

Example of a hidden Markov model (HMM) $\quad P\left(x_{3} \mid x_{2}\right) \in P\left(x_{2}=a \mid x_{2}=r\right)$

HMM semantics: Details

$P\left(X_{1}\right) \stackrel{\text { Just } 3 \text { distributions: }}{\leftarrow}$ sting state dist
$P\left(X_{1}\right)^{\leftarrow}$ starting state dist $=P\left(\right.$ 国 $\left.\mid X_{j}=b\right)$ i立j
$P\left(X_{i} \mid X_{i-1}\right)$
$P\left(O_{i} \mid X_{i}\right) \leftarrow{ }^{P} b_{\text {surat }}$

HMM semantics: Joint distribution

$$
\begin{aligned}
& P\left(X_{1}\right) \\
& P\left(X_{i} \mid X_{i-1}\right) \\
& P\left(O_{i} \mid X_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P\left(x_{1}, \ldots, x_{n}, o_{1}, \ldots o_{n}\right)=P\left(x_{1}\right) \cdot P\left(0_{1} \mid x_{1}\right) \cdot P\left(x_{2} \mid x_{1}\right) \cdot P\left(o_{2} \mid x_{2}\right) \ldots \ldots . \\
& =P\left(x_{1}\right) \cdot P\left(o_{1} \mid x_{1}\right) \prod_{t=2}^{n} P\left(x_{t} \mid x_{t-1}\right) P\left(o_{t} \mid x_{t}\right)
\end{aligned}
$$

Given $0=\{(b), \Delta,(a),(c), ~[a\}$

$$
\begin{aligned}
& P\left(X_{1}, \ldots, X_{n} \left\lvert\, \frac{\left.o_{1}, \ldots, o_{n}\right)}{}=P\left(X_{1: n} \mid o_{1: n}\right)\right.\right. \\
& \quad \propto P\left(X_{1}\right) P\left(\underline{o_{1}} \mid X_{1}\right) \prod_{i=2}^{n} P\left(X_{i} \mid X_{i-1}\right) P\left(o_{i} \mid X_{i}\right)
\end{aligned}
$$

Reusing computation

The forwards-backwards algorithm

- Initialization: $\underline{\alpha_{1}\left(X_{1}\right)}=\underline{P\left(X_{1}\right)} P\left(o_{1} \mid X_{1}\right) \quad$ formals
- For $\mathrm{i}=2$ to n
\square Generate a forwards factor by eliminating X_{i-1}

$$
\alpha_{i}\left(X_{i}\right)=\sum_{x_{i-1}} P\left(o_{i} \mid X_{i}\right) P\left(X_{i} \mid X_{i-1}=x_{i-1}\right) \alpha_{i-1}\left(x_{i-1}\right)
$$

- Initialization: $\beta_{n}\left(X_{n}\right)=1$
- For $\mathrm{i}=\mathrm{n}-1$ to 1
\square Generate a backwards factor by eliminating $\underline{X_{i+1}}$
$\underline{\beta_{i}\left(X_{i}\right)}=\sum_{x_{i+1}} P\left(o_{i+1} \mid x_{i+1}\right) P\left(x_{i+1} \mid X_{i}\right) \frac{\beta_{i+1}\left(x_{i+1}\right)}{c^{a}}$
- 陊 i, probability is: $\quad \frac{x_{i+1}^{, a}}{\left.x_{i}^{\prime} o_{1 . . n}\right) \propto \alpha_{i}\left(X_{i}\right) \beta_{i}\left(X_{i}\right)^{a}}$

What you'll implement 1:
multiplication

What you'll implement 2:
 marginalization
 $$
\begin{aligned} & \alpha_{i}\left(X_{i}\right)=\sum_{x_{i-1}}^{\sum_{f\left(X_{i}, x_{i-1}\right)}^{P\left(o_{i} \mid X_{i}\right) P\left(X_{i} \mid X_{i-1}=x_{i-1}\right) \alpha_{i-1}\left(x_{i-1}\right)}} \\ & \alpha_{i}\left(x_{i}=a\right)=\sum_{x_{i-1}} f\left(x_{i}=a, x_{i-1}=x_{i-1}\right) \end{aligned}
$$

Higher-order HMM

Add dependencies further back in time ! better representation, harder to learn

What you need to know

- Hidden Markov models (HIMs)
\square Very useful, very powerful!
\square Speech, OCR,...
\square Parameter sharing, only learn 3 distributions
\square Trick reduces inference from $\mathrm{O}\left(\mathrm{n}^{2}\right)$ to $\mathrm{O}(\mathrm{n})$
\square Special case of BN
$\left.\begin{array}{l}\text { Kalmar } \begin{array}{l}H M M, \text { with } \\ \text { Filter }\end{array} \quad P\left(x_{i} \mid x_{i}-1\right) \\ P\left(\mathcal{D i l l}_{i}\right)\end{array}\right\} \begin{aligned} & \text { Conditional } \\ & \text { Gaussian }\end{aligned}$

Bayesian Networks (Structure) Learning

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University
November 7 ${ }^{\text {th }}, 2007$

Review

- Bayesian Networks
\square Compact representation for probability distributions
\square Exponential reduction in number of parameters
- Fast probabilistic inference using variable elimination
\square |Compute P(X|e)
\square Time exponential in tree-width, not
 number of variables
- Today

Learning Bayes nets

部 Information-theoretic interpretation E. of maximum likelihood 1

- 4 Given structure, log likelihood of data:
$\log P\left(\mathcal{D} \mid \hat{\theta}_{\mathcal{G}}, \mathcal{G}\right)=$

Decomposable score

- Log data likelihood
$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \hat{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)$
- Decomposable score:
\square Decomposes over families in BN (node and its parents)
\square Will lead to significant computational efficiency!!!
$\square \operatorname{Score}(G: D)=\sum_{\mathrm{i}} \operatorname{FamScore}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}: D\right)$

How many trees are there?

Nonetheless - Efficient optimal algorithm finds best tree

Scoring a tree 1: equivalent trees

- $\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=M \sum_{i} \hat{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)$

Scoring a tree 2: similar trees

$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=M \sum_{i} \hat{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)$

Chow-Liu tree learning algorithm 1

- For each pair of variables $\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}$
\square Compute empirical distribution:

$$
\bar{P}\left(x_{i}, x_{j}\right)=\frac{\operatorname{Count}\left(x_{i}, x_{j}\right)}{m}
$$

\square Compute mutual information:
$\ddot{I}\left(X_{i}, X_{j}\right)=\sum_{x_{i}, x_{j}} \tilde{P}\left(x_{i}, x_{j}\right) \log \frac{\hat{P}\left(x_{i}, x_{j}\right)}{\hat{P}\left(x_{i}\right) P\left(x_{j}\right)}$
\square Nodes X_{1}, \ldots, X_{n}
\square Edge (i,j) gets weight

$$
\hat{I}\left(X_{i}, X_{j}\right)
$$

Chow-Liu tree learning algorithm 2

$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=M \sum_{i} \hat{I}\left(x_{i}, \mathbf{P} \mathbf{a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)$

- Optimal tree BN
\square Compute maximum weight spanning tree
Directions in BN: pick any
node as root, breadth-first-
search defines directions

Can we extend Chow-Liu 1

■ Tree augmented naïve Bayes (TAN) [Friedman et al. '97]
\square Naïve Bayes model overcounts, because correlation between features not considered
\square Same as Chow-Liu, but score edges with:

$$
\hat{I}\left(X_{i}, X_{j} \mid C\right)=\sum_{c, x_{i}, x_{j}} \hat{P}\left(c, x_{i}, x_{j}\right) \log \frac{\hat{P}\left(x_{i}, x_{j} \mid c\right)}{\hat{P}\left(x_{i} \mid c\right) \hat{P}\left(x_{j} \mid c\right)}
$$

Can we extend Chow-Liu 2

- (Approximately learning) models with tree-width up to k
\square [Chechetka \& Guestrin '07]
\square But, $\mathrm{O}\left(\mathrm{n}^{2 \mathrm{k}+6}\right) \ldots$

What you need to know about learning BN structures so far

- Decomposable scores
\square Maximum likelihood
\square Information theoretic interpretation
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in $\mathrm{O}\left(\mathrm{N}^{2 \mathrm{k}+6}\right)$)

Scoring general graphical models Model selection problem

What's the best structure?

Data
$\left\langle x_{1}^{(1)}, \ldots, x_{n}^{(1)}\right\rangle$
$\left\langle x_{1}^{(m)}, \ldots, x_{n}^{(m)}\right\rangle$

The more edges, the fewer independence assumptions, the higher the likelihood of the data, but will overfit...

Maximum likelihood overfits!

$$
\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=M \sum_{i} \hat{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)
$$

- Information never hurts:
- Adding a parent always increases score!!!

Bayesian score avoids overfitting

- Given a structure, distribution over parameters
$\log P(D \mid \mathcal{G})=\log \int_{\theta_{\mathcal{G}}} P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right) P\left(\theta_{\mathcal{G}} \mid \mathcal{G}\right) d \theta_{\mathcal{G}}$
- Difficult integral: use Bayes information criterion
(BIC) approximation (equivalent as $\mathrm{M}!1$) $\log P(D \mid \mathcal{G}) \approx \log P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right)-\frac{\text { NumberParams }(\mathcal{G})}{2} \log M+\mathcal{O}(1)$
- Note: regularize with MDL score

Best BN under BIC still NP-hard

Structure learning for general graphs

- In a tree, a node only has one parent

■ Theorem:
The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) $d, 2$

- Most structure learning approaches use heuristics
\square Exploit score decomposition
\square (Quickly) Describe two heuristics that exploit decomposition in different ways

Learn BN structure using local search

Local search, Score using BIC possible moves:

- Add edge
- Delete edge
- Invert edge

What you need to know about learning BNs

Learning BNs
\square Maximum likelihood or MAP learns parameters
\square Decomposable score
\square Best tree (Chow-Liu)
\square Best TAN
\square Other BNs, usually local search with BIC score

