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1 Introduction
Prevalence of new attacks or attack variants presents an interesting challenge for autonomic

cyber-defense: how does the autonomic defense mechanism learn from previous failures, acquiring
immunity with experience, and do so as rapidly as possible. In the limiting case, only a single a
single observed failure may be available for learning.

In this paper, we describe an approach to the problem of learning rapidly from failures through a
process of controlled experimentation. To sidestep the limited observations available to the learner,
experimentation takes place using simulation and/or emulation of the defended systems.

We give two examples of this approach. The first, Cortex, is a system that autonomously
defends a critical service, in this case a MySQL database. Cortex operating without direct human
intervention, can correctly generalize from a single novel attack, and immunize the database service
from a wide range of similar attacks.

The second example, Cognitive Support for Intelligent Survivability Management, CSISM here-
after, is a reasoning system that can mount a knowledge-based defense of an entire network of
defended machines. One of the learning components for CSISM, currently under development,
also uses learning by experimentation to characterize the attack and evaluate alternative defensive
tactics.

In both cases, machine learning techniques add a level of intelligence by deriving or identifying
information that is key to effective defense.

2 Cortex: Learning at the Service Level
The Cortex architecture consists of a defense planning module coupled with a rapid response

module. The system uses a pool of internally identical “taste testers” that vet all service requests
from clients. Once a service request has passed a taster with no ill effects, the service is replicated
to the master and other tasters. Failures observed in a taste tester trigger defensive actions from
the response module, and also stimulate a learning subsystem to analyze the attack and enhance
defenses.

The goal of the Cortex learning system is to autonomously formulate the most general defense
from novel observed problems. While it is comparatively easy to circumvent a precisely identical
attack or mishap, this protection is inadequate given the threat of an intelligent attacker who is
ready to disguise an exploit in various ways. True generalization requires identifying the conditions
that are necessary and sufficient for a problem to be reproduced, and translating these to the
most general defense. To achieve this goal, the learning approach in Cortex combines aspects of
anomaly detection and learning by experimentation [2, 4, 7, 8].

The sequence of operations given in Figure 1. The first step is to differentiate between normal
and abnormal traffic. Operationally, abnormal traffic is that which leads to an error condition in
the service, as determined by the service itself or by an external watchdog. Normal traffic, i.e. not
associated with errors, contributes to a model of service operation that is used to detect anomalies.

Abnormal traffic triggers an examination of the transaction that led to the error. Experiments
with Cortex used various versions of the MySQL database as the defended service. The multi-



Figure 1: The learner builds a model of normal traffic to measure suspicion scores.

dimensional space of possible queries and commands in the MySQL protocol provides the context
for assessing traffic. Potentially, any term in the query may hove induced the error, thus the learner
assesses the suspiciousness of each term by comparing them to the model of normal traffic, and
sorts these suspicious elements for experimentation.

The second step is to generalize from an observed instance of a failure to its most general form.
To do this, the learner autonomously experiments with each suspicious element to determine which
factors underly the problem, and what are the boundaries. The taster pool provides a laboratory
for the learner to safely conduct experiments on the susceptible population. Each taster is a fully
operational version of the service, but isolated from the rest of the on-line system. The learner is
allowed to use one or more tasters for its experiments as conditions permit. The final step is to
generate blocking rules for the newly mapped problem. Blocking rules are dynamically loaded into
the proxy as soon as the rule has been validated, incrementally generalizing the attack so as to
avoid blocking valid traffic.

3 CSISM: Learning Multistage Attacks
CSISM is an effort to build an autonomous defender that can take the place of a human

network operations team against a sophisticated attacker. Its 45 host test bed is a simulation of a
well-armored version of the Joint Battlespace Infosphere system (DPASA) that was originally built
under the DARPA OASIS program. A two-week red team exercise in that program examined the
survivability of this system in an operational environment, and demonstrated that it is possible to
create a Information System that can survive against sustained attacks by a sophisticated adversary.
However, that exercise included an expert team of live defenders. CSISM will attempt to defend
against a similar range of attacks without human intervention.

Experimental learning is one approach being studied in CSISM. CSISM may be construed as
a control system consisting of an inner rapid-response controller and an outer cognitive controller.
The learning component (“learner”) receives a set of observations from the control system and
generates a set of detection and defense rules that the controller can use for future decisions. As
sketched in Figure 2, the controller collects a set of sensor observations that identifiably contain
an attack (observations 1-6). The Attack Theory Experimenter maps these observations to actions
(A-D) whenever possible. Using the sandbox, the ATE then varies the initial conditions, reorders
these actions, and varies the actions to identify which subsets, orders, and varitions are the key
components of the attack. These viable theories are given to the Defense Measures Experimenter
to explore possible defense strategies. The results are turned into detection rules and defense
strategies.

The key challenge in learning generalized multi-step and distributed attacks is to recognize
which observations indicate the necessary and sufficient elements of an attack (credit assignment).
The minimal subset of actions is the smallest sequence, extracted from the complete list, that
cause the attack to succeed. One sequence of observations may have more than one minimal
subset, for example an attack with two high level goals. In practice, these key elements will always
be surrounded by incidental observations that are either side effects of normal operations, and
probabilistic actions that may succeed with some probability or improve the overall success of the
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Figure 2: CSISM Learner Architecture

attack. Chaff actions may be explicitly added by an attacker to divert the defender.
In a practical system, the interesting issue is to generate the most efficient sequence of exper-

iments. The complete set of theories is all permutations of all members of the powerset of the
observations; for an observation sequence of n actions, there are

∑n
i=1 nPr possible valid subse-

quences. For a short sequence of n = 10, that means approximately 10 million possible subsequences
to test (not including variations on initial conditions). Thus an effective learner must have good
heuristics that explore high quality theories early. The current prototype uses heuristics that favor
shorter attacks and give credence to step ordering and interaction effects. Hypotheses for testing
are generated incrementally as with Cortex, and results can be harvested as needed.

4 Discussion
The learning approach we have described enhances an autonomic cyber-defense system by giving

it the ability to autonomously learn for defenses problems not fully anticipated by its designers.
The Cortex learner can successfully learn to block attacks on a defended service from single
observations. Moreover, by generalizing from one known attack, it can learn to block an entire
class of closely related attacks. The CSISM learner attempts to translate this capability to multi-
stage attacks over a larger system.

Several techniques of automatic learning are employed. It incorporates expert knowledge in
that the abstract classes of axes of vulnerability are designed by experts. It uses experiments to
determine culprits and boundary conditions, generalizing as much as possible from each attack
instance. This can be seen as a species of query learning of concepts [1], in which a learner can pose
membership queries to an “oracle,” learning whether a proposed concept is actually a valid attack
(or defense). The oracle in each case is a stand-in for the real system. In the case of Cortex, a
sacrificial taste tester is a full fidelity clone of the defended service. In the case of CSISM, the
learner employs a sandbox simulation of the network.

Finally, these learners employ anytime algorithms [3, 5] that learn in the background while the
rest of the system continues to operate. The learned defensive rules improve with experimentation
time. The technique appears to be relevant to any domain where experimentation can help improve
the models of the system. While designed as part of a larger system for on-line defense, this learning
approach may have off-line applications as well, e.g. the analysis of attacks on honey pots, as a
“red team” analysis toolkit, or an adjunct to systems for fuzzing [6] or vulnerability discovery.
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