue is not italicized, e.g.x = image. Curly ~images, respeately. In the follaving sections we discusswio
braces, {}, indicate aggoates. Br example, @} represents We simplify the func_tlonal forms for these probablh_t@s.
all a;: &, a, ag, etc. W designate the class of all visual scenes ~ Furthermore, using Bayes theorem, Bayes decision rule can

that do not contain our object by the symbbject re-written in an equalent form as a liégihood ratio test:
; o : object
4.2. General brm of posterior probability function Plregionjobjec) > | _ P(bjec)
. L < = Slobiec)
The most general representation we consider is the poste- P(region|objec) object P(objec) (5)
rior probability function of the object conditioned directly on ) ) ) o )
the entire input image: Under this formulation we decide the object is present if the
likelihood ratio (left side) is lger than the ratio of prior proba-
P(objectimage) = bilities (right side). Otherwise we decide the object is not

e ni i i (1)  present.
P(object pixel (1, 1), pixel(1, 2),. .., pixel(n,m
(objectpixel(L, 1), pixel(1, 2) pixel(n, m)) Often we hge little knavledge of the prior probabilities.

By writing the decision rule this ay all information concern-
ing the priors is combined into one term,This term can be
viewed as a threshold controlling the sengifiof the detector

Where, pixel(i, j) is the scalar intensityalue (or color ector
value for a color image) at location (i, j) in timeage.

4.3. Size standardization

We first standardize the size of the object. Rather thaft-5- Decomposition into subegions

T e oy e e W decompose the iputgen nlo an aggeets o
) ' P smallersubegionsof fixed size, §,,X Csyp

express the posterior probability function conditioned an image



(6) example, on humarates the forehead is usually brighter than

the g/e soclets [1]. W cannot represent yafiorm of symme-

try. We cannot represent if all parts of a geometric figure are

connected [2].

. ; X _ o However, this assumption does not impose a debilitating

region. We consider all erlapping subegions within the  nenayty for the problem ofibe detection because local features

largerregion. For faces we ussubegionsof size 16x16. . are salient and consistent amondfedént fices, e.g., noses
With these modifications, the class conditional probability; relatively similar from indvidual to indiidual and appear

functions become: in relatively the same position relai to the other dcial

region = {subregion}

wheresubregion = (pattern, pos) contains tw types of infor-
mation: pattern - the array of pigl intensities wer the subre-
gion andpos -the subrgion position with respect to theerall

P(region|objech) = P({ subregion} |objec) atiributes. L . _ .
T T ) The application of this assumption to the recognition of

P(region|objecf) = P({subregion} objec) other objects may not be as successful. In particitlaould

where there aregf,.subegionsin aregion. be agued that maﬂobj_ect_s are more distinguished byecall
We describe the admtages of this decomposition in sec-Structure rather than inddual features. & example, on a
tions 4.6.3 and 4.6.4. modern lilding, windows are distribted in a rgularly spaced
arrangement agnst the uniform teure of the hilding mate-

46 No modellng of Stanstlcal dependency among rial. The dIStII’IQUIShIng characteristics are not theviddal
subregions windows, nor the specific spacing of the wimdarrangement,

but simply the presence of some form ajukar windav spac-
We do not model statistical dependgiacnong subigions.  ing.
This simplification gies the folleving expression for the class

conditional probability functions: 4.6.3. Small alignment erors when matching
Nsybs Using the subigion decomposition, we can accommodate
P({ subregion} |objec) = |‘| P(subregionk|0bject) some dgree of geometric distortion in the appearance of the
k=1 object. The alignment error between a full-size template and a
_ Deuns _ C) rotated ‘ersion of the template will be quite significant -- see
P({ subregion} |objec) = [7] P(subregion, |objec) figure 1. If we match ingidual subrgions, the alignment error
k=1 will be much less -- see figure 2. Similargubrgion-based

Through these simplifications, our modeling requirements are

reduced to representing P(subregion, |objec) = Alignment errorrb template of original
P(pattern, pos|objec and P(subregion,|objec) = for one feature¥, = | ¢—— object
P(pattern, pos|objec that describe the joint beliar of sub- rotated ersion
region appearance and position. «— of object
The choice of not modeling the statistical depengenc Figure 1. Alignment error for
among subrgions greatly reduces the comytg of the model.

4.6.1. Model complexity eduction

L =

To illustrate the etent of this simplification, let us assume that Alignment error ¥ /7 1
a region is represented by an aggate ofn submegions and for same feature _
each submgion can tak onm possible @lues describing its «rOti;e:bferzO”

intensitypattern The full statistical distristion for the object,
p(pattern,, pattern,, . ., patternn|object) , is then modeled
over m" discrete eents. In contrast, the disttition,

p(pattern, pos|objecf , is modeled wer mndiscrete eents.
Figure 2. Alignment error for matching individual subregions

4.6.2. Loss of modeling pmer _ ) ) ) _ _
matching will reduce the alignment error for distortions in

Unfortunately by not modeling this statistical dependgnc aspect ratio and magnification.
there are manrelationships we cannot representor Bxam-
ple, we cannot represent attribs that are similar across the 4.6.4. Emphasizing distinct parts of the object appearance
extent of the object, such as skin color on a hunsae.f Vé
cannot represent the structure in the brightness disbib
across the object that is dgr in extent than a subggon. For

The subrgion decomposition pxdédes a mechanism for
emphasizing distinote parts of the objedt’appearancever
less distinctte parts. Let us consider the currexgression for



the likelihood ratio:
Nsubs p(sybr egi onk| objec)

K= 1P(subregionk|objec1)

Distinctive areas on the objectubregion,, will have a lage
value for P(subregionk|object)/(P(subregionk|object)) since

P(pattern, pos|objec) = P(ql, pos|objec)
P(pattern, pos|objec) = P(ql, pos|objec) (10)
whereql can tak on ry, discrete alues andjl = Q,(pattern)
combines projection, sparse coding, and quantization.

For faces, each of the original coordinates in the projection

the occurrence of these patterns is much more frequent on thee quantized to a finite number of/dés between 3 and 8.

object than in the arld at lage. Thus, such distingg areas
contritute more to thewerall product gien abee.

4.7. Projection of the subegion intensity pattem

We linearly project the sulbg®n intensitypattern onto a
lower dimensional space of dimensigy:n

projection = AT pattern (9)
wherepatternis rewritten as a columnactor

The columns of the projection operatér are chosen to be

principal components computed from a samplesudiiegions
collected from training images of the object.

A linear projection s chosen because of its computa-

tional eficiency using fst Fourier transforms. \& chose prin-
cipal components as basis functions becausentieimize the

mean square reconstruction error with respect the training set

of object images.

For faces, we project the 16x16 sulim intensitypattern
onto a 12 dimensional space. Belwe shav a set of principal
components displayed as 16x16 arrays.

RFCHFAOENTSS

Overall,ql can tak on ry; = 3,854,120 dferent alues. In fig-
ure 3 we illustrate he the succesge operations of projection,
sparse coding, and quantizatiorieaf the appearance of an
image and the mean squaregbiseconstruction error (MSE).

C. Reconstruc- D. Reconstruc
tion from pro- tion from sparse tion from quan
jection of A.  coded ersion of tized \ersion ol
MSE =165.6 B.MSE =179.2 C. MSE = 295.¢

Figure 3. Image econstruction error.

B. Reconstruc-

A. Original
Image

4.10. Decomposition of appearance and position

We decompose the class conditional probabilities into the
product of two distritutions using the probability chain rule:

p(gl, posjobjech) = p(pos|ql, object) p(ql|objec)

p(gl, pos|objech) = p(pos|ql, objech p(ql|objech

Overall, these principal components capture 98.4% of the total No further reduction is performed oR(ql|objec) and

enegy of their data set.

4.8. Sparse coding of mjection

P(gl|objec) . In the follaving sections we describe the simpli-
fications we use for representing(pos|ql, objec) and
p(pos|ql, objec) . Each of these distritions describes the
positional distrilntion of each subggon intensity pattern, x =

Typically, for ary given pattern, its projection onto some of g1, within the werall region.
the eigemectors will be ngligibly small. Therefore, we apply
sparse coding where for each pattern, we setdgtrepresent
only the iy largest responses among thg eigervectors.

For faces, we do not apply sparse coding toviddial coor- In images of non-objects, there are no stable landmarks
dinates bt instead tagroupsof coordinates. Wfirst arrange  from which we can define egion-based coordinate system.
the 12 coordinates into 9 féfent groups. Coordinates 1 Therefore, we model the positional distiiion as uniform:
through 6 are each assigned theinogroup. The remaining
coordinates are grouped into pairs, 7 & 8,9 & 10, and 11 & 12.
This assignment of groups partially equalizes the amount of
enegy represented by each group. Then for each pattern, we In representing the positional disuiibn for objects,
select the response of the first group and the 5 groups theat hap(pos|q1, objec) , we reduce the resolution of supien posi-
the lagest responses among the remaining 8 groups. tion, by mappingposto a nev variable,pos, over a coarser
resolution.

We also reduce the number of discrete patterns. In doing

0, we first compute an estimate df(ql|objec) from the
Faining data of dce images (see section 5).e \ten select
those R patterns that he the lagest frequengc of occur-
rence, where d3;<< ;. For these alues ofqgl we eplicitly

4.11. Pvsitional representation

1

subs

p(pos|ql, objec) = ; (12)

4.9. Disceetization

We quantize the sparse coded representation into a fini
number of patterns. Ourxpression for the class conditional
probabilities is nev given by:



estimate and smooth the distrilon p(pos|ql, objec) . For Nmagn

the remaining - Nest values of gql, we model P(region|objec) = |‘| P(regioni|objec)
p(pos|ql, objech as a uniform distristion. i=1 (14)
To reduce the number of patterns furtlvee group together Mg o
patterns whose smoothed distiions, p(pos|ql, objec) , are P(region|objec) = [7] P(region’|objec)
similar. We use a simple clustering technique based on VQ [3] i=1
to form these groups of patterns thavénaimilar positional where regioni(u,v) = region(au, av) and 3 scales the
distributions. The final form of this distnittion becomes: region’s resolution and there argJy,scales of resolution.
For face detection, we use thregdbs of resolution gien
P(pos|ql, objec) = P(pos|q2, objec) (13) by, & =1.0, 3 = 0.577, and a= 0.333 as shen belav in fig-

Where the reduction in the number of patternsjBessed  Ure °-

by g2 = Q(ql) which maps the set of.gpatterns to a smaller
set of i, composite patterns, represented byche

For faces, we reduce the positional resolution of gibns
from 48x48 to 16x16. W estimate the spatial distuifion for
Nest= 300,000 of the original 3 = 3.8M patterns. &then
combine these patterns to form a smaller set;9fn20,000
composite patterns. Belo we sheov examples of
P(pos|g2, objec) , for four different patterns @lues ofg2):

= 9

>4

Figure 5. Scales ofesolution used ér face detection

4.14. Final brm of Bayes decision rule

By fully substituting all simplifications of the class-condi-
tional probability functions into equation (5), thevecall
expression for Bayes decision rule becomes:

Figure 4.P(pos|q2, objec for several values ofg2. I o ) ) object
reon’ *<P(q1f|objechP(posf |q2;, objec) > p(objecy (15)
4.12. Intensity normalization ].I:Ili Y P(q1|objec) < P(objec)
T object

We normalize the intensityver the entireregion to have Nsubs

zero mean and uniaviance. Since this normaliz.a'tion Qiscard55_ Estimation

information about the mean andriance of original image

region, it could be thought of as a small simplification to the Equation (15) gies the final xpression for the functional

posterior probability function. form of the likelihood ratio. V@ naw use labelled training
Normalization reduces a kwo form of \ariation in the examples to estimate a specificdilhood ratio function within

appearance of the object. By reducing ttdsiation, we can the structure of this functional form.

obtain a better statistical estimate from a limited pool of train-

ing examples. 5.1. Training set for fr ontal face detection
For faces, we compute the normalization tiognts only . _
from the portion of the input géon that contains thee. V¢ We formed training sets from 99&des images and 1,552

perform this normalization separately on the left and right side0n-face images. @/used the same set of images to train each
of the inputregion, to compensate for situations in which oppo-Of the level of resolution within the model. The magnification

site sides of agice receie unequal amounts of illumination. ~ Of these images is scaled appropriately for each resolution
level.
4.13. Multiresolution representation To partially compensate for the limited number atd

images, we xpanded this training set by generating synthetic

We have only discussed the representation in the abofe  variations of these images.oFeach &ce image we generated
one level of resolution. This lgely limits us to representing 120synthetic ariations in orientation, size, aspect ratio, inten-
visual attrilutes that are the size of the sugboa. To enhance sity, and background scenery
our representation we consider multiplees of resolution.

We form separate submodels of the class conditional prob&-2. Method of estimation
bility functions, P(regioni|objec) and P(regioni|objec), at o o
several scales of resolution and we do not model the statistical e break the estimation of thediihood function into se

dependencies among them. Thus, t@essions for the class eral components. df each scale of resolutignwe first esti-
condition probabilities become: mate P(qll|objec) and p(q1i|objecy directly from fce and



non-face training images, respesiy. The estimates of these
functions are then substituted directly into equation (15¢. W
then estimaté(pos''|q1i, objec) from the fce training images
for nggt Values ofgl. We then desxie P(pos'|g2i, objec) from .
P(posi'|qll, objec) by the procedure outlined in section 4.11. |
P(pos’'|q2l, objec is then substituted into equation (15)igg

us the complete estimate for theelikood ratio function.

There are seeral principles that are common to the estima-
tion of P(qlijobjec), P(qli|objechand P(posi|ql, objech .
Their estimates are computed in closed form. or F
P(qli|object and P(qli|objec), we simply count ha fre-
quently each @&lue ofgl occurs in the training data, using non-
face images andafe images respeatly. = Then for
P(pos’'|ql, objec) ,we count hw frequently each pattern, x =
g1, occurs at each positigos in the image rgion. These are
maximum likelihood estimates and $here unbiased, consis-
tent, and dicient (satisfy CrameRao laver bound)[8].

Figure 6. Our results on a test image om [4]

. Table 3 shws our performance on three portions of the
6. Testing results br fr ontal faces FERET[7] face set consisting of subsets of 1000, 241, and 378
face images at profile angles of @full frontal), 15°, and
22.5°, respectiely. We searched each input image at Ml
of magnification for &ces from size 22x22 to 235x235.

Each rav in table 1 shas our performance for a éfent
value of a detection threshold,(closely related to the thresh-
old A given in equation (1%) on the test set of Sung and Pog-

gio [4] (136 fces) gcluding 3 images of line dnan faces. W& Table 3: Results on FERET[7] images
searched for allaces between the sizes of 18x18 and 338x33
by evaluating each input image at 1¥éés of magnification. Schneiderman & Rowley, Baluja, and
i Kanade Kanade[5]
Table 1: Results on images from [4]
hneid d Data set Detection False Detection False
Schnei erman & Kanade (2 ) Sung and Poggio [4](23 image 5) rate alarms rate alarms
images)
0° set 99.6% 1 98.7% 3
Detection rate| False alarms|| Detection rate | False alarms
15° set 100.0% 0 99.6% 0
91.2% 12 84.6% 13
o 0, 0,
89.0% 3 79.7% 5 22.5° set 99.7% 2 95.5% 3

Similarly, table 2 shais our performance on the combined testMoghaddam and Pentland [6] acréea detection rate of 97%.
sets of Sung and Poggio [4] andvRey, Baluja, and Kanade ©N this test set.dise alarm data &s unreported.

[5](483 faces) ercluding 5 images of line dnan faces. W& . .

searched each input image at 1vels of magnification for /- Face profile detection

faces from size 18x18 to 338x338. The same theory has been tested doefprofile detection.

Table 2: Results on images from [4] and [5]. There are seeral _significant dﬁarenc_es between our z_ilgorithm
for profile detection and our algorithm faace detection. d¥
Schneiderman & Kanade(128 Rowley, Baluja, and Kanade profile detection we do not perform intensity normalization.
images) [5] (130 images) Instead of measuring absolute intensity across the giobre
(i.e. projection on to the first eigesctor for frontal &ces), we
Detection rate| False alarmg| Detection rate| False alarms measure the dérence in intensity between a suion and its
neighboring subiggons. This intensity information is quan-
93.0% 88 92.5% 862 tized into 3 lgels. We then combine this intensity information
90.5% 33 86.6% 79 with result Qf sparse coding. In sparse coqmg we_select the 4
largest projections among the 12 remaining eigetors.
77.0% 1 77.9% 2 Instead of quantizing these selected responses, we simply indi-

cate which group of 4 responseasaselected, the sign of each



individual component, and which component ig)ést. [12] and [13] both reduce the dimensionality of the local

Below we shav some preliminary results acquired for aregions by projection onto the principal components. Recogni-
fixed alue of the detection threshold. The double bar indicateton is then performed by comparing a set templates represent-
the front of the dice: ing the object to a set of imagegrens at the appropriate

; 3 spacing as specified by the object model.

The method of [15] uses a discrete representation and esti-
mation method similar to oursxeept thg apply it to color
rather than local appearancee \thoose a discrete, non-para-
metric, representation of the probability disttion function
because it greatly simplifies the estimation problem. Estima-
tion of multimodal continuous parametric distiilons (e.g.
mixture models, multilayer perceptrons) is usually not possible
in closed form and requires iterati estimation procedures
which are not guaranteed to werge to a global optimum.
Continuous wlued non-parametric methods such as nearest
neighbor and &zen windws require storing all training
examples and»haustve comparison of trainingxamples to
each input. Because such methods requigelamining sets
for even moderately high dimensional spacey twe prohibi-
tive in storage and computational requirements.

References

. 1]. M. Oren, et. al. “Pedestrian Detection Usin et Templates.
8. Appearance-based methodsf recognition [CJ,PR’ '97. pp. 193- 199. ovel P

I[I%]. M. Minsky and S. Bpert.Perceptions: an Intoduction to Compu-

The representation described in this paper combines: IOIIationaI Geometryexpanded ed.) MIT Press. Cambridge, MA, 1988.

statistics of local appearance and position on the object, stattgj A. S. Fandya and R. B. Mac Pattern Recgnition with Neual

tics of Ioc':al appea,ré‘”c? in. the)“d at Iage’ "’? discrete nqn- Networks in C++ CRC Press. Boca Raton, FL. 1996.

parametric probability distriltion, and estimation by counting [4]. K-k Sung, T Poggio. “Example-based Learning dieW-Based

the frequeng of occurrence of a finite set of patterns in theHuman fce Detectioh ACCV ‘95 and Al Memo #1521, 1572, MIT

training data. May other methods share one omotwf these  [5]. H. Rawley, S. Baluja, TKanade. “Neural Netork-Based Ece

concepts, bt none, to our kneledge, hage combined all of Detection: PAMI 20(1), January1998.

them. [6]. B. Moghaddam and A. Pentland. “Probabilistisial Learning
In particular our method dfers significantly from appear- for Object RepresentatiGrPAMI, 19(7). pp. 696 - 710. July1997.

ance-based methods that emphasize global appearsace d/}- P J- Phillips, et. al. “The FERET Bluation Methodology for

local appearance oF example, the methods [4], [9], [10], [11], FAace-Recognition AlgorithmisCVPR "97. pp. 137 - 143. .

model the full &tent of the object at once. In particular the [8]. B. V. K. Vijaya Kumar Lectures on &tern Recognition. In publi-

. . . S . cation.
methods [4], [10], [11] implicitly gie equal weighting o dis- 1 5 casasent and L. Neilger'Classifier and Shift-ariant Auto-
tinctive and non-distinote areas on the object.

) matic Target Recognition Neural Netwks” Neural Networks. vol. 8,
There are seeral methods [5], [6], [12],[13], [14], which pp 1117-1129, 1995.

capture the jointariation of local appearance and position on[10]. H. Murase and S. Naya¥isual Learning and Recognition of
the object. These methods allfdiffrom our approach in that 3D Objects from AppearantéJCV. 14(1), 1995, pp.5-24.
they model the appearance of hand-selected features on tfid]. E. Osuna, R. Freund, FGirosi. “Training Support ¥ctor
object rather than modeling local appearance across the fiflachines: an Application togee Detectio CVPR ‘97. pp.130-136.
extent of the object. [5] captures local appearance through [&2]. J. Krumm. “E}genfeatures for Planar Pose Measuremerdref P
multilayer perceptron architecture with hidden units thatha ET:l’ul]y iccggfd ObéechS(I:g/Pﬁ_ 9“?_\; Pp. 55,;,60- ¢ Mult-Soeculait
localized support gions. Havever, this architecture rigidl - 1 Onta and 1. feuchi. recognition of Mulli-Speculanty
. p'p @. . . ) g y Objects using Eigen-idow. Tech. Rep. CMU-CS-96-105. Feb6.
fixes the spatial relationships of these localized reeefitlds. . o .

. . o [14]. M. Burl and PPerona. “Recognition of Planar Object Classes.
[14] uses a Gaussian distitipn to model the spatiabviation  ~\/pR ‘g6 pp. 223-230
in feature location. Their model of the nareé statistics is [15] M. swain, D. Ballard. “Color Indeing?” 1JCV. 7(1):11-32. 1991.
chosen completely by hand. [6] uses a mixture of Gaussians to
model the statistics of the local features oa@efand does not
model the statistics of nomade appearance. The methods of



