Bayesian Networks - Representation

Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University

October 31st, 2007

1

■ Flu and Allergy are (marginally) independent

$$P(F,A) = P(F) \cdot P(A)$$

More Generally:

Flu = t	0.5
Flu = f	0.8

Allergy = t	0.3
Allergy = f	0.7

	Flu = t	Flu = f
Allergy = t	0.340.2	6.3×0.8
Allergy = f	0.2×0.7	0.7 x 0.8

Marginally independent random variables

- Sets of variables X, Y
- X is independent of Y if $\forall x \in Val(x)$, $y \in Val(x)$ □ $P(X=x\perp Y=y)$, $2 \forall x \in Val(x)$, $2 \forall x \in Val(x)$

- Shorthand: P(x=x) = P(x=x)
 - \square Marginal independence: $\mathcal{P}(X \perp Y)$
- Proposition: P statisfies (X ⊥ Y) if and only if

©2005-2007 Carlos Guestrin

-

Conditional independence

- Flu and Headache are not (marginally) independent
- Flu and Headache are independent given Sinus infection
- More Generally:

2005-2007 Carlos Guestri

.

Conditionally independent random variables

- Sets of variables X, Y, Z
- X is independent of Y given Z if
 - \square $P^{2}(X=x \perp Y=y|Z=z)$, 8 x2Val(X), y2Val(Y), z2Val(Z)
- Shorthand:
 - \square Conditional independence: $P^2(X \perp Y \mid Z)$
 - \square For P^2 (**X** \perp **Y** | ;), write P^2 (**X** \perp **Y**)
- Proposition: P statisfies (X ⊥ Y | Z) if and only if
 - $\square P(X,Y|Z) = P(X|Z) P(Y|Z)$

©2005-2007 Carlos Guestrin

•

Properties of independence

Symmetry:

$$\square \; (\textbf{X} \perp \textbf{Y} \mid \textbf{Z}) \Rightarrow (\textbf{Y} \perp \textbf{X} \mid \textbf{Z})$$

Decomposition:

$$\square (X \perp Y,W \mid Z) \Rightarrow (X \perp Y \mid Z)$$

- Weak union:
 - $\square \; (\textbf{X} \perp \textbf{Y}, \textbf{W} \mid \textbf{Z}) \Rightarrow (\textbf{X} \perp \textbf{Y} \mid \textbf{Z}, \textbf{W})$
- Contraction:

$$\square \; (\textbf{X} \perp \textbf{W} \mid \textbf{Y}, \textbf{Z}) \; \& \; (\textbf{X} \perp \textbf{Y} \mid \textbf{Z}) \Rightarrow (\textbf{X} \perp \textbf{Y}, \textbf{W} \mid \textbf{Z})$$

- Intersection:
 - $\square \; (\textbf{X} \perp \textbf{Y} \mid \textbf{W}, \textbf{Z}) \; \& \; (\textbf{X} \perp \textbf{W} \mid \textbf{Y}, \textbf{Z}) \Rightarrow (\textbf{X} \perp \textbf{Y}, \textbf{W} \mid \textbf{Z})$
 - □ Only for positive distributions!
 - \square P(α)>0, 8 α , $\alpha \neq$;

©2005-2007 Carlos Guestrin

40

Naïve Bayes revisited

Local Markov Assumption:

A variable X is independent of its non-descendants given its parents

©2005-2007 Carlos Guestrin

1:

What about probabilities? Conditional probability tables (CPTs)

©2005-2007 Carlos Guestrin

14

The chain rule of probabilities

■ P(A,B) = P(A)P(B|A)

■ More generally:

$$\Box \ \mathsf{P}(\mathsf{X}_{1}, \dots, \mathsf{X}_{n}) = \mathsf{P}(\mathsf{X}_{1}) \ \not c \ \mathsf{P}(\mathsf{X}_{2} | \mathsf{X}_{1}) \ \not c \ \dots \ \not c \ \mathsf{P}(\mathsf{X}_{n} | \mathsf{X}_{1}, \dots, \mathsf{X}_{n-1})$$

The Representation Theorem – Joint Distribution to BN

BN:

Encodes independence assumptions

If conditional independencies in BN are subset of conditional independencies in P

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

©2005-2007 Carlos Guestrin

19

A general Bayes net

- Set of random variables
- Directed acyclic graph
 - □ Encodes independence assumptions
- CPTs
- Joint distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

How many parameters in a BN?

- Discrete variables X₁, ..., X_n
- Graph
 - \square Defines parents of X_i , \mathbf{Pa}_{X_i}
- CPTs P(X_i| **Pa**_{Xi})

Real Bayesian networks applications

- Diagnosis of lymph node disease
- Speech recognition
- Microsoft office and Windows
 - □ http://www.research.microsoft.com/research/dtg/
- Study Human genome
- Robot mapping
- Robots to identify meteorites to study
- Modeling fMRI data
- Anomaly detection
- Fault dianosis
- Modeling sensor network data

Independencies encoded in BN

- We said: All you need is the local Markov assumption
 - \square (X_i \perp NonDescendants_{Xi} | **Pa**_{Xi})
- But then we talked about other (in)dependencies
 - □ e.g., explaining away
- What are the independencies encoded by a BN?
 - □ Only assumption is local Markov
 - □ But many others can be derived using the algebra of conditional independencies!!!

Understanding independencies in BNs

- BNs with 3 nodes Local Markov Assumption:

Indirect causal effect:

Common cause:

A variable X is independent of its non-descendants given its parents

Common effect:

Active trails formalized

- A path $X_1 X_2 \cdots X_k$ is an **active trail** when variables $O \subseteq \{X_1, \dots, X_n\}$ are observed if for each consecutive triplet in the trail:
 - $\square X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed $(X_i \in O)$, or one of its descendents

Active trails and independence?

Theorem: Variables X_i and X_j are independent given Z⊆{X₁,...,X_n} if the is no active trail between X_i and X_j when variables Z⊆{X₁,...,X_n} are observed

If conditional independencies in BN are subset of conditional independencies in P

Obtain Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Important because:

Every P has at least one BN structure G

If joint probability distribution: $P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathsf{Pa}_{X_i}\right)$

Then conditional independencies in BN are subset of conditional independencies in P

Important because:

Read independencies of P from BN structure G

Obtain

Learning Bayes nets

Learning the CPTs

For each discrete variable X_i

MLE: $P(X_i = x_i \mid X_j = x_j) = \frac{\mathsf{Count}(X_i = x_i, X_j = x_j)}{\mathsf{Count}(X_j = x_j)}$

What you need to know

- Bayesian networks
 - □ A compact **representation** for large probability distributions
 - □ Not an algorithm
- Semantics of a BN
 - □ Conditional independence assumptions
- Representation
 - Variables
 - □ Graph
 - □ CPTs
- Why BNs are useful
- Learning CPTs from fully observable data
- Play with applet!!! ☺

Announcements

- Recitation this week
 - □ Bayesian networks
- Pick up your midterm from Monica

Bayesian Networks Inference

Machine Learning - 10701/15781 Carlos Guestrin Carnegie Mellon University

October 31st, 2007 ©2005-2007 Carlos Guestrin

General probabilistic inference

- Query: $P(X \mid e)$
- Allergy Sinus Headache Nose

Using Bayes rule:
$$P(X \mid e) = \frac{P(X, e)}{P(e)}$$

Normalization:

$$P(X \mid e) \propto P(X, e)$$

Marginalization

Understanding variable elimination – Another example

Variable elimination algorithm

- Instantiate evidence e

IMPORTANT!!!

- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{X,e\}$
 - \square Collect factors $f_1, ..., f_k$ that include X_i
 - ☐ Generate a new factor by eliminating X_i from these factors

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

- ☐ Variable X_i has been eliminated!
- Normalize P(X,e) to obtain P(X|e)

Choosing an elimination order

- Choosing best order is NP-complete
 - □ Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
 - □ Even optimal order can lead to exponential variable elimination computation
- In practice
 - □ Variable elimination often very effective
 - ☐ Many (many many) approximate inference approaches available when variable elimination too expensive

Most likely explanation (MLE)

Using Bayes rule:

$$\underset{x_1,\ldots,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e) = \underset{x_1,\ldots,x_n}{\operatorname{argmax}} \frac{P(x_1,\ldots,x_n,e)}{P(e)}$$

Normalization irrelevant:

$$\underset{x_1,\ldots,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e) = \underset{x_1,\ldots,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n,e)$$

Example of variable elimination for MLE – Backward pass

MLE Variable elimination algorithm – Forward pass

- Given a BN and a MLE query $\max_{x_1,...,x_n} P(x_1,...,x_n,e)$
- Instantiate evidence e
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{e\}$
 - \square Collect factors $f_1, ..., f_k$ that include X_i
 - $\hfill \square$ Generate a new factor by eliminating \boldsymbol{X}_i from these factors

$$g = \max_{x_i} \prod_{j=1}^k f_j$$

 \square Variable X_i has been eliminated!

MLE Variable elimination algorithm Backward pass

{x₁*,..., x_n*} will store maximizing assignment

- For i = n to 1, If $X_i \notin \{e\}$
 - \square Take factors $f_1, ..., f_k$ used when X_i was eliminated
 - \square Instantiate $f_1, ..., f_k$, with $\{x_{i+1}^*, ..., x_n^*\}$
 - Now each f_i depends only on X_i
 - ☐ Generate maximizing assignment for X_i:

$$x_i^* \in \underset{x_i}{\operatorname{argmax}} \prod_{j=1}^k f_j$$

What you need to know

- Bayesian networks
 - □ A useful compact **representation** for large probability distributions
- Inference to compute
 - □ Probability of X given evidence e
 - □ Most likely explanation (MLE) given evidence e
 - □ Inference is NP-hard
- Variable elimination algorithm
 - ☐ Efficient algorithm ("only" exponential in tree-width, not number of variables)
 - Elimination order is important!
 - □ Approximate inference necessary when tree-width to large
 - not covered this semester
 - □ Only difference between probabilistic inference and MLE is "sum" versus "max"