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Abstract 
 

We propose a new Bayesian approach to object-based 
image retrieval with relevance feedback.  Although 
estimating the object posterior probability density from 
few examples seems infeasible, we are able to 
approximate this density by exploiting statistics of the 
image database domain.  Unlike previous approaches that 
assume an arbitrary distribution for the unconditional 
density of the feature vector (the density of the features 
taken over the entire image domain), we learn both the 
structure and the parameters of this density.  These 
density estimates enable us to construct a Bayesian 
classifier.  Using this Bayesian classifier, we perform a 
windowed scan over images for objects of interest and 
employ the user’s feedback on the search results to train a 
second classifier that focuses on eliminating difficult false 
positives. We have incorporated this algorithm into an 
object-based image retrieval system.  We demonstrate the 
effectiveness of our approach with experiments using a set 
of categories from the Corel database. 
 
 
1. Introduction 
 

Content-based image retrieval has been an active area 
of research for several years.  The goal is to create 
systems capable of interactively retrieving images that are 
semantically related to the user’s query from a database.  
Recently, much research has focused on region-based 
techniques that allow the user to specify a particular 
region of an image and request that the system retrieve 
images that contain similar regions.  Our research focuses 
on object-based image retrieval, in which searches are 
based on structured, physical objects, such as stop signs or 
cars, rather than unstructured texture or color patches.  
The user specifies an object by providing a small set of 
example images of a particular object to the system, and 
the system retrieves all images that contain the specified 
object.  The key challenge in object-based image retrieval  
 

 

 
Figure 1. Partial results of a search for stop signs in a 
personal photo collection of over 1000 images including 57 
images containing stop signs.  The system was trained on 
a total of 12 stop sign images after 1 round of feedback.  
Blue rectangles identify subimages with the highest 
estimated posterior probability for stop signs. 
 
 
is to create a system that can learn the target concept on-
line from a small set of examples provided by the user.  

Most existing region or object-based systems rely on 
segmentation [2, 8, 13, 25, 26] or require that the region of 
interest occupy a large portion of the entire image [22].  
This facilitates fast retrieval but causes these systems to 
fail when accurate segmentation is not possible [3] or 
when the object occupies a small portion of the database 
image.  Additionally, most existing techniques 
discriminate based on a histogram or clustering of color or 
texture features computed over the entire region [15].  
This assumes within-region location-independence of the 
features (i.e., that regions are homogeneous blobs of color 



and texture).  The assumption of location-independence 
within the region enables fairly accurate estimation of the 
feature distributions from few examples but prevents these 
systems from achieving high performance when the 
texture or color contained in the region requires location 
information to be discriminative (figure 2). 

 
 

           
Figure 2. These subimages are indistinguishable using 
location-insensitive features, such as color histograms.  
Our technique encodes position and value and learns 
limited dependencies among features. 
 
 

We present a system that performs a windowed search 
over location and scale for each image in the database 
(figure 3).  Images are presented to the user based on their 
highest ranking subimages.  This approach allows the 
retrieval of an image based on the presence of objects that 
may occupy a small portion (e.g., less than 1% in area) of 
the entire image.  Also, we do not assume that a feature’s 
value is independent of location within the window.  This 
allows our system to retrieve images based on objects 
composed of colors and textures that are distinctive only 
when location within the window is considered, as is 
common with many man-made objects (figure 2).  
 

 
Figure 3.  Each database image is scanned over location 
and scale at fixed increments and ranked based on the 
highest ranking subimage. 
 
 

One important resource available to any image retrieval 
system is the user.  Many image retrieval systems benefit 
from user feedback on results of previous searches.  In this 
way, the user provides additional positive and negative 
examples that can help direct the search.  While negative 
examples have been shown to be essential in improving 
retrieval performance [9, 11], the problem of how to best 
acquire negative examples remains unsolved.  Systems 
that make use of negative examples typically require the 
user to present or label examples explicitly [8, 19] or 
randomly select a small number of images from the 
database to use as negative examples [20].  Furthermore, 
once the system acquires negative examples, the question 
of how to use the negative examples to improve 

images that are similar to the negative examples [11, 19] 
suffers from poor generalization and high sensitivity to 
labeling errors.   

The key contri
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Object-based image retrieval systems retrieve images 
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to object-based retrieval involving a brute force windowed 

ew Bayesian method for object-based image retrieval 
that exploits the statistics of the image domain of the 
database.  We formulate our Bayesian classifier as a 
threshold on the posterior probability of the object class 
and express the posterior in terms of the unconditional 
density and the density of the feature vector conditioned 
on the object class.  The unconditional density, which 
represents the general appearance of subimages within the 
database, is estimated offline using hundreds of thousands 
of samples drawn from the entire database image domain.  
Thus, estimating the unconditional density provides a 
superior alternative to attempting to model the negative or 
non-object class using a small set of subimages labeled by 
the user.  We use the domain samples to learn the spatial 
dependencies that exist within the subimages in that 
domain, providing the probabilistic structure for the 
unconditional density. Estimation of the object class 
conditional density remains problematic due to the small 
number of positive examples provided by the user.  Our 
system, however, acquires useful estimates by employing 
its knowledge of the statistical structure of images and by 
using the unconditional density as a strong prior to avoid 
excessive overfitting.   

The Bayesian classi
ject) or negative (non-object) and ranks positive 

subimages according to the posterior probability.  This 
classifier is able to correctly classify an overwhelming 
majority of the subimages in the database and provides the 
user with a compact set of subimages that are similar in 
appearance to the object of interest and can be used for 
relevance feedback.  The user’s positive and negative 
feedback on the search results is used to train a second 
Bayesian classifier that focuses on eliminating difficult 
false positives.  This second classifier needs to consider 
only subimages labeled as positive by the first classifier.   
 
2

 

m a database based on the appearance of physical 
objects in those images.  These objects can be elephants, 
stop signs, helicopters, buildings, faces, or any other 
object that the user wishes to find.  One common way to 
search for objects in images is to first segment the images 
in the database and then compare each segmented region 
against a region in some query image presented by the 
user [1, 2, 8, 25, 26].  Such image retrieval systems are 
generally successful for objects that can be easily 
separated from the background and that have distinctive 
colors or textures.  Our system follows a second approach 
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Figure 4.  Overview of our two-stage classifier.  An exhaustive windowed scan over scale and position generates a se
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subimages.  The first stage classifies and ranks subimages using the posterior probability, computed from the estimated 
unconditional density and the object class conditional density.  The second stage, trained using relevance feedback, 
reduces false positives by classifying subimages that are labeled as positive by the first stage.  If a subimage passes both 
stages, the image is returned to the user.   
 

ubimage passes both 
stages, the image is returned to the user.   
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approach is common in the area of object detection [14, 
16, 24] and requires the classification of tens of thousands 
of subimages per database image.  The windowed scan 
removes the need for potentially unreliable segmentation 
but requires extremely accurate classification at the 
subimage level and is more computationally expensive.   

To specify a query, the user first collects a few image
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To specify a query, the user first collects a few image
t contain the object of interest and highlights each 

instance of the object in each image.  These initial images 
can be found using a text-based search or through other 
means.  The image retrieval system searches each 
database image over location and scale (figure 3).  For 
each image, a window is moved across the image and the 
subimage contained in each window is classified as 
belonging to the object (positive) class or the non-object 
(negative) class.  After all locations in the original scale 
have been examined, the image is down-sampled, and 
subimages within the windows at all locations of the 
down-sampled image are classified.  This search over 
location and scale continues until the down-sampled 
image is smaller than the fixed window size specified by 
the user.   

For the 
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For the 
ailable, a Bayesian classifier, described further in 

section 3, is used to classify each subimage.  The system 
classifies a typical 20x20 subimage in less than 20 
microseconds.  If any subimages are classified as positive, 
the entire image is returned to the user with the positive 
regions highlighted.  The user can provide feedback by 
highlighting additional positive regions or identifying 
incorrectly labeled subimages to serve as negative 
examples in subsequent stages.  Once the user has 
provided negative examples, a second classification stage 
is trained online.  This classifier, detailed in section 4, 
discriminates between subimages that pass the first 
classification stage.  These subimages superficially 
resemble the object of interest but can often be discarded 
after closer scrutiny. 
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is greater than some threshold.  Here, F not
feature vector extracted from that subimage, and C+ 

are perfectly estimated, the Bayesian 
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sian Classification Features 

ive class or an 
estim te of the unconditional density can be learned, a 
rep

denotes the positive (object) class.  The class prior P(C+) 
is an unknown constant that can be folded into the 
threshold.  The unconditional density P(FI) is the 
probability of the feature vector in the domain of the 
image database. 

When the true structure of the densities is modeled and 
the parameters 

ssifier is optimal; in practice, both are intractable, even 
with large training sets.  When only a few examples are 
provided, the problem seems impossible.  We show, 
however, that by using the statistics of the database image 
domain and assuming that dependencies within the feature 
vector are limited, we can obtain useful estimates of both 
the structure and the parameters of the underlying 
densities. 

 
3.1. Baye

 
Before a probabilistic model for the posit

a
resentation for the subimage must be specified.  We 

represent each subimage in the HSV color space, with the 
following location-dependent features: (1) half-resolution 
hue intensities, (2) half-resolution saturation intensities, 
and (3) full-resolution symmetric 5-3 two-level wavelet 
coefficients of the value band.  For instance, for a 20x20 
window size, there would be 100 hue features, 100 
saturation features, and 400 wavelet coefficients.  We use 
lower resolution hue and saturation coefficients because 
hue and saturation tend to vary slowly by location, while 
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higher resolution for the wavelet coefficients is necessary 
to capture sharp edges and object boundaries.   

 
3.2. Modeling the Unconditional Density 

 
We wish to model the unconditional density for our 

data se domain.  For instance, if our database is 
co

sands of subimages 
ex

,  
 

where fi is the ith feature in the feature vector FI. T
high-dimensional density, however, cannot be well-

                (3) 

where fi1 is the i  feature and fij is the j  mo
feature to fi1, as measured by mutual information.  This 
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or the positive class 

give only a few training examples.  The number of 
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We also use a strong prior to reduce overfitting in the 
estimates of the D-dimensional densities.  The s
choice of a prior would be a uniform prior, but this choice 
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ba
mposed of images showing natural scenes, the 

unconditional density should be an estimate of the 
probability of the occurrence of the features given that the 
subimage is generated by natural scenery.  Other examples 
of possible image domains are Venus SAR images, aerial 
photographs, and the general optical image domain.  Each 
of these domains have distinct characteristics that can be 
learned using an appropriate model.    

In an offline process, we estimate the unconditional 
density from a set of hundreds of thou

tracted from a sample of images representative of the 
database domain.  These images may be a subset of the 
database images themselves or merely a set of images that 
are similar to those contained in the database.  In general, 
the unconditional density is given by  
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estimated, and simplifying assumptions concerning the 
parameterization of the model must be made.  Rather than 
assuming a fixed family for the distribution, such as a 
mixture of Gaussians, which often leads to diminished 
performance due to severe modeling errors, we make 
assumptions of limited dependence among the features 
and attempt to represent the densities for dependent 
features non-parametrically.  Experiments support the 
assumption of sparse dependence for many object classes 
[17].  Dependencies among features can be estimated by 
measuring the mutual information of pairs of features.  
We limit the dimensionality of any one group of 
dependent features to D, in order to enable a reasonably 
accurate estimate of the joint density for each set of 
dependent features.  Our estimate of the unconditional 
density function is then written as: 
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model is known as the semi-naïve Bayes model [10]. To 
estimate the joint density functions for each group of 
dependent features, we first quantize each of the features 
to a fixed number of values.  Then, using the subimage 
samples representative of the database domain, we 
compute D-dimensional histograms for each group of 
dependent features.  

3.3. Modeling the Positive Class 
 

probability density function estimate f
n 

rameters in the non-parametric model described in the 
above section grows exponentially with the 
dimensionality D of the density functions being estimated.  
To avoid excessive overfitting, we employ three 
techniques: the use of synthetic examples, the assumption 
of sparse dependence among the features, and the use of a 
strong prior for the feature values.   

For each user-provided positive training example, we 
generate a set of synthetic examples by translating and 
scaling each original training examp

se synthetic examples gives our model a limited 
translation and scale invariance.  Even using synthetic 
examples, however, an accurate probability model cannot 
be learned without making some strong assumptions.  
Therefore, we adopt the probabilistic model described in 
equation 3 and set the dimensionality D to a small value 
(D equals 1 or 2 in our experiments).   Although 
dependencies within the feature vector cannot be reliably 
found using the few available positive examples, we infer 
that the dependencies found using the domain samples 
also exist for the object of interest.  Using the notation 
described earlier, our estimate of the object class 
conditional density function is written as: 
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leads to poor results, since the distribution of a wavelet 
coefficient is far from uniform and since the joint density 
of two or more dependent features is also highly non-
uniform.  Instead, we use the estimated unconditional 
density as a prior, greatly improving results. 

Once the value of D has been decided, either 
empirically or through cross-validation, the process of 
estimating the probability density function fo

ss can be performed online in a few seconds or less.  
First, the synthetic examples are generated by applying 
translation and scaling transformations to the original 
examples.  Next, the features are quantized using the same 
partitioning used for estimating the unconditional density.  
The D-dimensional densities of each group of dependent 
features are then estimated by computing histograms using 
the synthetic training examples.   Finally, we incorporate a 
prior by adding a fraction of probability mass to each 
histogram bin proportionate to the estimate of the 
unconditional density.   

 



4. Relevance Feedback 
 

The first stage Bayesian classifier described in section 
3 is able to quickly eliminate the vast majority (more than 

e negative subimages while 
mai ing a near-zero false negative rate.  However, 
sin
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o evaluate the performance of our system, we 
per rmed experiments using ten categories from the 
Corel image set: Arabian horses, auto racing, elephants, 

wls, polar bears, windsurfing (and 
ilboarding), whitetail deer, and wolves.  We chose these 

ca

cient resolution.  For most categories, no or 
few

 were returned from the initial query, we 
sim

he segmented 
reg

                                                

97% in our experiments) of th
ntain

ce each image contains tens or hundreds of thousands 
of subimages, many false positives may remain after the 
first stage.  To further improve results, we train a second-
stage classifier using the user feedback from the first 
stage.  We present images that pass the first stage 
classifier to the user, ranked by posterior probability (most 
positive first), according to the output of the first stage 
Bayesian classifier.  When the user labels an image as 
negative, all subimages within that image that passed the 
first-stage classifier can serve as negative examples for the 
second-stage classifier, and any positive regions identified 
by the user can be used as positive examples for both 
classifiers.   

The first classifier has the difficult task of 
discriminating between the set of subimages that have the 
appearance of the user-specified object and all other 
subimages in

es not need to consider the large portion of the image 
space that is classified as negative by the first stage 
classifier but encounters the challenge of discriminating 
between subimages that have all been deemed similar by 
the first stage classifier.  Although it is difficult to 
discriminate among the subimages that pass the first stage 
in the original feature space, the same subimages may be 
more easily discriminated in a different feature space. 

For our second stage classifier, therefore, we represent 
the subimages in the feature space of RGB intensities and 
form a second Bayesian classifier based on the user-
labeled positive and negative subimages.  We model 

sses: the object (positive) class and the class of all non-
object (negative) subimages that pass the first classifier.  
The models of these classes are similar to the models 
described in section 3 except that complete independence 
(D=1) is assumed, since dependencies among features 
cannot be accurately measured from the small set of 
labeled subimages.  As described in section 3, each feature 
is quantized, and, for each class, the density is estimated 
by computing a histogram using the set of user-labeled 
positive and negative subimages.  Positive user feedback 
is also used to improve the density estimate of the object 
class for the first stage classifier.   

In testing, all subimages that pass the first stage 
classifier are then classified by the second stage classifier.  
Images that contain subimages that pass both classifiers 
are then returned to the user ranke

sterior probabilities estimated by each classifier. 
 
 

5. Experiments 
 

T
fo

helicopters, lions, o
sa

tegories because each category represents a distinct 
object rather than a scene, and because the similar 
backgrounds of many of the categories makes retrieval 
based on global features difficult.  The actual objects for 
which we searched were horse heads, race cars, elephants, 
helicopters, lion heads, owl heads, polar bear heads, 
windsurfing sails, deer heads, and wolf heads.  We 
focused our search on the head for many of the animals 
since the entire body is often not present and since our 
model is not well-suited to capturing the variations in 
appearance due to animal body articulation.  We also 
specified a window size of appropriate resolution, such 
that the objects were discernable to a human at the chosen 
resolution.   

Since some of the Corel images in the original 
categories do not contain the object of interest (such as the 
image of the warning sign in the polar bear category), we 
removed those images that contain no complete objects of 
interest at suffi

 images were removed.  To maintain the same number 
of images per object class, we set the number of images 
for each object class to 80, using the first 80 valid images 
per category.1  In summary, our entire test database was 
composed of 800 images containing 10 different objects 
of interest.   

We labeled the locations of objects in each image.  To 
test a particular object category, we used five randomly 
chosen instances of that category as a query and searched 
the remainder of the data set for instances of the object.  
After images

ulated user feedback by automatically labeling the top 
twenty retrieved images based on the ground truth.  For 
each subsequent round of feedback the top twenty images 
not already used for training were used for feedback.  We 
repeated this test five times per category, with new 
randomly drawn instances used as the initial query each 
time, and recorded the average precision-recall curve for 
each category as a measure of performance. 

As a basis for comparison, we also performed searches 
using Blobworld [2] on the same data set.  The approach 
used by Blobworld is the more typical region-based 
approach of segmenting images and retrieving new images 
by performing a nearest-neighbor search at t

ion level.  We labeled the segmented blobs for the 
entire data set and recorded the average precision-recall 

 
1 The complete list of images used in our experiments is 
available at http://www.cs.cmu.edu/~dhoiem 



curve for each category.  We set the feature weights to the 
weights that produced the best average performance in the 
ten object categories (0.5 for color, 1.0 for texture).  In 
evaluating the performance of both systems, we measured 
precision-recall at the image level, rather than the region 
level.  This better reflects the experience of the user, who 
views results at the image level, and avoids ambiguities 
concerning whether a subimage that partially contains the 
object of interest is judged as positive. 

 
5.1. Implementation Details 

 
We used approximately 260,000 subimages randomly 

drawn from 1100 Corel images to learn the unconditional 
de ity.  This offline process took about one hour.  We 

 for discretizing feature 
val es from the training set using the K-means algorithm 
[4]
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er 320x240 image is about 
.3 seconds using a 20x20 search window size with a 

Pe

ch 

ns
computed the partition function

u
, initialized with equal probability mass partitions.  In 

experiments with the dimensionality D set to 1, we set the 
number of bins per dimension for the hue, saturation, and 
wavelet features to 20, 10, and 10, respectively.  For 
experiments with D set to 2, these were set to 10, 5, and 5, 
respectively.  We used the entire feature set described in 
section 3.1 for testing.  We scanned location and scale 
using an increment of 3 pixels and a scale factor of 1.15. 
 
5.2. Computational Time 
 

Online training time typically requires less than a few 
seconds and grows linearly with the number of training
im
preprocessed, the testing time p
0

ntium 4 3.2 GHz machine.  The time grows linearly 
with the number of features used in the Bayesian 
classification and can be halved with marginal loss in 
performance by removing the level 1 wavelet coefficients 
from the feature set.  The granularity of the windowed 
scan also directly affects computational time; coarser 
scans could be used to increase speed with slight loss in 
precision.  By comparison, Blobworld requires about 1 
minute to evaluate an unprocessed 320x240 image but less 
than one millisecond to evaluate preprocessed images.  
Our system’s fast retrieval on raw images makes it ideal 
for applications involving highly dynamic databases, 
including many scientific and medical imaging 
applications and live-feed applications.  For applications 
requiring fast retrieval on large static databases, sear
time can be reduced by preprocessing the images and by 
first focusing the search with an index-based global or 
region-based search.  Additionally, our technique is well- 
suited to deployment on active-disk infrastructures [7] for 
fast searching of non-indexed data. 
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Figure 5. The average precision-recall curve for our 
system using dimensionality D=2 and assuming that 
features of the same type within a 1/3x1/3 section of th

We present the precision-recall curves for the initial 
ided for training) and the 

first ound of feedback (20 top images labeled per round) 
in 

ata set is given in table 1.  As a single-point 
me

e 
search window are identically distributed.  Feedback 0 
denotes results after the user has presented only positive 
images to the system (initial search).  Feedback 1 denotes 
results after the first round of feedback in which the user 
labels additional positive and negative images. 

 
 

5.3. Retrieval Performance 
 

search (five positive images prov
 r

figure 5.  Although the first round of feedback leads to 
large performance gains, we observed little additional 
improvement after subsequent feedback rounds.  This is 
evidence that the density functions have been learned 
sufficiently well, under the model’s restrictions, in the 
first two rounds.  Further performance gains may be 
possible if more complex models (e.g., higher feature 
dimensionality or more partitions) are employed in later 
feedback rounds.  Preliminary experiments support this 
hypothesis.   

A comparison of performance after the first round of 
feedback with the performance of the Blobworld system 
on the same d

asure of performance, we use the P(30) metric, which 
is the average precision for the top thirty images returned 
to the user.  Note that our system outperforms Blobworld 
by 12% on average and has significantly higher precision 
in nearly every object category.  Our system especially 
tends to outperform Blobworld when an object is difficult 
to segment from the image (e.g., whitetail deer) or when 
location-insensitive color and texture features are not 
discriminative (e.g., auto racing and windsurfing).    

 
 



Table 1. Comparison of P(30), average precision after 30 images retrieved, of Blobworld and our Bayesian system after 
ne round of feedback for ten object classes from the Corel data set.  The results for the Bayesian system are after one 

er Wolves 

o
round of feedback with dimensionality D=2 and assuming that features of the same type within a 1/3x1/3 section of the 
search window are identically distributed.  Statistically significant performance differences are in bold.  
 

 
Average Arabian 

Horses 
Auto 

Racing Elephants Heli-
copters Lions Owls Polar 

Bears 
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surfing 

Whitetail 
De

Blobworld 38% 81% 41% 39% 14% 26% 72% 23% 30% 29% 30% 

Bayesian 50% 53% 26% 96% 21% 77% 72% 19% 41% 51% 45% 
 

 

6. Discussion 
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alization of the features, and the partitioning function.  
We found that setting a dimensionality of D=1 resulted in 
slightly higher performance for some object classes 
characterized by homogenous color and texture (e.g., 
polar bears), but setting D=2 resulted in much higher 
performance for object classes characterized by shape 
(e.g., auto racing and windsurfing).  After one round of 
feedback, the average P(30) score for all object categories 
was 46% for D=1, compared to 50% for D=2.   

Since we use the domain training samples to compute 
the object class prior, the partitioning function

conditional density, the appropriateness of the samples 
used to represent the domain greatly affects the system’s 
retrieval performance.  For instance, in an experiment 
drawing the domain samples from a set of personal 
photographs composed primarily of man-made scenes, the 
average precision after 30 retrieved images was 37%, 
versus the 50% when using the set of Corel images for 
obtaining the domain samples.  The drop in precision 
when using the personal photos to estimate the 
unconditional density reflects that the personal photos are 
not representative of the experimental data set.   

We also experimentally verified the importance of 
using the unconditional density as a strong prio

ject class, rather than using a uniform prior or a weak 
prior that has little effect on the posterior distribution.  
The average P(30) scores resulting from using a strong 
uniform prior and using a weak prior were 31% and 41%, 
respectively.  Use of the unconditional density as a strong 
prior improves performance (50%) because it reduces the 
variance of the density estimates without introducing 
excessive bias.  The uniform prior introduces high bias, 
while the weak prior does little to reduce variance.   

The use of location-insensitive features that assume all 
features of a given type are identically distributed with

 window allows high accuracy in the estimation of the 
features’ probability densities but loses discriminative 
information by ignoring location.  Fully local features that 
assume that any two features at different locations are not 
identically distributed retain spatial information at the cost 
of accuracy in density estimation.  Intuitively, when only a 

should result in the best performance.  We verified this 
intuition experimentally, finding that dividing the image 
into 3x3 sections, with all features of a given type being 
identically distributed within that section, resulted in 
better P(30) performance (50%) than using either location-
insensitive (43%) features or fully local features (44%). 

We also performed extensive experiments using a 
support vector machine (SVM) [21] classifier trained on 
the positive and negative examples as a second stage.  We 
found, however, that the SVM classifier was not we

ited to learning the target concept from the small 
number of available training samples and was much more 
computationally expensive.   
 
7. Conclusions 
 

This paper introduces a n
im
features in the domai
o

ve demonstrated that using a Bayesian classifier based 
on local features in a windowed search yields superior 
performance to the popular approach of segmentation and 
nearest-neighbor based retrieval.  In our experiments, we 
found the use of location-sensitive features, the learning of 
dependence structures, and the accuracy of the 
unconditional density estimate to be important factors in 
the overall performance of the image retrieval system.   

Further research could yield even greater performance 
gains.  Some basic methods for extracting a feature set 
from domain samples [18] and for improving probability 
density estimates of one class based on previous

ained estimates of other classes [6] have already been 
developed.  Extensions of these methods could be easily 
applied to this Bayesian system to improve performance.  
Additionally, the development of techniques for 
automatically adjusting the complexity of the Bayesian 
classifier as the number of training examples grows would 
allow the classifier to approach the Bayesian optimal 
classifier as more examples become available.  The data-
driven approach described in this paper is also suitable for 
many domains other than optical images, such as medical 
imaging and synthetic aperture radar imaging.    
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