Markov Decision Processes (MDPs) (cont.)

Machine Learning - 10701/15781 Carlos Guestrin

Carnegie Mellon University
November 29th, 2007

Markov Decision Process (MDP) Representation

- State space:
\square Joint state \mathbf{x} of entire system
- Action space:
\square Joint action $\mathbf{a}=\left\{a_{1}, \ldots, a_{n}\right\}$ for all agents
- Reward function:
\square Total reward $\mathrm{R}(\mathbf{x}, \mathbf{a})$
- sometimes reward can depend on action

- Transition model:
\square Dynamics of the entire system $\mathrm{P}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right)$

Computing the value of a policy

$\left.-\gamma^{3} R\left(x_{3}\right)+\gamma^{4} R\left(x_{4}\right)+\infty\right]$

- Discounted value of a state:
\square value of starting from x_{0} and continuing with policy π from then on

$$
\begin{aligned}
V_{\pi}\left(x_{0}\right) & =E_{\pi}\left[R\left(x_{0}^{d}\right)+\gamma R\left(x_{1}\right)+\gamma^{2} R\left(x_{2}\right)+\gamma^{3} R\left(x_{3}\right)+\cdots\right] \\
& =E_{\pi}\left[\sum_{t=0} \gamma^{t} R\left(x_{t}\right)\right]
\end{aligned}
$$

- A recursion!
$V_{\pi}\left(x_{0}\right)=E_{\pi}\left[R\left(x_{0}\right)+\gamma R\left(x_{1}\right)+\gamma^{2} R\left(x_{2}\right)+\cdots\right]$
$=\underbrace{E_{\pi}\left[R\left(x_{0}\right)\right.}]+\gamma \underbrace{E_{\pi}\left[R\left(x_{1}\right)+\gamma R\left(x_{2}\right)+\gamma^{2} R\left(x_{3}\right) \ldots\right.}$
$R\left(x_{0}\right)$
$=R\left(x_{0}\right)+\gamma$
$E_{\pi, x}\left[V_{T}\left(x_{1}\right)\right]$

Simple approach for computing the value of a policy: Iteratively

$$
V_{\pi}(x)=R(x)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a=\pi(x)\right) V_{\pi}\left(x^{\prime}\right)
$$

- Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)
\square Start with some guess V_{0} any guess works , but a ${ }^{\text {Good guess }}$ is $V_{0}(x)=R\left(x_{0}\right)$
\square Iteratively say:

$$
V_{t+1}(x)=R(x)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, \pi(x)\right) N\left(x_{t}^{\prime}\right)
$$

\square Stop when $\|\mid \bar{V}+1+1-\|_{t} b_{0} \varepsilon \varepsilon$

- means that $\left\|V_{\pi}-V_{t+1}\right\|_{\infty} \leqslant \varepsilon /(1-\gamma)$

But we want to learn a Policy

- So far, told you how good a \quad Policy: $\pi(\mathbf{x})=\mathbf{a} \quad \square \quad \begin{gathered}\text { At state } \mathbf{x}, \text { action } \\ \text { a for all agents }\end{gathered}$ policy is... $V_{\pi}(x)$
- But how can we choose the best policy???
- Suppose there was only one time step:

Policy: $\pi(\mathbf{x})=\mathbf{a}$
\square world is about to end!!!
\square select action that maximizes

$$
=\arg \max _{a}
$$

reward! for state x

$$
R(x)+\sum_{x^{\prime}}
$$

$$
P\left(x^{\prime} \mid x, a\right)
$$

Unrolling the recursion

- Choose actions that lead to best value in the long run
\square Optimal value policy achieves optimal value V*

$V^{*}\left(x_{0}\right)=\max _{a_{0}} R\left(x_{0}, a_{0}\right)+\gamma \sum_{x_{1}} P\left(x_{1} \mid x_{0}, a_{0}\right) V^{*}\left(x_{1}\right)$

Bellman equation

- Evaluating policy π :

$$
V_{\pi}(x)=R(x)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a=\pi(x)\right) V_{\pi}\left(x^{\prime}\right)
$$

- Computing the optimal value V^{*} - Bellman equation

$$
V^{*}(\mathbf{x})=\widetilde{m a x}_{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{*}\left(\mathbf{x}^{\prime}\right)
$$

Optimal Long-term Plan

Optimal policy:

$$
\begin{aligned}
& \pi^{*}(\mathbf{x})=\underset{a}{\operatorname{argmax}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{*}\left(\mathbf{x}^{\prime}\right) \\
& \text { if I have } V^{*} \text {, then OPT policy } \\
& \text { is Greedy, but Greedy wit } V^{*}\left(x^{\prime}\right)
\end{aligned}
$$

Interesting fact - Unique value

$$
V^{*}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{*}\left(\mathbf{x}^{\prime}\right)
$$

- Slightly surprising fact: There is only one V* that solves Bellman equation!
\square there may be many optimal policies that achieve $\sqrt{*}$
- Surprising fact: optimal policies are good everywhere!!!

$$
V_{\pi^{*}}(x) \geq V_{\pi}(x), \forall x, \forall \pi
$$

Solving an MDP

Solve

$$
V^{*}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{*}\left(\mathbf{x}^{\prime}\right)
$$

Bellman equation is non-linear!!!
Many algorithms solve the Bellman equations:

- Policy iteration [Howard '60, Bellman '57]
- Value iteration [Bellman '57]
- Linear programming [Manne '60]
- ...

Value iteration (a.k.a. dynamic programming) the simplest of all
$V^{*}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{*}\left(\mathbf{x}^{\prime}\right)$

- Start with some guess $V_{0}+e g_{0}, V_{0}(x)=R(x)$
- Iteratively say:

$$
\text { - } V_{t+1}(\mathbf{x})=\underbrace{\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})}+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V_{t}\left(\mathbf{x}^{\prime}\right)
$$

- Stop when $\left\|\mathrm{V}_{\mathrm{t}+1}-\mathrm{V}_{\mathrm{t}}\right\|_{\infty \infty} \leqslant \varepsilon$
\square means that $\overline{\| V^{*}-V_{t+1}} b_{0} \leq \varepsilon /(1-\gamma)$

Let's compute $\mathrm{V}_{\mathrm{t}}(\mathrm{x})$ for our example					
	t	$\mathrm{V}_{\mathrm{t}}(\mathrm{PU})$	$V_{t}($ PF)	$V_{t}(R U)$	$V_{t}(\mathrm{RF})$
	1	0	\bigcirc	10	10
	2			14.5	
	3				
	4				
$x=0.9$	5				
	6				
$\begin{aligned} a=A=10+\gamma\left(0.5 V_{1}(P U)+0.5 V_{1}(P F)\right)=10 \\ V_{2}(R U)= \end{aligned}$					
$\begin{aligned} V_{2}(R U)=a=S=10+\gamma\left(0.5 V_{1}^{10}(R U)+0.5 V_{1}^{0}(P U)\right) & =10+5 \gamma \\ V_{t+1}(\mathbf{x})=\max R(\mathbf{x}, \mathbf{a})+\gamma \sum P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V_{t}\left(\mathbf{x}^{\prime}\right) & =14.5 \end{aligned}$					

Let's compute $\mathrm{V}_{\mathrm{t}}(\mathrm{x})$ for our example					
	t	$\mathrm{V}_{\mathrm{t}}(\mathrm{PU})$	$V_{t}(P F)$	$V_{t}(\mathrm{RU})$	$V_{t}(\mathrm{RF})$
	1	0	0	10	10
	2	0	4.5	14.5	19
	3	2.03	6.53	25.08	18.55
	4	3.852	12.20	29.63	19.26
	5	7.22	15.07	32.00	20.40
	6	10.03	17.65	33.58	22.43
$V_{t+1}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V_{t}\left(\mathbf{x}^{\prime}\right)$					

with value iteration, (other possibilities: policy iteration and linear programming)

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
$\square \underline{\text { http://www.cs.cmu.edu/~awm/tutorials }}$

November 29th, 2007

The Reinforcement Learning task

World: You are in state 34.
Your immediate reward is 3 . You have possible 3 actions./

Robot: I'll take action 2.
World: You are in state 77.
Your immediate reward is -7. You have possible 2 actions. 1
Robot: I'll take action 1.
World: You're in state 34 (again).
Your immediate reward is 3 . You have possible 3 actionss ${ }^{\prime}$

Formalizing the (online) reinforcement learning problem

- Given a set of states \mathbf{X} and actions \mathbf{A}
\square in some versions of the problem size of X and A unknown
fimel $\langle x=27, r=-3, a=2\rangle$
- Interact with world at each time step t : ${ }^{2\langle\langle x=33, r=7, ~ a 5\rangle}$
\square world gives state $\underline{\mathbf{x}}_{t}$ and reward \underline{r}_{t}
\square you give next action \mathbf{a}_{t}
$3<44, r=-1000, a=3=$
$4<5, r=10, a=27$
Could lexi=n
$P\left(x^{\prime} \|, a\right), R(x, a)$
- Goal: (quickly) learn policy that (approximately) then maximizes long-term expected discounted reward use | unatu |
| :---: |
| itcrate |

The "Credit Assignment" Problem

Yippee! I got to a state with a big reward! But which of my actions along the way actually helped me get there??
This is the Credit Assignment problem.

Exploration-Exploitation tradeoff

- You have visited part of the state space and found a reward of 100 \square is this the best I can hope for???

Exploitation: should I stick with what I know and find a good
 policy w.r.t. this knowledge?
\square at the risk of missing out on some large reward somewhere

- Exploration: should I look for a region with more reward?
\square at the risk of wasting my time or collecting a lot of negative reward

Two main reinforcement learning approaches

■ Model-based approaches:
explore environment, then learn model ($\mathrm{P}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right)$ and $\left.\mathrm{R}(\mathbf{x}, \mathbf{a})\right)$ (almost) everywhere
use model to plan policy, MDP-style
\square approach leads to strongest theoretical results
\square works quite well in practice when state space is manageable

- Model-free approach:
\square don't learn a model, learn value function or policy directly
\square leads to weaker theoretical results
often works well when state space is large

Given a dataset - learn model

Given data, learn (MDP) Representation:

- Dataset:
 $\left\langle x_{2}, r_{2}, a_{2}, x_{3}\right\rangle$
- Learn reward function:

- Learn transition model:

$=$

$$
R: X, A \rightarrow \mathbb{R}
$$

$$
\frac{\operatorname{Count}\left(x^{\prime}=1, x=2, a=3\right)}{(\text { ont }(x=2, a=3)}
$$

Some challenges in model-based RL 1: Planning with insufficient information

Model-based approach:
\square estimate $R(\mathbf{x}, \mathbf{a}) \& P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right)$
\square obtain policy by value or policy iteration, or linear programming
\square No credit assignment problem learning model, planning algorithm takes care of "assigning" credit
What doyou plug in when you don't have enough information about a state?
\square don't reward at a particular state

- plug in smallest reward $\left(R_{\text {min }}\right)$?
- plug in largest rewar ($\left.R_{\max }\right)$?
\square don't know a particular transition probability?

$$
P\left(x^{\prime} \mid x, a\right)
$$

Some challenges in model-based RL 2: Exploration-Exploitation tradeoff
 A state may be very hard to reach
 waste a lot of time trying to learn rewards and transitions for this state
 after a much effort, state may be useless 1

- A strong advantage of a model-based approach:
\square you know which states estimate for rewards and transitions are bad
\square can (try) to plan to reach these states
\square have a good estimate of how long it takes to get there

A surprisingly simple approach for model based RL - The Rmax algorithm [Batman Temenemolez

- Optimism in the face of uncertainty!!!!!
heuristic shown to be useful long before theory was done (e.g., Kaelbling '90)
- If you don't know reward for a particular state-action pair, set it to $R_{\max }!!!\quad R(x, a)=R_{\text {max }}$
- If you don't know the transition probabilities $P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right)$ from some some state action pair \mathbf{x}, \mathbf{a} assume you go to a magic, fairytale new state $\mathbf{x}_{0}!!!$
$R\left(\mathbf{x}_{0}, \mathbf{a}\right)=R_{\text {max }}$
$P\left(x_{0} \mid x_{0}, a\right)=1$

Understanding $\mathrm{R}_{\max }$

- With $R_{\max }$ you either: explore - visit a state-action pair you don't know much about
- because it seems to have lots of potential
\downarrow exploit - spend all your time on known states
- even if unknown states were amazingly good, it's not worth it
- Note: you never know if you
 are exploring or exploiting!!!

Implicit Exploration-Exploitation Lemma

- Lemma: every T time steps, either:

Exploits: achieves near-optimal reward for these T-steps, or Explores: with high probability, the agent visits an unknown state-action pair

- learns a little about an unknown state

T is related to mixing time of Markov chain defined by MDP - time it takes to (approximately) forget where you started

The Rmax algorithm

- Initialization:
\square Add state \mathbf{x}_{0} to MDP
$\square R(\mathbf{x}, \mathbf{a})=R_{\text {max }}, \forall \mathbf{x}, \mathbf{a}$
$\square \mathrm{P}\left(\mathbf{x}_{0} \mid \mathbf{x}, \mathbf{a}\right)=1, \forall \mathbf{x}, \mathbf{a}$
\square all states (except for \mathbf{x}_{0}) are unknown
- Repeat opfimal
\square obtain policy for current MDP and Execute policy
\square for any visited state-action pair, set reward function to appropriate value
\square if visited some state-action pair \mathbf{x}, a enough times to estimate $P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right)$
- update transition probs. $\mathrm{P}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right)$ for \mathbf{x}, \mathbf{a} using MLE
- recompute policy

Visit enough times to estimate $\mathrm{P}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right)$?

- How many times are enough?
use Chernoff Bound!
Chernoff Bound:
X_{1}, \ldots, X_{n} are i.i.d. Bernoulli trials with prob. θ
$P\left(\left|1 / n \sum_{i} X_{i}-\theta\right|>\varepsilon\right) \leq \exp \left\{-2 n \varepsilon^{2}\right\}$

Putting it all together

- Theorem: With prob. at least 1- δ, Rmax will reach a ε-optimal policy in time polynomial in: num. states, num. actions, T, $1 / \varepsilon, 1 / \delta$
\square Every T steps:

- achieve near optimal reward (great!), or
- visit an unknown state-action pair \ddagger num. states and actions is
finite, so can't take too long before all states are known
can odly happlen a poly mumber of times

Announcements

-University Course Assessments
\square Please, please...

- Project:
\square Poster session: Tomorrow 2-4:45pm, NSH Atrium
- please arrive a 15 mins early to set up
\square Paper: Friday December $14^{\text {th }}$ by 2 pm
- electronic submission by email to instructors list
- maximum of 8 pages, NITS format
- no late days allowed

A simple monte-carlo policy evaluation

Estimate $\mathrm{V}_{\pi}(\mathbf{x})$, start several trajectories from \mathbf{x} ! $V_{\pi}(\mathbf{x})$ is average reward from these trajectories Hoeffding's inequality tells you how many you need
\square discounted reward ${ }^{\text {d don't }}$ have to run each trajectory forever to get reward estimate

Problems with monte-carlo approach

- Resets: assumes you can restart process from same state many times
- Wasteful: same trajectory can be used to estimate many states

Reusing trajectories

- Value determination:

$$
\underline{V_{\pi}(x)}=R(x)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a=\pi(x)\right) V_{\pi}\left(x^{\prime}\right)
$$

Expressed as an expectation over next states:

$$
V_{\pi}(x)=\underline{R(x)}+\underline{\underbrace{E^{\prime}\left[V_{\pi}\left(x^{\prime}\right)\right.} \mid x, a=\pi(x)]}
$$

Initialize value function (zeros, at random,. Repectid value for next state Idea 1: Observe al transiffor $x_{t}{ }^{[} \cdot{ }_{t+1}, r_{t+1}$, approximate expec. with single sample:
$V\left(x_{t}\right)=r_{t+1}+\gamma V\left(x_{t+1}\right)$
unbiased!! $\quad V_{T}\left(x_{t+1}\right)$ is an unbiased estimate
but a very bad estimate!!!
of $E\left[V_{t t}\left(x^{\prime}\right) x_{t}\right]$

Simple fix: Temporal Difference
 (TD) Learning [sutton '84]
 $$
V_{\pi}(x)=R(x)+\gamma E\left[V_{\pi}\left(x^{\prime}\right) \mid x, a=\pi(x)\right]
$$

Idea 2: Observe a transition: $\mathbf{x}_{\mathrm{t}}{ }^{[} \mathrm{x}_{\mathrm{t}+1}, \mathrm{r}_{\mathrm{t}+1}$, approximate expectation by mixture o new sample with old estimate:
$V_{N_{X}}\left(x_{t}\right)=\left(1-\alpha_{1}\right) \cdot V_{T}\left(x_{t}\right)+\alpha\left[r_{t+1}+\gamma V_{T}\left(x_{t+1}\right)\right]$
$\square \alpha>0$ is learning rate

TD converges (can take a long time!!!)

$$
V_{\frac{\pi}{x}}(x)=R(x)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a=\pi(x)\right) V_{\pi}\left(x^{\prime}\right)
$$

- Theorem: TD converges in the limit (with prob. 1), if:
\square every state is visited infinitely often
Learning rate decays just so:
- $\sum_{i=1}^{\infty} \alpha_{i}=p^{0}$
- $\sum_{i=1}^{\infty} \alpha_{i}^{2}<\infty$

Another model-free RL approach:
 Q-learning watkins \& Dayan' 92$]$

-TD is just for one policy...
How do we find the optimal policy?

- Q-learning:

Simple modification to TD
Learns optimal value function (and policy), not just value of fixed policy
Solution (almost) independent of policy you execute!

Recall Value Iteration

$Q(x, a)$

- Or: $\quad \underline{Q}_{t+1}(\mathbf{x}, \mathbf{a})=R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V_{t}\left(\mathbf{x}^{\prime}\right)$

$$
V_{t+1}(\mathbf{x})=\underset{\mathbf{a}}{\max _{\mathbf{a}} Q_{t+1}(\mathbf{x}, \mathbf{a})} \quad \begin{aligned}
& \text { if I Know } Q^{*}(x, a) \\
& \Pi^{*}(x)=\operatorname{arymax} \\
& a
\end{aligned} Q^{*}(x, a)
$$

- Writing in terms of Q-function:

$$
Q_{t+1}(\mathbf{x}, \mathbf{a})=R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) \max _{\mathbf{a}^{\prime}} Q_{t}\left(\mathbf{x}^{\prime}, \mathbf{a}^{\prime}\right)
$$

Q-learning

$$
\begin{aligned}
& Q_{t+1}(\mathbf{x}, \mathbf{a})=R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) \max _{\mathbf{a}^{\prime}} Q_{t}\left(\mathbf{x}^{\prime}, \mathbf{a}^{\prime}\right) \\
& \text { initialize } Q_{0}\left(x_{,}\right) \text {to eg. } 0 \mathbf{x}^{\prime}
\end{aligned}
$$

Observe a transition: $\mathbf{x}_{t}, a_{t}{ }^{!} \mathbf{x}_{t+1}, r_{t+1}$, approximate expectation by mixture of new sample with old estimate:
\square transition now from state-action pair to next state and reward

$\square \alpha>0$ is learning rate

$$
\approx V\left(X_{t+1}\right)
$$

Q-learning convergence

- Under same conditions as TD, Q-learning converges to optimal value function Q*
- Can run any policy, as long as policy visits every state-action pair infinitely often
- Typical policies (non of these address Exploration-Exploitation tradeoff)
\square - -greedy:

$$
\mathbf{a}_{t}=\underset{\substack{\mathbf{a} \\ \arg \max \\ \arg \\ Q_{t}(\mathbf{x}, \mathbf{a}) \\ \text { take greedy action: } \\ \hline}}{ }
$$

$$
t \in \text { time step }
$$

- with prob. (1-8) take greedy action:
- with prob. ε take an action at (uniformly) random
\square Boltzmann (softmax) policy:
. $P\left(\mathbf{a}_{t} \mid \mathbf{x}\right) \propto \exp \left\{\frac{Q_{t}(\mathbf{x}, \mathbf{a})}{K}\right\}$
- K - "temperature" parameter,

The curse of dimensionality: A significant challenge in MDPs and RL

- MDPs and RL are polynomial in number of states and actions
ink position
- Consider a game with n units (e.g., peasants, footmen, etc.)

$$
{ }^{\uparrow}(A) \text { actions }
$$

\square How many states?

$$
k^{n}
$$

How many actions? $|A|^{n}$

Complexity is exponential in the number of variables used to define state!!!

Addressing the curse!

- Some solutions for the curse of dimensionality:

Learning the value function: mapping from stateaction pairs to values (real numbers) $Q: X, A \rightarrow \mathbb{R}$ - A regression problem! , linear R., DT, NN, NNets, ...
\square Learning a policy: mapping from states to actions

- A classification problem!
- Use many of the ideas you learned this semester:
\square linear regression, SVMs, decision trees, neural
For example: TD Gammon : ${ }^{\text {networks, Bayes nets etc.! }}$ TD (corning $+\underset{\text { vepural }}{\text { Nentation }}$

What you need to know about RL

A model-based approach:
\square address exploration-exploitation tradeoff and credit assignment problem
\square the R-max algorithm

- A model-free approach:
\square never needs to learn transition model and reward function
\square TD-learning
\square Q-learning

What you have learned this semester

- Learning is function approximation
- Point estimation
- Regression
- Discriminative v. Generative learning
- Naïve Bayes
- Logistic regression
- Bias-Variance tradeoff
- Neural nets
- Decision trees
- Cross validation
- Boosting
- Instance-based learning
- SVMs
- Kernel trick
- PAC learning
- VC dimension
- Mistake bounds
- Bayes nets
\square representation, inference, parameter and structure learning
- HMMs
representation, inference, learning
- K-means
- EM
- Feature selection, dimensionality reduction, PCA
- MDPs
- Reinforcement learning

BIG PICTURE

- Improving the performance at some task though experience!!! ©
before you start any learning task, remember the fundamental questions:

What is the learning problem?

From what experience?

What model?

What loss function are you optimizing?

Which learning algorithm?

With what optimization algorithm?

With what guarantees?

How will you evaluate it?

What next?

Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/

- Intelligence Seminars: http://www.cs.cmu.edu/~iseminar/
- Journal:
\square JMLR - Journal of Machine Learning Research (free, on the web)
- Conferences:
\square ICML: International Conference on Machine Learning
\square NIPS: Neural Information Processing Systems
\square COLT: Computational Learning Theory
\square UAI: Uncertainty in AI
\square AIStats: intersection of Statistics and AI
\square Also AAAI, IJCAI and others
- Some MLD courses:

```
10-708 Probabilistic Graphical Models (Ftall)
```

\square 10-705 Intermediate Statistics (Fall)
\square 11-762 Language and Statistics II (Fall)
\square 10-702 Statistical Foundations of Machine Learning (Spring)
\square 10-70.8 Optimization (Spring)
$\square .$.

You have done a lot!!!

- And (hopefully) learned a lot!!!
\square Implemented
- NB
- LR
- Nearest Neighbors
- Boosting
- SVM
- HMMs
- PCA
- EM and GMM
\square Answered hard questions and proved many interesting results
\square Completed (I am sure) an amazing ML project

Thank You for the Hard Work!!!

