

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns...
5. ...and jumps there

K-means

- Randomly initialize k centers
$\square \underline{\mu^{(0)}=} \mu^{(0)}, \ldots, \mu_{k}^{(0)}$
- Classify: Assign each point $j \in\{1, \ldots \mathrm{~m}\}$ to nearest center: cesenter af point j is closest to j
$\square \underline{C^{(t)}}(\underline{j}) \leftarrow \arg \min _{i}\left\|\mu_{i}-x_{j}\right\|^{2}$
- Recenter: $\underline{\mu}_{i}$ becomes centroid of its point:
$\square \underline{\mu_{i}^{(t+1)} \leftarrow \arg \min _{\mu} \sum_{j: C(j)=i}\left\|\mu-x_{j}\right\|^{2}} \begin{aligned} & \text { opt } \mu_{i}=\sum_{j: c(j)=i} x_{j}\end{aligned}$
Equivalent to $\mu_{i} \leftarrow$ average of its points! $\operatorname{mean}^{\sum_{j: c(s)=i^{1}}}$
3

Does K-means converge??? Part 2

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix C, optimize μ

Coordinate descent algorithms

- K-means is a coordinate descent algorithm!

Gaussian Bayes Classifier Reminder

$$
\begin{aligned}
& P\left(y=i \mid \mathbf{x}_{j}\right)=\frac{p\left(\mathbf{x}_{j} \mid y=i\right) P(y=i)}{p\left(\mathbf{x}_{j}\right)} \\
& \quad P\left(y=i \mid \mathbf{x}_{j}\right) \propto \frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}_{j}-\mu_{i}\right)\right] P(y=i)
\end{aligned}
$$

Predicting wealth from age

Predicting wealth from age

Next... back to Density Estimation

What if we want to do density estimation with multimodal or clumpy data?

But we don't see class labels!!!

- MLE:
$\square \operatorname{argmax} \prod_{\mathrm{j}} \mathrm{P}\left(\mathrm{y}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}}\right)$

- But we don't know y, s!!!
- Maximize marginal likelihood:
$\square \operatorname{argmax} \prod_{\mathrm{j}} \mathrm{P}\left(\mathrm{x}_{\mathrm{j}}\right)=\operatorname{argmax} \prod_{\mathrm{j}} \sum_{\mathrm{i}=1}{ }^{k} \mathrm{P}\left(\mathrm{y}_{\mathrm{j}}=\mathrm{i}, \mathrm{x}_{\mathrm{j}}\right)$

Special case: spherical Gaussians and hard assignments

$$
P\left(y=i \mid \mathbf{x}_{j}\right) \propto \frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}_{j}-\mu_{i}\right)\right] P(y=i)
$$

- If $\mathrm{P}(\mathrm{X} \mid \mathrm{Y}=\mathrm{i})$ is spherical, with same σ for all classes:

$$
P\left(\mathbf{x}_{j} \mid y=i\right) \propto \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{j}-\mu_{i}\right\|^{2}\right]
$$

- If each x_{j} belongs to one class $\mathrm{C}(\mathrm{j})$ (hard assignment), marginal likelihood:

$$
\prod_{j=1}^{m} \sum_{i=1}^{k} P\left(\mathbf{x}_{j}, y=i\right) \propto \prod_{j=1}^{m} \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{j}-\mu_{C(j)}\right\|^{2}\right]
$$

- Same as K-means!!!

The GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}

The GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix $\sigma^{2} I$

Each data point is generated according to the following recipe:

The GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix $\sigma^{2} I$

Each data point is generated according to the following recipe:

1. Pick a component at random:

Choose component i with probability $P(y=i)$

The GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix $\sigma^{2} I$

Each data point is generated according to the following recipe:

1. Pick a component at random:

Choose component i with probability $P(y=i)$
2. Datapoint $\sim \mathrm{N}\left(\mu_{i}, \sigma^{2} I\right)$

The General GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix Σ_{i}

Each data point is generated according to the following recipe:

1. Pick a component at random:

Choose component i with probability $P(y=i)$
2. Datapoint $\sim \mathrm{N}\left(\mu_{i}, \Sigma_{i}\right)$

Marginal likelihood for general case

$$
P\left(y=i \mid \mathbf{x}_{j}\right) \propto \frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}_{j}-\mu_{i}\right)\right] P(y=i)
$$

- Marginal likelihood:

$$
\begin{aligned}
\prod_{j=1}^{m} P\left(\mathbf{x}_{j}\right) & =\prod_{j=1}^{m} \sum_{i=1}^{k} P\left(\mathbf{x}_{j}, y=i\right) \\
& =\prod_{j=1}^{m} \sum_{i=1}^{k} \frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}_{j}-\mu_{i}\right)\right] P(y=i)
\end{aligned}
$$

Special case 2: spherical Gaussians and soft assignments

- If $P(X \mid Y=i)$ is spherical, with same σ for all classes:

$$
P\left(\mathbf{x}_{j} \mid y=i\right) \propto \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{j}-\mu_{i}\right\|^{2}\right]
$$

- Uncertain about class of each x_{j} (soft assignment), marginal likelihood:

$$
\prod_{j=1}^{m} \sum_{i=1}^{k} P\left(\mathbf{x}_{j}, y=i\right) \propto \prod_{j=1}^{m} \sum_{i=1}^{k} \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{j}-\mu_{i}\right\|^{2}\right] P(y=i)
$$

Unsupervised Learning: Mediumly Good News

We now have a procedure s.t. if you give me a guess at $\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k}$
I can tell you the prob of the unlabeled data given those $\boldsymbol{\mu}$'s.

Suppose \boldsymbol{x} 's are 1-dimensional.
(From Duda and Hart)
There are two classes; w_{1} and w_{2}
$\mathrm{P}\left(\mathrm{y}_{1}\right)=1 / 3 \quad \mathrm{P}\left(\mathrm{y}_{2}\right)=2 / 3 \quad \sigma=1$.
There are 25 unlabeled datapoints

$$
\begin{aligned}
x_{1} & =0.608 \\
x_{2} & =-1.590 \\
x_{3} & =0.235 \\
x_{4} & =3.949 \\
& \vdots \\
x_{25} & =-0.712
\end{aligned}
$$

Duda \& Hart's Example

We can graph the
I prob. dist. function of data given our μ_{1} and μ_{2} estimates.

We can also graph the true function from which the data was randomly generated.

- They are close. Good.
- The $2^{\text {nd }}$ solution tries to put the " $2 / 3$ " hump where the " $1 / 3$ " hump should go, and vice versa.
- In this example unsupervised is almost as good as supervised. If the x_{1}.. x_{25} are given the class which was used to learn them, then the results are ($\mu_{1}=-2.176, \mu_{2}=1.684$). Unsupervised got ($\mu_{1}=-2.13, \mu_{2}=1.668$).

Finding the max likelihood $\mu_{1}, \mu_{2} . . \mu_{k}$

We can compute $\mathrm{P}\left(\right.$ data $\left.\mid \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k}\right)$
How do we find the $\boldsymbol{\mu}_{i}$ s which give max. likelihood?

- The normal max likelihood trick:

Set $\frac{\partial}{\partial \mu_{i}} \log \operatorname{Prob}(\ldots)=0$ and solve for μ_{i} s.
\# Here you get non-linear non-analytically-solvable equations

- Use gradient descent

Often slow but doable

- Use a much faster, cuter, and recently very popular method...

Announcements

- HW5 out later today...
\square Due December 5th by 3pm to Monica Hopes, Wean 4619
- Project:

Poster session: NSH Atrium, Friday 11/30, 2-5pm

- Print your poster early!!!
\square SCS facilities has a poster printer, ask helpdesk
\square Students from outside SCS should check with their departments
\square It's OK to print separate pages
- We'll provide pins, posterboard and an easel
\square Poster size: 32×40 inches
- Invite your friends, there will be a prize for best poster, by popular vote
- Last lecture:
\square Thursday, 11/29, 5-6:20pm, Wean 7500

Tba E.M. Algorithm

- We'll get back to unsupervised learning soon
- But now we'll look at an even simpler case with hidden information
- The EM algorithm
- Can do trivial things, such as the contents of the next few slides
- An excellent way of doing our unsupervised learning problem, as we'll see
- Many, many other uses, including learning BNs with hidden data

Silly Example

Let events be "grades in a class"

$$
\begin{array}{ll}
w_{1}=\text { Gets an } A & P(A)=1 / 2 \\
w_{2}=\text { Gets a } & B \\
w_{3}=\text { Gets a } & C \\
w_{4}=\text { Gets a } & D
\end{array}
$$

(Note $0 \leq \mu \leq 1 / 6$)
Assume we want to estimate μ from data. In a given class there were

a A's	
b	B',
c	
d D's	
d	

What's the maximum likelihood estimate of μ given $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$?

Trivial Statistics

$$
\begin{aligned}
& P(A)=1 / 2 \quad P(B)=\mu \quad P(C)=2 \mu \quad P(D)=1 / 2-3 \mu \\
& P(a, b, c, d \mid \mu)=K(1 / 2)^{a}(\mu)^{b}(2 \mu)^{c}(1 / 2-3 \mu)^{d} \\
& \log P(a, b, c, d \mid \mu)=\log K+a \log 1 / 2+b \log \mu+c \log 2 \mu+d \log (1 / 2-3 \mu)
\end{aligned}
$$

FOR MAX LIKE $\mu, \operatorname{SET} \frac{\partial \log P}{\partial \mu}=0$
$\frac{\partial \log P}{\partial \mu}=\frac{b}{\mu}+\frac{2 c}{2 \mu}-\frac{3 d}{1 / 2-3 \mu}=0$
Gives max like $\mu=\frac{b+c}{6(b+c+d)}$
So if class got

A	B	C	D
14	6	9	10

Max like $\mu=\frac{1}{10}$

Same Problem with Hidden Information

Someone tells us that	REMEMBER
Number of High grades (A's $+1 / 2$	
Number of C's $)=h$	$=c$
Number of D's	$=d$
$P(C)=\mu$	
N $)=2 \mu$	
$P(D)=1 / 2-3 \mu$	

What is the max. like estimate of μ now?

Same Problem with Hidden Information

Someone tells us that

Number of High grades (A's + B's $)=h$	
Number of C's	$=c$
Number of D's	$=d$

REMEMBER
$P(A)=1 / 2$
$P(B)=\mu$
$P(C)=2 \mu$
$P(D)=1 / 2-3 \mu$

What is the max. like estimate of μ now?
We can answer this question circularly:

EXPECTATION

If we know the value of μ we could compute the

expected value of a and b	
Since the ratio a:b should be the same as the ratio $1 / 2: \mu$	

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood value of μ

$$
\mu=\frac{b+c}{6(b+c+d)}
$$

E.M. for our Trivial Problem

We begin with a guess for μ
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates

Define $\mu^{(t)}$ the estimate of μ on the t'th iteration
$\mathrm{b}^{(t)}$ the estimate of b on $\mathrm{t}^{\text {th }}$ iteration

Continue iterating until converged.
Good news: Converging to local optimum is assured.
Bad news: I said "local" optimum.

E.M. Convergence

- Convergence proof based on fact that $\operatorname{Prob}($ data $\mid \mu)$ must increase or remain same between each iteration [not oвvious]
- But it can never exceed 1 [osvious]

So it must therefore converge [obvious]

In our example,	t	$\mu^{(t)}$	$\mathrm{b}^{(1)}$
suppose we had			
$\mathrm{h}=20$	0	0	0
$c=10 \quad>$	1	0.0833	2.857
$\mathrm{d}=10$	2	0.0937	3.158
$\mu^{(0)}=0$	3	0.0947	3.185
Convergence is generally linear: erro	4	0.0948	3.187
decreases by a constant factor each time	5	0.0948	3.187
step.	6	0.0948	3.187

```
Back to Unsupervised Learning of
GMMs - a simple case
    A simple case:
        We have unlabeled data }\mp@subsup{\boldsymbol{x}}{1}{}\mp@subsup{\boldsymbol{x}}{2}{}\ldots\mp@subsup{\boldsymbol{x}}{\textrm{m}}{
        We know there are k classes
        We know P(y ( ) P(y ( ) P(y ( ) ... P(y ( }\mp@subsup{y}{k}{\prime
        We don't know }\mp@subsup{\mu}{1}{}\mp@subsup{\mu}{2}{}..\mp@subsup{\mu}{k}{
    We can write P(data | }\mp@subsup{\mu}{1}{}\ldots.,\mp@subsup{\mu}{\textrm{k}}{}
        = p( }\mp@subsup{x}{1}{}\ldots\mp@subsup{x}{m}{}|\mp@subsup{\mu}{1}{}\ldots\mp@subsup{\mu}{k}{}
        = \}\mp@subsup{\prod}{j=1}{m}\textrm{p}(\mp@subsup{x}{j}{}|\mp@subsup{\mu}{1}{}\ldots\mp@subsup{\mu}{k}{}
        =\}\mp@subsup{\prod}{j=1}{m}\mp@subsup{\sum}{i=1}{k}\textrm{p}(\mp@subsup{x}{j}{}|\mp@subsup{\mu}{i}{})\textrm{P}(y=i
        \propto }\mp@subsup{\prod}{j=1}{m}\mp@subsup{\sum}{i=1}{k}\operatorname{exp}(-\frac{1}{2\mp@subsup{\sigma}{}{2}}|\mp@subsup{x}{j}{}-\mp@subsup{\mu}{i}{}\mp@subsup{|}{}{2})\textrm{P}(y=i
```


EM for simple case of GMMs: The E-step

- If we know $\mu_{1}, \ldots, \mu_{k} \rightarrow$ easily compute prob.
point x_{j} belongs to class $\mathrm{y}=\mathrm{i}$
$\mathrm{p}\left(y=i \mid x_{j}, \mu_{1} \ldots \mu_{k}\right) \propto \exp \left(-\frac{1}{2 \sigma^{2}}\left|x_{j}-\mu_{i}\right|^{2}\right) \mathrm{P}(y=i)$

EM for simple case of GMMs: The

M-step

- If we know prob. point x_{j} belongs to class $\mathrm{y}=\mathrm{i}$
\rightarrow MLE for μ_{i} is weighted average
\square imagine k copies of each x_{j}, each with weight $P\left(y=i \mid x_{j}\right)$:
$\mu_{i}=\frac{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right) x_{j}}{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right)}$

E.M. for GMMs

E-step
Compute "expected" classes of all datapoints for each class

$$
\mathrm{p}\left(y=i \mid x_{j}, \mu_{1} \ldots \mu_{k}\right) \propto \exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{j}-\mu_{i}\right\|^{2}\right) \mathrm{P}(y=i)
$$

M-step
Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions

$$
\mu_{i}=\frac{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right) x_{j}}{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right)}
$$

E.M. Convergence
 - EM is coordinate ascent on an interesting potential function
 - Coord. ascent for bounded pot. func.! convergence to a local optimum guaranteed
 - See Neal \& Hinton reading on class webpage

- This algorithm is REALLY USED. And in high dimensional state spaces, too. E.G. Vector Quantization for Speech Data
E.M. for axis-aligned GMN

Iterate. On the t 'th iteration let our estimates be

Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions

$$
\mathrm{⿺}_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right) x_{j}}{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)}
$$

$$
p_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)}{m} \quad m=\text { \#records }
$$

E.M. for General GMMs

Iterate. On the t^{\prime} th iteration let our estimates be

$$
\lambda_{t}=\left\{\mu_{1}^{(t)}, \mu_{2}^{(t)} \ldots \mu_{k}^{(t)}, \Sigma_{1}^{(t)}, \Sigma_{2}^{(t)} \ldots \Sigma_{k}^{(t)}, p_{1}^{(t)}, p_{2}^{(t)} \ldots p_{k}^{(t)}\right\}
$$

E-step
Compute "expected" classes of all datapoints for each class

$$
\mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right) \propto p_{i}^{(t)} \mathrm{p}\left(x_{j} \mid \mu_{i}^{(t)}, \Sigma_{i}^{(t)}\right)
$$

M-step x_{j}

Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions

$$
\begin{gathered}
\grave{\mathrm{I}}_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right) x_{j}}{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)} \quad \Sigma_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)\left[x_{j}-\mu_{i}^{(t+1)} \llbracket x_{j}-\mu_{i}^{(t+1)}\right]}{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)} \\
p_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)}{m} \quad m=\text { \#records }
\end{gathered}
$$

The general learning problem with missing data

Marginal likelihood $\mathbf{-} \mathbf{x}$ is observed, \mathbf{z} is missing:

$$
\begin{aligned}
\ell(\theta: \mathcal{D}) & =\log \prod_{j=1}^{m} P\left(\mathbf{x}_{j} \mid \theta\right) \\
& =\sum_{j=1}^{m} \log P\left(\mathbf{x}_{j} \mid \theta\right) \\
& =\sum_{j=1}^{m} \log \sum_{\mathbf{z}} P\left(\mathbf{x}_{j}, \mathbf{z} \mid \theta\right)
\end{aligned}
$$

E-step

- \mathbf{x} is observed, \mathbf{z} is missing
- Compute probability of missing data given current choice of θ
$\square \mathrm{Q}\left(\mathbf{z} \mid \mathbf{x}_{\mathbf{j}}\right)$ for each \mathbf{x}_{j}
- e.g., probability computed during classification step
- corresponds to "classification step" in K-means
$Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right)=P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)$

Jensen's inequality

$$
\ell(\theta: \mathcal{D})=\sum_{j=1}^{m} \log \sum_{\mathrm{z}} P\left(\mathrm{z} \mid \mathrm{x}_{j}\right) P\left(\mathrm{x}_{j} \mid \theta\right)
$$

- Theorem: $\log \sum_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \geq \sum_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$

Applying Jensen's inequality

- Use: $\log \sum_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \geq \sum_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$
$\ell\left(\theta^{(t)}: \mathcal{D}\right)=\sum_{j=1}^{m} \log \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \frac{P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)}\right)}{Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right)}$

The M-step maximizes lower bound on weighted data

- Lower bound from Jensen's:
$\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)}\right)+m \cdot H\left(Q^{(t+1)}\right)$
- Corresponds to weighted dataset:
$<\mathbf{x}_{1}, \mathbf{z}=1>$ with weight $Q^{(t+1)}\left(\mathbf{z}=1 \mid \mathbf{x}_{1}\right)$
$<\mathbf{x}_{1}, \mathbf{z}=2>$ with weight $Q^{(t+1)}\left(\mathbf{z}=2 \mid \mathbf{x}_{1}\right)$
$<\mathbf{x}_{1}, \mathbf{z}=3>$ with weight $Q^{(t+1)}\left(\mathbf{z}=3 \mid \mathbf{x}_{1}\right)$
$<\mathbf{x}_{2}, \mathbf{z}=1>$ with weight $Q^{(t+1)}\left(\mathbf{z}=1 \mid \mathbf{x}_{2}\right)$
$<\mathbf{x}_{2}, \mathbf{z}=2>$ with weight $Q^{(t+1)}\left(\mathbf{z}=2 \mid \mathbf{x}_{2}\right)$
$<\mathbf{x}_{2}, \mathbf{z =}=3>$ with weight $Q^{(t+1)}\left(\mathbf{z}=3 \mid \mathbf{x}_{2}\right)$

The M-step

$$
\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)}\right)+m \cdot H\left(Q^{(t+1)}\right)
$$

- Maximization step:

$$
\theta^{(t+1)} \leftarrow \arg \max _{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)
$$

- Use expected counts instead of counts:
\square If learning requires $\operatorname{Count}(\mathbf{x}, \mathbf{z})$
\square Use $\mathrm{E}_{\mathrm{Q}(t+1)}[\operatorname{Count}(\mathbf{x}, \mathbf{z})]$

Convergence of EM

- Define potential function $\mathrm{F}(\theta, \mathrm{Q})$:

$$
\ell(\theta: \mathcal{D}) \geq F(\theta, Q)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log \frac{P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)}{Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)}
$$

- EM corresponds to coordinate ascent on F

Thus, maximizes lower bound on marginal log likelihood

M-step is easy
 $$
\theta^{(t+1)} \leftarrow \arg \max _{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)
$$

- Using potential function

$$
F\left(\theta, Q^{(t+1)}\right)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)+m \cdot H\left(Q^{(t+1)}\right)
$$

E-step also doesn't decrease potential function 1

- Fixing θ to $\theta^{(t)}$:

$$
\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq F\left(\theta^{(t)}, Q\right)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log \frac{P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)}\right)}{Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)}
$$

KL-divergence

- Measures distance between distributions

$$
K L(Q \| P)=\sum_{z} Q(z) \log \frac{Q(z)}{P(z)}
$$

- KL=zero if and only if $\mathrm{Q}=\mathrm{P}$

E-step also doesn't decrease potential function 2

- Fixing θ to $\theta^{(t)}$:

$$
\begin{aligned}
\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq F\left(\theta^{(t)}, Q\right) & =\ell\left(\theta^{(t)}: \mathcal{D}\right)+\sum_{j=1}^{m} \sum_{\mathbf{z}} Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log \frac{P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)}{Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)} \\
& =\ell\left(\theta^{(t)}: \mathcal{D}\right)-m \sum_{j=1}^{m} K L\left(Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)| | P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)\right)
\end{aligned}
$$

E-step also doesn't decrease potential function 3

$\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq F\left(\theta^{(t)}, Q\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right)-m \sum_{j=1}^{m} K L\left(Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \| P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)\right)$

- Fixing θ to $\theta^{(t)}$
- Maximizing $F\left(\theta^{(t)}, Q\right)$ over $Q \rightarrow$ set Q to posterior probability:

$$
Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \leftarrow P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)
$$

- Note that

$$
F\left(\theta^{(t)}, Q^{(t+1)}\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right)
$$

EM is coordinate ascent

$$
\ell(\theta: \mathcal{D}) \geq F(\theta, Q)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log \frac{P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)}{Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)}
$$

- M-step: Fix Q , maximize F over θ (a lower bound on $\ell(\theta: \mathcal{D})$):

$$
\ell(\theta: \mathcal{D}) \geq F\left(\theta, Q^{(t)}\right)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)+m \cdot H\left(Q^{(t)}\right)
$$

- E-step: Fix θ, maximize F over Q :

$$
\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq F\left(\theta^{(t)}, Q\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right)-m \sum_{j=1}^{m} K L\left(Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)| | P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)\right)
$$

\square "Realigns" F with likelihood:

$$
F\left(\theta^{(t)}, Q^{(t+1)}\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right)
$$

What you should know

- K-means for clustering:
\square algorithm
\square converges because it's coordinate ascent
- EM for mixture of Gaussians:
\square How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Be happy with this kind of probabilistic analysis
- Remember, E.M. can get stuck in local minima, and empirically it DOES
- EM is coordinate ascent
- General case for EM

Acknowledgements

- K-means \& Gaussian mixture models presentation contains material from excellent tutorial by Andrew Moore:
$\square \underline{\text { http://www.autonlab.org/tutorials/ }}$
- K-means Applet:
\square http://www.elet.polimi.it/upload/matteucc/Clustering/tu torial_html/AppletKM.html
- Gaussian mixture models Applet:
\square http://www.neurosci.aist.go.jp/\~akaho/MixtureEM. html

