

Possible queries

Marginally independent random variables

- Sets of variables \mathbf{X}, \mathbf{Y}
- X is independent of Y if $\quad \forall x \in \operatorname{Val}(x), y \in V_{a}(y)$ Pers $_{5}^{2}(\mathbf{X}=\mathbf{x} \perp \mathbf{Y}=\mathbf{y}), 2 \mathrm{Val}(\mathbf{X}), \mathbf{y} \mathbf{2} \mathrm{Val}(\mathbf{Y})$
$P(X=x, Y=y)=P(X=x) \cdot P(Y=y)$
- Shorthand: $\quad P(X=x \mid y=y)=P(X=x)$

Marginal independence: $(\mathbf{X} \perp \mathbf{Y})$

- Proposition: P statisfies $(\mathbf{X} \perp \mathbf{Y})$ if and only if $P(\mathbf{X}, \mathbf{Y})=P(\mathbf{X}) P(\mathbf{Y})$
$P(X \mid Y)=P(X)$

Conditional independence

- Flu and Headache are not (marginally) independent
- Flu and Headache are independent given Sinus infection
- More Generally:

Conditionally independent random

variables

■ Sets of variables $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$

- X is independent of Y given Z if
$\square P^{2}(\mathbf{X}=\mathbf{x} \perp \mathbf{Y}=\mathbf{y} \mid \mathbf{Z}=\mathbf{z}), 8 \mathbf{x} \mathbf{2 V a l}(\mathbf{X}), \mathbf{y} \mathbf{2 V a l}(\mathbf{Y}), \mathbf{z 2 V a l}(\mathbf{Z})$
- Shorthand:

Conditional independence: $P^{2}(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
\square For $P^{2}(\mathbf{X} \perp \mathbf{Y} \mid ;)$, write $\mathbf{P}^{2}(\mathbf{X} \perp \mathbf{Y})$

- Proposition: P statisfies $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ if and only if
$\square P(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z})=P(\mathbf{X} \mid \mathbf{Z}) P(\mathbf{Y} \mid \mathbf{Z})$

Properties of independence

- Symmetry:
$\square(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}) \Rightarrow(\mathbf{Y} \perp \mathbf{X} \mid \mathbf{Z})$
- Decomposition:
$\square(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z}) \Rightarrow(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
■ Weak union:
$\square(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z}) \Rightarrow(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}, \mathbf{W})$
- Contraction:
$\square \mathbf{X} \perp \mathbf{W} \mid \mathbf{Y}, \mathbf{Z}) \&(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}) \Rightarrow(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z})$
- Intersection:
$\square(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{W}, \mathbf{Z}) \&(\mathbf{X} \perp \mathbf{W} \mid \mathbf{Y}, \mathbf{Z}) \Rightarrow(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z})$
\square Only for positive distributions!
$\square P(\alpha)>0,8 \alpha, \alpha \neq ;$

The chain rule of probabilities

- $P(A, B)=P(A) P(B \mid A)$

■ More generally:
$\square \mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\mathrm{P}\left(\mathrm{X}_{1}\right) \phi \mathrm{P}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right) \phi \ldots \phi \mathrm{P}\left(\mathrm{X}_{\mathrm{n}} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}-1}\right)$

Chain rule \& Joint distribution

The Representation Theorem Joint Distribution to BN

Encodes independence assumptions

If conditional independencies in BN are subset of conditional independencies in P

A general Bayes net

■ Set of random variables

- Directed acyclic graph
\square Encodes independence assumptions

■ CPTs

- Joint distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P} \mathbf{a}_{X_{i}}\right)
$$

How many parameters in a BN?

■ Discrete variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$

- Graph
\square Defines parents of $X_{i}, \mathrm{~Pa}_{\mathrm{X}_{\mathrm{i}}}$ - CPTs - $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$

Real Bayesian networks applications

- Diagnosis of lymph node disease
- Speech recognition
- Microsoft office and Windows
\square http://www.research.microsoft.com/research/dtg/
- Study Human genome
- Robot mapping
- Robots to identify meteorites to study
- Modeling fMRI data
- Anomaly detection
- Fault dianosis
- Modeling sensor network data

Independencies encoded in BN

- We said: All you need is the local Markov assumption
$\square\left(\mathrm{X}_{\mathrm{i}} \perp\right.$ NonDescendants $\left._{\mathrm{x}_{\mathrm{i}}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$
- But then we talked about other (in)dependencies
\square e.g., explaining away
- What are the independencies encoded by a BN?

Only assumption is local Markov
But many others can be derived using the algebra of conditional independencies!!!

An active trail - Example

When are A and H independent?

Active trails formalized

- A path $X_{1}-X_{2}-\cdots-X_{k}$ is an active trail when variables $\mathbf{O} \subseteq\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$ are observed if for each consecutive triplet in the trail:
$\square X_{i-1} \rightarrow X_{i} \rightarrow X_{i+1}$, and X_{i} is not observed ($X_{i} \notin \mathbf{O}$)
$\square \mathrm{X}_{\mathrm{i}-1} \leftarrow \mathrm{X}_{\mathrm{i}} \leftarrow \mathrm{X}_{\mathrm{i}+1}$, and X_{i} is not observed ($\mathrm{X}_{\mathrm{i}} \notin \mathbf{O}$)
$\square \mathrm{X}_{\mathrm{i}-1} \leftarrow \mathrm{X}_{\mathrm{i}} \rightarrow \mathrm{X}_{\mathrm{i}+1}$, and X_{i} is not observed ($\mathrm{X}_{\mathrm{i}} \notin \mathbf{O}$)
$\square X_{i-1} \rightarrow X_{i} \leftarrow X_{i+1}$, and X_{i} is observed ($X_{i} \in \mathcal{O}$), or one of its descendents

Active trails and independence?

- Theorem: Variables $\mathbf{X}_{\mathbf{i}}$ and X_{j} are independent given $Z \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ if the is no active trail between X_{i} and X_{j} when variables $Z \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ are observed

The BN Representation Theorem

Important because:
Every P has at least one BN structure G

If joint			
probability	Obtain		Then conditional
:---:			
independencies			
in BN are subset of			
distribution:	\quad	conditional	
:---:			
independencies in P			

Important because:
Read independencies of P from BN structure G

What you need to know

- Bayesian networks
\square A compact representation for large probability distributions
\square Not an algorithm
- Semantics of a BN
\square Conditional independence assumptions
- Representation
\square Variables
\square Graph
\square CPTs
- Why BNs are useful
- Learning CPTs from fully observable data

■ Play with applet!!! :)

Announcements

- Recitation this week
\square Bayesian networks

Pick up your midterm from Monica

General probabilistic inference

- Query: $P(X \mid e)$

- Using Bayes rule:
$P(X \mid e)=\frac{P(X, e)}{P(e)}$
- Normalization:
$P(X \mid e) \propto P(X, e)$

Variable elimination algorithm

- Given a BN and a query $\mathrm{P}(\mathrm{X} \mid \mathrm{e}) \propto \mathrm{P}(\mathrm{X}, \mathrm{e})$
- Instantiate evidence e \quad IMPORTANT!!!
- Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
- For $\mathrm{i}=1$ to n , If $\mathrm{X}_{\mathrm{i}} \notin\{\mathrm{X}, \mathrm{e}\}$

Collect factors f_{1}, \ldots, f_{k} that include X_{i}
\square Generate a new factor by eliminating X_{i} from these factors

$$
g=\sum_{X_{i}} \prod_{j=1}^{k} f_{j}
$$

\square Variable X_{i} has been eliminated!

- Normalize $P(X, e)$ to obtain $P(X \mid e)$

Example: Large tree-width with small number of parents

Choosing an elimination order

- Choosing best order is NP-complete

Reduction from MAX-Clique

- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
\square Even optimal order can lead to exponential variable elimination computation
- In practice
\square Variable elimination often very effective
\square Many (many many) approximate inference approaches available when variable elimination too expensive

Most likely explanation (MLE)

- Query: $\operatorname{argmax} P\left(x_{1}, \ldots, x_{n} \mid e\right)$
x_{1}, \ldots, x_{n}

- Using Bayes rule:

$$
\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n} \mid e\right)=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} \frac{P\left(x_{1}, \ldots, x_{n}, e\right)}{P(e)}
$$

- Normalization irrelevant:

$$
\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n} \mid e\right)=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n}, e\right)
$$

Max-marginalization

MLE Variable elimination algorithm - Forward pass

- Given a BN and a MLE query max ${ }_{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}} \mathrm{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{e}\right)$
- Instantiate evidence e
- Choose an ordering on variables, e.g., $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- For $i=1$ to n, If $X_{i} \notin\{e\}$

Collect factors f_{1}, \ldots, f_{k} that include X_{i}
Generate a new factor by eliminating X_{i} from these factors

$$
g=\max _{x_{i}} \prod_{j=1}^{k} f_{j}
$$

Variable X_{i} has been eliminated!

MLE Variable elimination algorithm Backward pass

- $\left\{\mathrm{x}_{1}{ }^{*}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{*}\right\}$ will store maximizing assignment
- For $\mathrm{i}=\mathrm{n}$ to 1 , If $\mathrm{X}_{\mathrm{i}} \notin\{\mathrm{e}\}$

Take factors f_{1}, \ldots, f_{k} used when X_{i} was eliminated
\square Instantiate $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}$, with $\left\{\mathrm{x}_{\mathrm{i}+1}{ }^{*}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{*}\right\}$

- Now each f_{j} depends only on X_{i}
\square Generate maximizing assignment for X_{i} :

$$
x_{i}^{*} \in \underset{x_{i}}{\operatorname{argmax}} \prod_{j=1}^{k} f_{j}
$$

What you need to know

- Bayesian networks
\square A useful compact representation for large probability distributions
- Inference to compute
\square Probability of X given evidence e
\square Most likely explanation (MLE) given evidence e
\square Inference is NP-hard
- Variable elimination algorithm
\square Efficient algorithm ("only" exponential in tree-width, not number of variables)
\square Elimination order is important!
\square Approximate inference necessary when tree-width to large
- not covered this semester
\square Only difference between probabilistic inference and MLE is "sum" versus "max"

