15-213

"The course that gives CMU its Zip!"

Cache Memories February 24, 2004

Topics

■ Generic cache memory organization

- Direct mapped caches

■ Set associative caches

- Impact of caches on performance

Cache Memories

Cache memories are small, fast SRAM-based memories managed automatically in hardware.

- Hold frequently accessed blocks of main memory

CPU looks first for data in L1, then in L2, then in main memory.

Typical system structure:

Inserting an L1 Cache Between the CPU and Main Memory

The transfer unit between the CPU register file and the cache is a 4-byte block.

The transfer unit between the cache and main memory is a 4-word block (16 bytes).

The tiny, very fast CPU register file has room for four 4-byte words.

The small fast L1 cache has room for two 4-word blocks.

The big slow main memory has room for many 4-word blocks.

General Organization of a Cache

-4_1 valid bit per line
Cache size: $C=B \times E \times S$ data bytes

Addressing Caches

Address A:

The word at address A is in the cache if the tag bits in one of the <valid> lines in set <set index> match <tag>.

The word contents begin at offset <block offset> bytes from the beginning of the block.

Addressing Caches

Address A:

Direct-Mapped Cache

Simplest kind of cache, easy to build (only 1 tag compare required per access)

Characterized by exactly one line per set.

Cache size: $C=B \times S$ data bytes

Accessing Direct-Mapped Caches

Set selection

■ Use the set index bits to determine the set of interest.

Accessing Direct-Mapped Caches

Line matching and word selection

- Line matching: Find a valid line in the selected set with a matching tag
- Word selection: Then extract the word

Accessing Direct-Mapped Caches

Line matching and word selection

- Line matching: Find a valid line in the selected set with a matching tag
■ Word selection: Then extract the word

Direct-Mapped Cache Simulation

\checkmark tag		data
1	0	M[0-1]
1	0	M[6-7]

Set Associative Caches

Characterized by more than one line per set

E-way associative cache

Accessing Set Associative Caches

Set selection

- identical to direct-mapped cache

set 0:	valid	tag	cache block
seto.	valid	tag	cache block

Accessing Set Associative Caches

Line matching and word selection

- must compare the tag in each valid line in the selected set.

Accessing Set Associative Caches

Line matching and word selection

- Word selection is the same as in a direct mapped cache

2-Way Associative Cache Simulation

$M=16$ byte addresses, $B=2$ bytes/block, $t=2 s=1 \quad b=1 \quad S=2$ sets, $E=2$ entry/set

$X X$	X	X
Address trace (reads):		

0	$\left[0000_{2}\right]$,	miss
1	$\left[0001_{2}\right]$,	hit
7	$\left[0111_{2}\right]$,	miss
8	$\left[1000_{2}\right]$,	miss
0	$\left[0000_{2}\right]$	hit

v	tag	data
1	00	M[0-1]
1	10	$M[8-9]$
1	01	$M[6-7]$
0		

Why Use Middle Bits as Index?

High-Order Bit Indexing

- Adjacent memory lines would map to same cache entry
- Poor use of spatial locality

Middle-Order Bit Indexing

- Consecutive memory lines map to different cache lines
- Can hold S*B*E-byte region of address space in cache at one time

Maintaining a Set-Associate Cache

- How to decide which cache line to use in a set?

■ Least Recently Used (LRU), Requires $\left\lceil\operatorname{Ig}_{2}(E!)\right\rceil$ extra bits

- Not recently Used (NRU)
- Random
- Virtual vs. Physical addresses:

■ The memory system works with physical addresses, but it takes time to translate a virtual to a physical address. So most L1 caches are virtually indexed, but physically tagged.

Multi-Level Caches

Options: separate data and instruction caches, or a unified cache

What about writes?

Multiple copies of data exist:
■ L1
■ L2

- Main Memory

■ Disk
What to do when we write?

- Write-through

■ Write-back

- need a dirty bit
- What to do on a write-miss?

What to do on a replacement?

- Depends on whether it is write through or write back

Intel Pentium III Cache Hierarchy

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses / references)
- Typical numbers:
- 3-10\% for L1
- can be quite small (e.g., < 1\%) for L2, depending on size, etc.

Hit Time

- Time to deliver a line in the cache to the processor (includes time to determine whether the line is in the cache)
- Typical numbers:
- 1-2 clock cycle for L1
- 5-20 clock cycles for L2

Miss Penalty

Aside for architects:
 -Increasing cache size?
 -Increasing block size?
 -Increasing associativity?

- Additional time required because of a miss
- Typically 50-200 cycles for main memory (Trend: increasing!)

Writing Cache Friendly Code

- Repeated references to variables are good (temporal locality)
- Stride-1 reference patterns are good (spatial locality)
- Examples:

■cold cache, 4-byte words, 4-word cache blocks

```
int sum_array_rows(int a[M][N])
{
    int i, j, sum = 0;
    for (i = 0; i < M; i++)
            for (j = 0; j < N; j++)
            sum += a[i][j];
    return sum;
}
```

Miss rate $=1 / 4=25 \%$

```
int sum_array_cols(int a[M][N])
{
    int i, j, sum = 0;
    for (j = 0; j < N; j++)
            for (i = 0; i < M; i++)
                sum += a[i][j];
    return sum;
}
```


Detecting the Cache Parameters

How can one determine the cache parameters?

- Size of cache?
- Size of cache block?

■ Hit time?

- Miss penalty?
- Associatively?

■ Number of levels in memory hierarchy?
Complicating factors

- Prefetch support (hardware and software)

■ Non-blocking caches ("Hit-under-Miss" support)
■ Superscalar processors with multiple, concurrent memory operations
■ Victim caches, stream buffers, line-reservation

The Memory Mountain

Read throughput (read bandwidth)

- Number of bytes read from memory per second (MB/s)

Memory mountain

- Measured read throughput as a function of spatial and temporal locality.

■ Compact way to characterize memory system performance.

Memory Mountain Test Function

```
/* The tesfunction */
void test(int elems, int stride) {
    int i, result = 0;
    volatile int sink;
    for (i = 0; i < elems; i += stride)
            result += data[i];
    sink = result; /* So compiler doesn't optimize away the loop */
}
/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{
    double cycles;
    int elems = size / sizeof(int);
    test(elems, stride); /* warm up the cache */
    cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
    return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}
```


Memory Mountain Main Routine

```
/* mountain.c - Generate the memory mountain. */
#define MINBYTES (1 << 10) /Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23) /* ... up to 8 MB */
#define MAXSTRIDE 16 /* Strides range from 1 to 16 */
#define MAXELEMS MAXBYTES/sizeof(int)
int data[MAXELEMS /* The array we'll be traversing */
int main()
{
    int size; /Working set size (in bytes) */
    int stride; /* Stride (in array elements) */
    double Mhz; /* Clock frequency */
    inf_data(data, MAXELEMS) ; /* Initialize each element in dat a to 1 */
    Mhz = mhz(0); /* Estimate the clock frequency */
    for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {
        for (stride = 1; stride <= MAXSTRIDE; stride++)
                printf("%.1f\t", run(size, stride, Mhz));
        printf("\n");
    }
    exit(0);
}
```


The Memory Mountain

Ridges of Temporal Locality

Slice through the memory mountain with stride=1

- illuminates read throughputs of different caches and memory

A Slope of Spatial Locality

Slice through memory mountain with size=256KB

- shows cache block size.

Matrix Multiplication Example

Major Cache Effects to Consider

- Total cache size
- Exploit temporal locality and keep the working set small (e.g., use blocking)
- Block size
- Exploit spatial locality

Description:

- Multiply $\mathbf{N} \times \mathrm{N}$ matrices

■ O(N3) total operations

- Accesses

```
/* ijk */ Variable sum
for (i=0; i<n; i++) {
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

- N reads per source element
- N values summed per destination
» but may be able to hold in register

Miss Rate Analysis for Matrix Multiply

Assume:

- Line size $=32 B$ (big enough for four 64-bit words)
- Matrix dimension (N) is very large
- Approximate $1 / \mathrm{N}$ as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:
■ Look at access pattern of inner loop

Layout of C Arrays in Memory (review)

C arrays allocated in row-major order

- each row in contiguous memory locations

Stepping through columns in one row:
■ for (i = 0; i < N; i++)
sum += a[0][i];

- accesses successive elements
- if block size $(B)>4$ bytes, exploit spatial locality
- compulsory miss rate $=4$ bytes $/ \mathrm{B}$

Stepping through rows in one column:
■ for (i = 0; i < n; i++) sum += a[i][0];

- accesses distant elements
- no spatial locality!
- compulsory miss rate $=1$ (i.e. 100%)

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
    }
```

Inner loop:

Row-wise
Columnwise

Misses per Inner Loop Iteration:

$\underline{\mathrm{A}}$	$\underline{\mathrm{B}}$	$\underline{\mathrm{C}}$
0.25	1.0	0.0

Matrix Multiplication (jik)

```
/* jik */
for (j=0; j<n; j++) {
    for (i=0; i<n; i++) {
        sum = 0.0;
        for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
        c[i][j] = sum
    }
}
```

Misses per Inner Loop Iteration:

$\underline{\mathrm{A}}$	$\underline{\mathrm{B}}$	$\underline{\mathrm{C}}$
0.25	1.0	0.0

Matrix Multiplication (kij)

```
/* kij */
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
    }
}
```

Fixed
Row-wise Row-wise

Misses per Inner Loop Iteration:
A
0.0
B
0.25
$\underset{0.25}{\underline{C}}$

Matrix Multiplication (ikj)

Inner loop:

Fixed

Misses per Inner Loop Iteration:
$\underline{\mathrm{A}}$
0.0
B
0.25
$\underset{0.25}{\underline{C}}$

Matrix Multiplication (jki)

Inner loop:

Column -
wise

Fixed
Columnwise

Misses per Inner Loop Iteration:

$\underline{\mathrm{A}}$	$\underline{\mathrm{B}}$	$\underline{\mathrm{C}}$
1.0	0.0	1.0

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
    for (j=0; j<n; j++) {
        r = b[k][j];
        for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
    }
}
```

Inner loop:

Column-
wise

Fixed

Columnwise

Misses per Inner Loop Iteration:

$\underline{\mathrm{A}}$	$\underline{\mathrm{B}}$	$\underline{\mathrm{C}}$
1.0	0.0	1.0

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {
```

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
for (j=0; j<n; j++) {
sum = 0.0;
sum = 0.0;
for (k=0; k<n; k++)
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];
sum += a[i][k] * b[k][j];
c[i][j] = sum;
c[i][j] = sum;
}
}
}
}
for (k=0; k<n; k++) {
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
for (i=0; i<n; i++) {
r = a[i][k];
r = a[i][k];
for (j=0; j<n; j++)
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];
c[i][j] += r * b[k][j];
}
}
}
}
for (j=0; j<n; j++) {
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
for (k=0; k<n; k++) {
r = b[k][j];
r = b[k][j];
for (i=0; i<n; i++)
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;
c[i][j] += a[i][k] * r;
}
}
}

```
}
```

ijk (\& jik):

- 2 loads, 0 stores
- misses/iter $=1.25$

kij (\& ikj):

- 2 loads, 1 store
- misses/iter $=0.5$
jki (\& kji):
- 2 loads, 1 store
- misses/iter $=2.0$

Pentium Matrix Multiply Performance

 Miss rates are helpful but not perfect predictors.- Code scheduling matters, too.

Improving Temporal Locality by Blocking

Example: Blocked matrix multiplication

■ "block" (in this context) does not mean "cache block".

- Instead, it mean a sub-block within the matrix.

■ Example: $\mathbf{N}=8$; sub-block size $=4$

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \times\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Key idea: Sub-blocks (i.e., $A_{x y}$) can be treated just like scalars.

$$
\begin{array}{ll}
C_{11}=A_{11} B_{11}+A_{12} B_{21} & C_{12}=A_{11} B_{12}+A_{12} B_{22} \\
C_{21}=A_{21} B_{11}+A_{22} B_{21} & C_{22}=A_{21} B_{12}+A_{22} B_{22}
\end{array}
$$

Blocked Matrix Multiply (bijk)

```
for (jj=0; jj<n; jj+=bsize) {
```

 for (\(i=0 ; i<n ; i++)\)
 for (\(\mathrm{j}=\mathrm{j} j\); \(\mathrm{j}<\min (\mathrm{j} j+b s i z e, n) ; ~ j++)\)
 c[i][j] = 0.0;
 for (kk=0; kk<n; kk+=bsize) \{
 for (i=0; i<n; i++) \{
 for (j=jj; j < min(jj+bsize,n); j++) \{
 sum \(=0.0\)
 for (k=kk; k < min(kk+bsize,n); k++) \{
 sum += a[i][k] * b[k][j];
 \}
 c[i][j] += sum;
 \}
 \}
 \}
 -43- \}

Blocked Matrix Multiply Analysis

- Innermost loop pair multiplies a $1 X$ bsize sliver of A by a bsize X bsize block of B and accumulates into $1 X$ bsize sliver of C
- Loop over i steps through n row slivers of $A \& C$, using same B for ($i=0 ; i<n ; i++$) $\{$

Pentium Blocked Matrix Multiply Performance

Blocking (bijk and bikj) improves performance by a factor of two over unblocked versions (ijk and jik)

- relatively insensitive to array size.

Concluding Observations

Programmer can optimize for cache performance

- How data structures are organized
- How data are accessed
- Nested loop structure
- Blocking is a general technique

All systems favor "cache friendly code"
■ Getting absolute optimum performance is very platform specific

- Cache sizes, line sizes, associativities, etc.
- Can get most of the advantage with generic code
- Keep working set reasonably small (temporal locality)
- Use small strides (spatial locality)

