15-213
“The Class That Gives CMU Its Zip!”

Bits and Bytes
January 15, 2004

Topics
= Why bits?
= Representing information as bits
® Binary/Hexadecimal
© Byte representations
» numbers
» characters and strings
» Instructions
= Bit-level manipulations
® Boolean algebra
® Expressing in C

Why Don’t Computers Use Base 10?

Base 10 Number Representation
= That’s why fingers are known as “digits”
= Natural representation for financial transactions
® Floating point number cannot exactly represent $1.20
= Even carries through in scientific notation
® 15213 X103 (1.5213e4)

Implementing Electronically
= Hard to store
® ENIAC (First electronic computer) used 10 vacuum tubes / digit
® IBM 650 used 5+2 bits (1958, successor to IBM’s Personal
Automatic Computer, PAC from 1956)
= Hard to transmit
® Need high precision to encode 10 signal levels on single wire
= Messy to implement digital logic functions
e Addition, multiplication, etc.

class02.ppt 15213 S04 -2- 15-213, S'04
Binary Representations Byte-Oriented Memory Organization
Base 2 Number Representation Programs Refer to Virtual Addresses

= Represent 15213,, as 11101101101101, = Conceptually very large array of bytes
= Represent 1.20,, as 1.0011001100110011[0011]..., = Actually implemented with hierarchy of different memory
= Represent 1.5213 X 10* as 1.1101101101101, X 2'3 types
© SRAM, DRAM, disk
Electronic Implementation © Only allocate for regions actually used by program
= Easy to store with bistable elements = In Unix and Windows NT, address space private to particular
= Reliably transmitted on noisy and inaccurate wires “process”
«— 0 «— 1 <« 0> ® Program being executed
oy — ® Program can clobber its own data, but not that of others
28y — Compiler + Run-Time System Control Allocation
n Where different program objects should be stored
0.5V = = Multiple mechanisms: static, stack, and heap
0.0V — = In any case, all allocation within single virtual address space
15-213, S'04 —4- 15-213, S04

Page 1

Encoding Byte Values

Literary Hex

. N -
Byte = 8 bits P Common 8-byte hex filler:
m Binary 00000000, to 11111111, R & ® Oxdeadbeef
= Decimal: 0, to 255, 2 2 8882 = Can you think of other 8-byte fillers?
® First digit must not be 0 in C 2 | 2]0010
3 [3[0011
= Octal: 000, to 0377, 2 4] 0100
® Use leading 0in C 5|5 g %
= Hexadecimal 00, to FF s 0111
® Base 16 number representation 000
® Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 210 g%
® Write FA1ID37B,4 in C as 0xFA1D37B B 011
» Or 0xfald37b £ be
E 10
F |15 11
-5- 15-213, S04 —6- 15-213, S04
. Word-Oriented Memory
Machine Words 0 i
rganization , .
32-bit 64-bit
Words Word: Bytes Addr.
Machine Has “Word Size” ords Tords
= Nominal size of integer-valued data Addr — 8882
® Including addresses Addresses sPeclfy Byte oo=oo [o002
= Most current machines are 32 bits (4 bytes) Locations Addr 0003
® Limits addresses to 4GB m Address of first byte in 0000 0004
® Becoming too small for memory-intensive applications word A‘i‘" 0005
= High-end systems are 64 bits (8 bytes) = Addresses of successive 0003 | | 000¢e
® Potential address space ~ 1.8 X 101° bytes words differ by 4 (32-bit) or | | [[ooo7
= Machines support multiple data formats 8 (64-bit) Addr — 8882
® Fractions or multiples of word size oo=os] 0010
® Always integral number of bytes Addr [— 0011
0008 0012
Addr 0013
0012 0014
0015
-7- 15-213, S04 -8- 15-213, S04

Page 2

Data Representations

Sizes of C Objects (in Bytes)
= C Data Type Alpha (RIP)
® unsigned 4
e int
® longint
® char
® short
o float
® double
® long double
® char*
» Or any other pointer

Typical 32-bit

® AN 0N
S 0O AN= BN

Intel IA32

-
e
=
AN®OANSBSS

15-213, S'04

Byte Ordering

How should bytes within multi-byte word be ordered in
memory?

Conventions
= Sun’s, Mac’s are “Big Endian” machines
® Least significant byte has highest address
= Alphas, PC’s are “Little Endian” machines
® Least significant byte has lowest address

10— 15-213, S04

Byte Ordering Example

Big Endian
m Least significant byte has highest address
Little Endian
= Least significant byte has lowest address
Example
= Variable x has 4-byte representation 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
| | Joi 234567] |
Little Endian 0x100 0x101 0x102 0x103

[67 [45 J23Jo1] |

T

15-213, S'04

Reading Byte-Reversed Listings

Disassembly
= Text representation of binary machine code
= Generated by program that reads the machine code

Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop $ebx

8048366: 81 c3 ab 12 00 00 add $0x12ab, $ebx
804836¢c: 83 bb 28 00 \00 00 00 cmpl ﬁ)x0,0xZB(%ebx)

Deciphering Numbers

= Value: 0x12ab
= Pad to 4 bytes: 0x000012ab
= Split into bytes: 00 00 12 ab
= Reverse: ab 12 00 00

2= 15-213, S'04

Page 3

Examining Data Representations

Code to Print Byte Representation of Data
m Casting pointer to unsigned char * creates byte array

{
int i;
for (i

printf ("\n")
}

typedef unsigned char *pointer;
void show_bytes (pointer start, int len)
0; i < len; i++)

printf ("0x%p\t0x%.2x\n",
start+i, start[i]);

Printf directives:
$p: Print pointer
%x: Print Hexadecimal

show_bytes Execution Example

int a = 15213;

printf("int a

15213;\n") ;
show_bytes ((pointer) &a, sizeof (int));

Result (Linux):

int a = 15213;

0x11£ffffcb8 0x6d
0x11£f£f£f£fcb9 0x3b
Ox11ffffcba 0x00
0x11ffffcbb 0x00

_13- 15-213, 5104 14— 15213, S04
. . . Alpha p
Representing Integers Representing Pointers)
T ; - - .
int A = 15213; Decimal: 15213 J-.nt E -_ 152-13, m
int B = -15213; Binary: 0011 1011 0110 1101 int *P = &B; [#F |
long int C = 15213; Hex: 3 B 6 D Alpha Address
. Hex: 1 F F F F F ¢ a 0 [00 |
Linux/Alphaa Suna Linuxc Alphac Sunc . [00 |
Binary: 0001 1111 1111 1111 1111 1111 1100 1010 0000 m
6D
Sun p
3B |« Sun Address
gg E Hex: E F F F F B 2 ©
N 3 Binary: 1110 1111 1111 1111 1111 1011 0010 1100 | Linuxp
Linux/AlphaB SunB Linux Address [D4]
Hex: B F F F F 8 D 4 E
Binary: 1011 1111 1111 1111 1111 1000 1101 0100 m
\ Two’s complement representation Different compilers & machines assign different locations to objects
(Covered next lecture)
—15- 15213, S04 —16- 15-213, 5104

Page 4

Representing Floats

Float F 15213.0;

Linux/AlphaF SunF

Representing Strings

char S[6] "15213";

Strings in C
= Represented by array of characters

= Each character encoded in ASCIl format ~ Linux/Alpha s Sun s

® Standard 7-bit encoding of character set 31 |¢ 31
® Character “0” has code 0x30 35 35
» Digit i has code 0x30+i 32 |e » 32
m String should be null-terminated 31 |e » 31
® Final character =0 33 33
IEEE Single Precision Floating Point Representation P
Compatibility 00 [« 00
Hex: 4 6 6 D B 4 0 0 . .
Binary: 0100 0110 0110 1101 1011 0100 0000 0000 = Byte ordering not an issue
) n Text files generally platform independent
15213: 1110 1101 1011 01 ® Except for different conventi of line termination character(s)!
e » Unix (*\n’ = 0x0a = ~J)
. . . Mac (‘\r’ = 0x0d = *M)
Not teger repr but ?
of same as integer rep u across » DOS and HTTP (*\r\n’ = 0x0d0a = AM~J)
Can see some relation to integer repr but not obvie
17— 15-213, $'04 -18- 15213, S04
Machine-Level Code Representation Representing Instructions
Encode Program as Sequence of Instructions int sum(int x, int y)
Each simple operation { Alpha sum Sun sum PC sum
= Eacl
® Arithmetic operation) Teturn xty; % %
® Read or write memory m M5
® Conditional branch = For this example, Alpha & [42 | 8B |
= Instructions encoded as bytes Sun use two 4-byte 25
® Alpha’s, Sun’s, Mac’s use 4 byte instructions ms"uc“fms. m oC
» Reduced Instruction Set Computer (RISC) ° ,Usi dl;f.erlng. nurtr;‘bers of | Fa | 03
® PC’s use variable length instructions instru |.ons n o. er cas.es [6B | 45
» Complex Instruction Set Computer (CISC) . rc ut?‘es] 'Zns":c::'gns with 08
engths an es BTH
= Different instruction types and encodings for different g - vt . | 89 |
machines ® Same for NT and for Linux EC
. . X I
© Most code not binary compatible NT/ L|n.ux not fully binary | 5D |
compatible c3

Programs are Byte Sequences Too!

19— 15-213, S'04

Different machines use totally different instructions and encodings

_20- 15-213, S'04

Page 5

Boolean Algebra

Developed by George Boole in 19th Century

= Algebraic representation of logic
® Encode “True” as 1 and “False” as 0

Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon
= 1937 MIT Master’s Thesis

= Reason about networks of relay switches
And Or 3)
} ® Encode closed switch as 1, open switch as 0
m A&B =1 when both A=1 and m A|B =1 when either A=1 or A&-B
B=1 &|o 1 B=1 |]0 1 = Connection when
0lo0 0 ofo 1 A7 -8
1lo 1 1111 o—<A B>—° A&~B | ~AB
Not Exclusive-Or (Xor) ~
= ~A=1when A=0 = A*B =1 when either A=1 or ~A&B =A"B
~ B=1, but not both
R ~lo 1
110 0|0 1
111 0
-21- 15-213, S'04 -22- 15-213, S'04
Integer Algebra Boolean Algebra

Integer Arithmetic
m (Z +,* - 0,1) forms a “ring”
= Addition is “sum” operation
= Multiplication is “product” operation
= —is additive inverse
= 0 is identity for sum
= 1 is identity for product

23— 15-213, S'04

Boolean Algebra
= ({0,1}, |, & ~, 0, 1) forms a “Boolean algebra”
= Oris “sum” operation
= And is “product” operation
= ~is “complement” operation (not additive inverse)
= 0 is identity for sum
= 1 is identity for product

—24 - 15-213, S'04

Page 6

Boolean Algebra =~ Integer Ring

» Commutativity
A|B =BJ|A A+B = B+A
A&B =B&A A*B =B*A
m Associativity
(Al B)|C =A|(B|C) (A+B)+C = A+(B+C)
(A&B)&C = A&(B&C) (A*B)*C = A*(B*C)
m Product distributes over sum
A&(B|C)=(A&B)|(A&C) A*(B+C)=A*B+B*C
s Sum and product identities

Al0=A A+0=A
A&1=A A*1 =A
m Zero is product annihilator
A&0=0 A*0 =0
m Cancellation of negation
~(~A)= A -(-A) = A
_25- 15-213, S'04

Boolean Algebra = Integer Ring

= Boolean: Sum distributes over product
A|(B&C) = (A|B)&(A|C) A+(B*C) = (A+B)*(B+C)
= Boolean: Idempotency

AlA =A A +AzA
®“Ais true” or “Aiis true” = “Ais true”
A&A =A A *AzA
= Boolean: Absorption
A|(A&B) = A A+(A*B)=A
®“Ais true” or “Ais true and B is true” = “A is true”
A&(A|B) = A A*(A+B)=A
= Boolean: Laws of Complements
A|l~A =1 A +-A=1

®“A s true” or “Ais false”
= Ring: Every element has additive inverse
A|~A=0 A+-A=0

_26- 15-213, S04

Boolean Ring
= ({0,1},, &,1,0,1)
= Identical to integers mod 2
= [is identity operation: I (A) = A
ArA=0

Properties of & and A

Property Boolean Ring
= Commutative sum A~AB =B"A
= Commutative product A&B =B&A
= Associative sum (ArB)AC =ArB"C)
= Associative product (A&B)&C = A& (B&C)

= Prod. over sum A&B"C) = (A&B)*(B&C)
= 0 is sum identity Ar0 =A
= 1is prod. identity A&1=A
= 0is product annihilator A& 0=0
= Additive inverse ArA =0
-27- 15-213, S'04

Relations Between Operations

DeMorgan’s Laws
= Express & in terms of |, and vice-versa
e A&B = ~(~A|~B)
» A and B are true if and only if neither A nor B is false
®A|B = ~(~A & ~B)
» A or B are true if and only if A and B are not both false
Exclusive-Or using Inclusive Or
eArB = (~A&B)|(A&~B)
» Exactly one of A and B is true
eArB = (A|B)&~(A&B)
» Either Ais true, or B is true, but not both

_28- 15-213, S'04

Page 7

General Boolean Algebras

Operate on Bit Vectors

Representing & Manipulating Sets

Representation
= Width w bit vector represents subsets of {0, ..., w—1}

= Operations applied bitwise " ajozllt;fljooelA {0,3,5,6}
01101001 01101001 01101001 76543210
& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010 01010101 {0,2,4,6}
76543210
All of the Properties of Boolean Algebra Apply Operations
= & Intersection 01000001 {0,6}
=| Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}
= ~ Complement 10101010 {1,3,5,7}
-29- 15-213, S04 -30- 15-213, S'04
Bit-Level Operations in C Contrast: Logic Operations in C
Operations &, |, ~, * Available in C Contrast to Logical Operators
= Apply to any “integral” data type = &S, |,
® long, int, short, char, unsigned ® View 0 as “False”
= View arguments as bit vectors ® Anything nonzero as “True”
= Arguments applied bit-wise ® Always return 0 or 1
Examples (Char data type) ® Early termination
m ~0x41 --> OxBE Examples (char data type)
~01000001, =--> 10111110, = 10x41 —--> 0x00
m ~0x00 --> OxFF
N . --> 11111111 m '10x00 --> 0x01
m 0x69 & 0x55 --> 0xd4l = 110x41 --> 0x01
01101001, & 01010101, --> 01000001,
= 0x69 | 0x55 --> 0x7D m 0x69 && 0x55 --> 0x01
01101001, | 01010101, --> 01111101, = 0x69 || 0x55 --> 0x01
mp && *p (avoids null pointer access)
15-213, S'04 -32- 15-213, S04

—31—

Page 8

Shift Operations

Left Shift: x <<y
= Shift bit-vector x left y positions
© Throw away extra bits on left

Argument x| 01100010

<< 3 00010000

© Fill with 0’s on right Log.>> 2 | 00011000

Right Shift: x >> y Arith.>> 2| 00011000
= Shift bit-vector x right y

positions Argument x| 10100010

© Throw away extra bits on right
<< 3 00010000

= Logical shift
® Fill with 0’s on left Log.>> 2 | 00101000
= Arithmetic shift Arith. >> 2| 11101000
® Replicate most significant bit on
right

® Useful with two’s complement

integer representation
33— 15213, S04

Cool Stuff with Xor

= Bitwise Xor is form void funny(int *x, int *y)
i {
of addition kx = *x A ry; /% 41 %/
= With extra property *y = *x A ky; /* #2 */
that every value is *x = *x A ky; /* #3 */
its own additive }
inverse
ArA=0
*x *y
Begin A B
1 A*B B
2 A*B (A*B)*B = A
3 (A*B)*A = B A
End B a
a4 15-213, S'04

More Fun with Bitvectors

Bit-board representation of chess position:
unsigned long long blk_king, wht king, wht_rook mv2,..;

wht_king = 0x0000000000001000ull;
blk_king = 0x0004000000000000ull;
wht_rook mv2 = 0x10e£101010101010ull;
7~

* Is black king under attach from

* white rook ?

*

if (blk_king & wht_rook mv2)

printf (”“Yes\n”) ;

H N W s 0o 9 ©

_35- 15-213, S'04

More Bitvector Magic

Count the number of 1’s in a word
MIT Hackmem 169:

int bitcount (unsigned int n)
{
unsigned int tmp;

tmp = n - ((n >> 1) & 033333333333)
- ((n > 2) & 011111111111);
return ((tmp + (tmp >> 3)) & 030707070707)%63;

—36—

15-213, S'04

Page 9

Some Other Uses for Bitvectors

Representation of small sets

Representation of polynomials:
= Important for error correcting codes
= Arithmetic over finite fields, say GF(2*n)
= Example 0x15213 : x"6+ x™+ x12+ x%+ x4+ x + 1

Representation of graphs
= A ‘1’ represents the presence of an edge

Representation of bitmap images, icons, cursors, ...

u Exclusive-or cursor patent

Representation of Boolean expressions and logic
circuits

—37-

15-213, S'04

Summary of the Main Points

It's All About Bits & Bytes
= Numbers
= Programs
= Text

Different Machines Follow Different Conventions for
= Word size
= Byte ordering
= Representations

Boolean Algebra is the Mathematical Basis
= Basic form encodes “false” as 0, “true” as 1
= General form like bit-level operations in C
® Good for representing & manipulating sets

_38- 15-213, S04

Page 10

