
Page 1

Virtual Memory
March 18, 2004
Virtual Memory
March 18, 2004

Topics
� Motivations for VM

� Address translation

� Accelerating translation with TLBs

class18.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, S’04

Classic Motivations for Virtual MemoryClassic Motivations for Virtual Memory
Use Physical DRAM as a Cache for the Disk

� Address space of a process can exceed physical memo ry size
� Sum of address spaces of multiple processes can exc eed

physical memory

Simplify Memory Management
� Multiple processes resident in main memory.

Each process has its own address space

� Only “active” code and data is actually in memory
Allocate more memory to process as needed.

Provide Protection
� One process can’t interfere with another.

Because they operate in different address spaces.

� User process cannot access privileged information
Different sections of address spaces have different permissions.

– 3 – 15-213, S’04

Modern Motivations for VMModern Motivations for VM

�� Memory sharing and controlMemory sharing and control
� Copy on write: share physical memory among multiple

processes until a process tries to write to it. At that point
make a copy. For example, this eliminates the need for
vfork()

� Shared libraries

� Protection (debugging) via Segment-Drivers (Solaris)

�� Sparse address space support (64bit systems)Sparse address space support (64bit systems)

�� Memory as a fast communication deviceMemory as a fast communication device
� Part of memory is shared by multiple processes

�� Multiprocessing (beyond the scope of 15Multiprocessing (beyond the scope of 15 --213)213)

– 4 – 15-213, S’04

Why does VM Work?Why does VM Work?

It is not used!

Page 2

– 5 – 15-213, S’04

Motivation #1: DRAM a “Cache” for DiskMotivation #1: DRAM a “Cache” for Disk
Full address space is quite large:

�32-bit addresses: ~4,000,000 ,000 (4 billion) bytes

�64-bit addresses: ~16,000,000,000,000,000,000 (16 q uintillion) bytes

Disk storage is ~500X cheaper than DRAM storage
�80 GB of DRAM: ~ $25,000

�80 GB of disk: ~ $50

To access large amounts of data in a cost-effective manner,
the bulk of the data must be stored on disk

1GB: ~$300
160 GB: ~$100

4 MB: ~$500

DiskDRAMSRAM

– 6 – 15-213, S’04

Levels in Memory HierarchyLevels in Memory Hierarchy

CPUCPU
regs

C
a
c
h
e

MemoryMemory diskdisk

Size:
Latency:
$/Mbyte:
Line size:

32 B
< 1 ns

8(16) B

Register Cache Memory Disk Memory

32 KB-4MB
~2 ns
$125/MB
32(64) B

1024 MB
> 50 ns
$0.20/MB
4(64+) KB

100 GB
>8 ms
$0.001/MB

larger, slower, cheaper

8 B 32 B 4 KB

cache virtual memory

– 7 – 15-213, S’04

DRAM vs. SRAM as a “Cache”DRAM vs. SRAM as a “Cache”

DRAM vs. disk is more extreme than SRAM vs. DRAM
� Access latencies:

� DRAM ~10X slower than SRAM
� Disk ~160,000X slower than DRAM !

� Importance of exploiting spatial locality:
� First byte is ~ 160,000X slower than successive bytes on disk

vs. ~4X improvement for page-mode vs. regular acces ses to DRAM

� Bottom line:
� Design decisions made for DRAM caches driven by eno rmous cost

of misses

DRAMSRAM Disk

– 8 – 15-213, S’04

Impact of Properties on DesignImpact of Properties on Design
If DRAM was to be organized similar to an SRAM cach e, how
would we set the following design parameters?
� Line size?

Large, since disk better at transferring large bloc ks

� Associativity?
High, to minimize miss rate

� Write through or write back?
Write back, since can’t afford to perform small wri tes to disk

What would the impact of these choices be on:
� miss rate

Extremely low. << 1%

� hit time
Must match cache/DRAM performance

� miss latency
Very high. ~10ms

� tag storage overhead
Low, relative to block size

Page 3

– 9 – 15-213, S’04

Locating an Object in a “Cache”Locating an Object in a “Cache”

SRAM Cache
� Tag stored with cache line

� Maps from cache block to memory blocks
� From cached to uncached form
� Save a few bits by only storing tag

� No tag for block not in cache

� Hardware retrieves information
� can quickly match against multiple tags

X

Object Name

Tag Data

D 243

X 17

J 105

•
•
•

•
•
•

0:

1:

N-1:

= X?

“Cache”

– 10 – 15-213, S’04

Locating an Object in “Cache” (cont.)Locating an Object in “Cache” (cont.)

Data

243

17

105

•
•
•

0:

1:

N-1:

X

Object Name

Location

•
•
•

D:

J:

X: 1

0

On Disk

“Cache”Page Table

DRAM Cache
� Each allocated page of virtual memory has entry in page table

� Mapping from virtual pages to physical pages
� From uncached form to cached form

� Page table entry even if page not in memory
� Specifies disk address
� Only way to indicate where to find page

� OS retrieves information

– 11 – 15-213, S’04

A System with Physical Memory OnlyA System with Physical Memory Only
Examples:

Most Cray machines, early PCs, nearly all embedded systems, etc.

� Addresses generated by the CPU correspond directly to bytes in
physical memory

CPU

0:
1:

N-1:

Memory

Physical
Addresses

– 12 – 15-213, S’04

A System with Virtual MemoryA System with Virtual Memory
Examples:

Workstations, servers, modern PCs, etc.

� Address Translation: Hardware converts virtual addr esses to
physical addresses via OS-managed lookup table (pag e table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Page 4

– 13 – 15-213, S’04

Page Faults (like “Cache Misses”)Page Faults (like “Cache Misses”)
What if an object is on disk rather than in memory?

� Page table entry indicates virtual address not in m emory

� OS exception handler invoked to move data from disk into
memory
� current process suspends, others can resume
� OS has full control over placement, etc.

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault

– 14 – 15-213, S’04

Servicing a Page FaultServicing a Page Fault

Processor Signals Controller
� Read block of length P

starting at disk address X and
store starting at memory
address Y

Read Occurs
� Direct Memory Access (DMA)

� Under control of I/O controller

I / O Controller Signals
Completion
� Interrupt processor

� OS resumes suspended
process

diskDiskdiskDisk

Memory-I/O busMemory-I/O bus

ProcessorProcessor

CacheCache

MemoryMemory
I/O

controller

I/O
controller

Reg

(2) DMA
Transfer

(1) Initiate Block Read

(3) Read
Done

– 15 – 15-213, S’04

Motivation #2: Memory ManagementMotivation #2: Memory Management
Multiple processes can reside in physical memory.

How do we resolve address conflicts?
� what if two processes access something at the same

address?

Kernel virtual memory

Memory mapped region
for shared libraries

Runtime heap
(via malloc)

Program text (.text)
Initialized data (.data)

Uninitialized data (.bss)

Stack

forbidden
0

%esp

memory invisible to
user code

the “brk” ptr

Linux/x86
process
memory
image

– 16 – 15-213, S’04

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

VP 1
VP 2

PP 2

Address Translation0

0

N-1

0

N-1
M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only
library code)

Solution: Separate Virt. Addr. SpacesSolution: Separate Virt. Addr. Spaces
� Virtual and physical address spaces divided into eq ual-sized

blocks
Blocks are called “pages” (both virtual and physica l)

� Each process has its own virtual address space
Operating system controls how virtual pages as assi gned to
physical memory

...

...

Virtual
Address
Space for
Process 2:

Page 5

– 17 – 15-213, S’04

Contrast: Macintosh Memory ModelContrast: Macintosh Memory Model
MAC OS 1–9

� Does not use traditional virtual memory

All program objects accessed through “handles”
� Indirect reference through pointer table
� Objects stored in shared global address space

P1 Pointer Table

P2 Pointer Table

Process P1

Process P2

Shared Address Space

A

B

C

D

E

“Handles”

– 18 – 15-213, S’04

Macintosh Memory ManagementMacintosh Memory Management

Allocation / Deallocation
� Similar to free-list management of malloc/free

Compaction
� Can move any object and just update the (unique) po inter in

pointer table

“Handles”

P1 Pointer Table

P2 Pointer Table

Process P1

Process P2

Shared Address Space

A

B

C

D

E

– 19 – 15-213, S’04

Mac vs. VM-Based Memory MgmtMac vs. VM-Based Memory Mgmt
Allocating, deallocating, and moving memory:

� can be accomplished by both techniques

Block sizes:
� Mac: variable-sized

� may be very small or very large

� VM: fixed-size
� size is equal to one page (4KB on x86 Linux systems)

Allocating contiguous chunks of memory:
� Mac: contiguous allocation is required

� VM: can map contiguous range of virtual addresses t o
disjoint ranges of physical addresses

Protection
� Mac: “wild write” by one process can corrupt anothe r’s data

– 20 – 15-213, S’04

MAC OS XMAC OS X

“Modern” Operating System
� Virtual memory with protection

� Preemptive multitasking
� Other versions of MAC OS require processes to volun tarily

relinquish control

Based on MACH OS
� Developed at CMU in late 1980’s

Page 6

– 21 – 15-213, S’04

Motivation #3: ProtectionMotivation #3: Protection
Page table entry contains access rights information
�hardware enforces this protection (trap into OS if violation occurs)

Page Tables

Process i:

Physical AddrRead? Write?

PP 9Yes No

PP 4Yes Yes

XXXXXXXNo No

VP 0:

VP 1:

VP 2:
•
•
•

•
•
•

•
•
•

Process j:

0:
1:

N-1:

Memory

Physical AddrRead? Write?

PP 6Yes Yes

PP 9Yes No

XXXXXXXNo No
•
•
•

•
•
•

•
•
•

VP 0:

VP 1:

VP 2:

– 22 – 15-213, S’04

VM Address TranslationVM Address Translation

Virtual Address Space
� V = {0, 1, …, N–1}

Physical Address Space
� P = {0, 1, …, M–1}

� M < N (usually, but >=4 Gbyte on an IA32 possible)

Address Translation
� MAP: V →→→→ P U {∅∅∅∅}

� For virtual address a:
� MAP(a) = a’ if data at virtual address a at physica l address a’

in P
� MAP(a) = ∅∅∅∅ if data at virtual address a not in physical memory

» Either invalid or stored on disk

– 23 – 15-213, S’04

VM Address Translation: Hit

Processor

Hardware
Addr Trans
Mechanism

Main
Memorya

a'

physical addressvirtual address part of the
on-chip
Memory
Management
Unit
(MMU)

– 24 – 15-213, S’04

VM Address Translation: Miss

Processor

Hardware
Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
memorya

a'

∅∅∅∅

page fault

physical address
OS performs
this transfer
(only if miss)

virtual address part of the
on-chip
Memory
Management
Unit
(MMU)

Page 7

– 25 – 15-213, S’04

virtual page number page offset virtual address

physical page number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

Page offset bits don’t change as a result of transl ation

VM Address TranslationVM Address Translation
Parameters

� P = 2p = page size (bytes).

� N = 2n = Virtual address limit

� M = 2m = Physical address limit

Unchanged

– 26 – 15-213, S’04

Page Tables
Memory resident

page table
(physical page
or disk address) Physical Memory

Disk Storage
(swap file or
regular file system file)

Valid

1
1

1
1
1

1

1
0

0

0

Virtual Page
Number

– 27 – 15-213, S’04

Address Translation via Page TableAddress Translation via Page Table

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts
as
table index

R W

– 28 – 15-213, S’04

Page Table OperationPage Table Operation
Translation

� Separate (set of) page table(s) per process

� VPN forms index into page table (points to a page t able entry)

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts
as
table index

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts
as
table index

Page 8

– 29 – 15-213, S’04

Page Table OperationPage Table Operation
Computing Physical Address

� Page Table Entry (PTE) provides information about p age
� if (valid bit = 1) then the page is in memory.

Use physical page number (PPN) to construct address
� if (valid bit = 0) then the page is on disk

Page fault

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts
as
table index

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts
as
table index

– 30 – 15-213, S’04

Page Table OperationPage Table Operation
Checking Protection

� Access rights field indicate allowable access
� e.g., read-only, read-write, execute-only
� typically support multiple protection modes (e.g., kernel vs. user)

� Protection violation fault if user doesn’t have nec essary
permission

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts
as
table index

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts
as
table index

– 31 – 15-213, S’04

CPU
Trans-
lation

Cache Main
Memory

VA PA miss

hit
data

Integrating VM and CacheIntegrating VM and Cache

Most Caches were “Physically Addressed”
� Accessed by physical addresses

� Allows multiple processes to have blocks in cache a t same time

� Allows multiple processes to share pages

� Cache doesn’t need to be concerned with protection issues
� Access rights checked as part of address translatio n

Perform Address Translation Before Cache Lookup
� But this could involve a memory access itself (of t he PTE)

� Of course, page table entries can also become cache d

– 32 – 15-213, S’04

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

Speeding up Translation with a TLBSpeeding up Translation with a TLB

“Translation Lookaside Buffer” (TLB)
� Small hardware cache in MMU

� Maps virtual page numbers to physical page numbers

� Contains complete page table entries for small numb er of
pages

Page 9

– 33 – 15-213, S’04

Address Translation with a TLB
virtual addressvirtual page number page offset

physical address

n–1 0p–1p

valid physical page numbertag

valid tag data

data
=

cache hit

tag byte offsetindex

=

TLB hit

TLB

Cache

. ..

– 34 – 15-213, S’04

Simple Memory System ExampleSimple Memory System Example

Addressing
� 14-bit virtual addresses

� 12-bit physical address

� Page size = 64 bytes
13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

(Virtual Page Number) (Virtual Page Offset)

(Physical Page Number) (Physical Page Offset)

– 35 – 15-213, S’04

Simple Memory System Page TableSimple Memory System Page Table

� Only show first 16 entries (out of 256)

10D0F0–07

1110E0–06

12D0D11605

0–0C0–04

0–0B10203

1090A13302

117090–01

1130812800

ValidPPNVPNValidPPNVPN

– 36 – 15-213, S’04

Simple Memory System TLBSimple Memory System TLB
TLB

� 16 entries

� 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Page 10

– 37 – 15-213, S’04

Simple Memory System CacheSimple Memory System Cache
Cache

� 16 lines

� 4-byte line size

� Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

––––014F03DFC2111167

D31B7783113E––––0316

15349604116D1DF0723610D5

––––012C098F6D431324

––––00BB––––0363

3BDA159312DA0804020011B2

––––02D9––––0151

8951003A1248112311991190

B3B2B1B0ValidTagIdxB3B2B1B0ValidTagIdx

– 38 – 15-213, S’04

Address Translation Example #1Address Translation Example #1

Virtual Address 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PP N: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00101011110000

0x0F 3 0x03 Y NO 0x0D

0001010 11010

0 0x5 0x0D Y 0x36

– 39 – 15-213, S’04

Address Translation Example #2Address Translation Example #2

Virtual Address 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PP N: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

11110001110100

0x2E 2 0x0B NO YES TBD

– 40 – 15-213, S’04

Address Translation Example #3Address Translation Example #3

Virtual Address 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PP N: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 NO NO 0x28

0000000 00111

0 0x8 0x28 NO MEM

Page 11

– 41 – 15-213, S’04

Multi-Level Page TablesMulti-Level Page Tables

Given:
� 4KB (2 12) page size

� 32-bit address space

� 4-byte PTE

Problem:
� Would need a 4 MB page table!

� 220 *4 bytes

Common solution
� multi-level page tables

� e.g., 2-level table (P6)
� Level 1 table: 1024 entries, each of

which points to a Level 2 page table.
� Level 2 table: 1024 entries, each of

which points to a page

Level 1
Table

...

Level 2
Tables

– 42 – 15-213, S’04

Main ThemesMain Themes
Programmer’s View

� Large “flat” address space
� Can allocate large blocks of contiguous addresses

� Processor “owns” machine
� Has private address space
� Unaffected by behavior of other processes

System View
� User virtual address space created by mapping to se t of

pages
� Need not be contiguous
� Allocated dynamically
� Enforce protection during address translation

� OS manages many processes simultaneously
� Continually switching among processes
� Especially when one must wait for resource

» E.g., disk I/O to handle page fault

