

The perceptron learning rule

$$\begin{aligned}
& w_i \leftarrow w_i + \eta \sum_j x_i^j \delta^j \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& g^j = g(w_0 + \sum_i w_i x_i^j)
\end{aligned}$$
• Compare to MLE:

$$\begin{aligned}
& w_i \leftarrow w_i + \eta \sum_j x_i^j \delta^j \\
& j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j) \\
& \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j$$

Example data for NN with hidden layer				
	logues Outnuss			
A target fun	ction:			
	Input Output			
	$10000000 \rightarrow 10000000$			
	$01000000 \rightarrow 01000000$			
	$00100000 \rightarrow 00100000$			
	$00010000 \rightarrow 00010000$			
	$00001000 \rightarrow 00001000$			
	$0000010 \rightarrow 0000010$			
	$00000001 \rightarrow 00000001$			
Can this be learned???				

Learned weights for hidden layer					
A net	work:	Inputs Outputs			
Learned hidden layer representation:					
	Input	Hidden	Output		
	Input	Values	output		
	$10000000 \rightarrow$.89 .04 .08 -	→ 10000000		
	$01000000 \rightarrow$.01 .11 .88 -	→ 01000000		
	$00100000 \rightarrow$.01 $.97$ $.27$ $-$	> 00100000		
	$00010000 \rightarrow$.99 $.97$ $.71$ $-$	> 00010000		
	$00001000 \rightarrow$.03 $.05$ $.02$ $-$	→ 00001000		
	$ 00000100 \rightarrow$.22 $.99$ $.99$ $-$	→ 00000100		
	$ 00000010 \rightarrow$.80 .01 .98 -	> 00000010		
	$ 00000001 \rightarrow$.60 .94 .01 -	→ 00000001	14	

