
Page 1

System-Level I/O
March 25, 2004

System-Level I/O
March 25, 2004

TopicsTopics
� Unix I/O
� Robust reading and writing
� Reading file metadata
� Sharing files
� I/O redirection
� Standard I/O

15-213
“The course that gives CMU its Zip!”

class20.ppt
– 2 – 15-213, S’04

Unix I/O Key CharacteristicsUnix I/O Key Characteristics

Classic Unix/Linux I/O:Classic Unix/Linux I/O:

I/O operates on linear streams I/O operates on linear streams
of Bytesof Bytes

� Can reposition insertion
point and extend file at end

I/O tends to be synchronousI/O tends to be synchronous
� Read or write operation

block until data has been
transferred

Fine grained I/OFine grained I/O
� One key-stroke at a time

� Each I/O event is handled by
the kernel and an
appropriate process

Mainframe I/O:Mainframe I/O:

I/O operates on structured I/O operates on structured
recordsrecords

� Functions to locate, insert,
remove, update records

I/O tends to be asynchronousI/O tends to be asynchronous
� Overlap I/O and computation

within a process

Coarse grained I/OCoarse grained I/O
� Process writes “channel

programs” to be executed
by the I/O hardware

� Many I/O operations are
performed autonomously
with one interrupt at
completion

– 3 – 15-213, S’04

A Typical Hardware SystemA Typical Hardware System

main
memory

I/O
bridgebus interface

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor

disk

I/O bus Expansion slots for
other devices such
as network adapters.

– 4 – 15-213, S’04

Reading a Disk Sector: Step 1Reading a Disk Sector: Step 1

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor

disk

I/O bus

bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

Page 2

– 5 – 15-213, S’04

Reading a Disk Sector: Step 2Reading a Disk Sector: Step 2

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor

disk

I/O bus

bus interface

Disk controller reads the sector and
performs a direct memory access (DMA)
transfer into main memory.

– 6 – 15-213, S’04

Reading a Disk Sector: Step 3Reading a Disk Sector: Step 3

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor

disk

I/O bus

bus interface

When the DMA transfer completes, the
disk controller notifies the CPU with an
interrupt (i.e., asserts a special “interrupt”
pin on the CPU)

– 7 – 15-213, S’04

Unix FilesUnix Files
A Unix A Unix filefile is a sequence of is a sequence of mm bytes:bytes:

� B0, B1, , Bk , , Bm-1

All I/O devices are represented as files:All I/O devices are represented as files:
� /dev/sda2 (/usr disk partition)

� /dev/tty2 (terminal)

Even the kernel is represented as a file:Even the kernel is represented as a file:
� /dev/kmem (kernel memory image)

� /proc (kernel data structures)

– 8 – 15-213, S’04

Unix File TypesUnix File Types
Regular fileRegular file

� Binary or text file.

� Unix does not know the difference!

Directory fileDirectory file
� A file that contains the names and locations of oth er files.

Character special and block special filesCharacter special and block special files
� Terminals (character special) and disks (block spe cial)

FIFO (named pipe)FIFO (named pipe)
� A file type used for interprocess communication

SocketSocket
� A file type used for network communication between

processes

Page 3

– 9 – 15-213, S’04

Unix I/OUnix I/O

The elegant mapping of files to devices allows kern el to The elegant mapping of files to devices allows kern el to
export simple interface called Unix I/O.export simple interface called Unix I/O.

Key Unix idea: All input and output is handled in a Key Unix idea: All input and output is handled in a
consistent and uniform way.consistent and uniform way.

Basic Unix I/O operations (system calls): Basic Unix I/O operations (system calls):
� Opening and closing files

� open() and close()

� Changing the current file position (seek)
� lseek (not discussed)

� Reading and writing a file
� read() and write()

– 10 – 15-213, S’04

Opening FilesOpening Files
Opening a file informs the kernel that you are gett ing Opening a file informs the kernel that you are gett ing

ready to access that file.ready to access that file.

Returns a small identifying integer Returns a small identifying integer file descriptorfile descriptor
� fd == -1 indicates that an error occurred

Each process created by a Unix shell begins life wi th Each process created by a Unix shell begins life wi th
three open files associated with a terminal:three open files associated with a terminal:
� 0: standard input
� 1: standard output
� 2: standard error

int fd; /* file descriptor */

if ((fd = open(“/etc/hosts”, O_RDONLY)) < 0) {
perror(“open”);
exit(1);

}

– 11 – 15-213, S’04

Closing FilesClosing Files

Closing a file informs the kernel that you are fini shed Closing a file informs the kernel that you are fini shed
accessing that file.accessing that file.

Closing an already closed file is a recipe for disa ster in Closing an already closed file is a recipe for disa ster in
threaded programs (more on this later)threaded programs (more on this later)

Moral: Always check return codes, even for seemingl y Moral: Always check return codes, even for seemingl y
benign functions such as benign functions such as close()close()

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror(“close”);
exit(1);

}

– 12 – 15-213, S’04

Reading FilesReading Files
Reading a file copies bytes from the current file Reading a file copies bytes from the current file

position to memory, and then updates file position.position to memory, and then updates file position.

Returns number of bytes read from file Returns number of bytes read from file fdfd into into bufbuf
� nbytes < 0 indicates that an error occurred.
� short counts (nbytes < sizeof(buf)) are possible and

are not errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror(“read”);
exit(1);

}

Page 4

– 13 – 15-213, S’04

Writing FilesWriting Files
Writing a file copies bytes from memory to the curr ent file Writing a file copies bytes from memory to the curr ent file

position, and then updates current file position.position, and then updates current file position.

Returns number of bytes written from Returns number of bytes written from bufbuf to file to file fdfd ..
� nbytes < 0 indicates that an error occurred.

� As with reads, short counts are possible and are no t errors!

Transfers up to 512 bytes from address Transfers up to 512 bytes from address bufbuf to file to file fdfd

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror(“write”);
exit(1);

}

– 14 – 15-213, S’04

Unix I/O ExampleUnix I/O Example

Copying standard input to standard output one byte at a Copying standard input to standard output one byte at a
time.time.

Note the use of error handling wrappers for read an d Note the use of error handling wrappers for read an d
write (Appendix B).write (Appendix B).

#include "csapp.h"

int main(void)
{

char c;

while(Read(STDIN_FILENO, &c, 1) != 0)
Write(STDOUT_FILENO, &c, 1);

exit(0);
}

– 15 – 15-213, S’04

Dealing with Short CountsDealing with Short Counts

Short counts can occur in these situations:Short counts can occur in these situations:
� Encountering (end-of-file) EOF on reads.

� Reading text lines from a terminal.

� Reading and writing network sockets or Unix pipes.

Short counts never occur in these situations:Short counts never occur in these situations:
� Reading from disk files (except for EOF)

� Writing to disk files.

How should you deal with short counts in your code?How should you deal with short counts in your code?
� Use the RIO (Robust I/O) package from your textbook ’s

csapp.c file (Appendix B).

– 16 – 15-213, S’04

The RIO PackageThe RIO Package
RIO is a set of wrappers that provide efficient and robust I/O iRIO is a set of wrappers that provide efficient and robust I/O i n n

applications such as network programs that are subj ect to short applications such as network programs that are subj ect to short
counts.counts.

RIO provides two different kinds of functionsRIO provides two different kinds of functions
� Unbuffered input and output of binary data

� rio_readn and rio_writen

� Buffered input of binary data and text lines
� rio_readlineb and rio_readnb

� Cleans up some problems with Stevens’s readline and readn functions.
� Unlike the Stevens routines, the buffered RIO routi nes are thread-safe and

can be interleaved arbitrarily on the same descript or.

Download from Download from
csapp.cs.cmu.edu/public/ics/code/src/csapp.ccsapp.cs.cmu.edu/public/ics/code/src/csapp.c
csapp.cs.cmu.edu/public/ics/code/include/csapp.hcsapp.cs.cmu.edu/public/ics/code/include/csapp.h

Page 5

– 17 – 15-213, S’04

Unbuffered RIO Input and OutputUnbuffered RIO Input and Output

Same interface as Unix Same interface as Unix readread and and writewrite

Especially useful for transferring data on network Especially useful for transferring data on network
socketssockets

� rio_readn returns short count only it encounters EOF.

� rio_writen never returns a short count.

� Calls to rio_readn and rio_writen can be interleaved
arbitrarily on the same descriptor.

#include “csapp.h”

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(nt fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

– 18 – 15-213, S’04

Implementation of rio_readnImplementation of rio_readn
/*

* rio_readn - robustly read n bytes (unbuffered)
*/

ssize_t rio_readn(int fd, void *usrbuf, size_t n)
{

size_t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* interrupted by sig
handler return */

nread = 0; /* and call read() again */
else

return -1; /* errno set by read() */
}
else if (nread == 0)

break; /* EOF */
nleft -= nread;
bufp += nread;

}
return (n - nleft); /* return >= 0 */

}

– 19 – 15-213, S’04

Buffered RIO Input FunctionsBuffered RIO Input Functions

Efficiently read text lines and binary data from a file Efficiently read text lines and binary data from a file
partially cached in an internal memory bufferpartially cached in an internal memory buffer

� rio_readlineb reads a text line of up to maxlen bytes from
file fd and stores the line in usrbuf .
� Especially useful for reading text lines from netwo rk sockets.

� rio_readnb reads up to n bytes from file fd .
� Calls to rio_readlineb and rio_readnb can be interleaved

arbitrarily on the same descriptor.
� Warning: Don’t interleave with calls to rio_readn

#include “csapp.h”

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n) ;

Return: num. bytes read if OK, 0 on EOF, -1 on erro r

– 20 – 15-213, S’04

RIO ExampleRIO Example

Copying the lines of a text file from standard inpu t to Copying the lines of a text file from standard inpu t to
standard output.standard output.

#include "csapp.h"

int main(int argc, char **argv)
{

int n;
rio_t rio;
char buf[MAXLINE];

Rio_readinitb(&rio, STDIN_FILENO);
while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)

Rio_writen(STDOUT_FILENO, buf, n);
exit(0);

}

Page 6

– 21 – 15-213, S’04

File MetadataFile Metadata

MetadataMetadata is data about data, in this case file data.is data about data, in this case file data.

Maintained by kernel, accessed by users with the Maintained by kernel, accessed by users with the stat stat
and and fstatfstat functions.functions.

/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection and file t ype */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
unsigned long st_blksize; /* blocksize for filesyst em I/O */
unsigned long st_blocks; /* number of blocks allo cated */
time_t st_atime; /* time of last access * /
time_t st_mtime; /* time of last modifica tion */
time_t st_ctime; /* time of last change * /

}; – 22 – 15-213, S’04

Example of Accessing File MetadataExample of Accessing File Metadata
/* statcheck.c - Querying and manipulating a file’s m eta data */
#include "csapp.h"

int main (int argc, char **argv)
{

struct stat stat;
char *type, *readok;

Stat(argv[1], &stat);
if (S_ISREG(stat.st_mode)) /* file type*/

type = "regular";
else if (S_ISDIR(stat.st_mode))

type = "directory";
else

type = "other";
if ((stat.st_mode & S_IRUSR)) /* OK to read?*/

readok = "yes";
else

readok = "no";

printf("type: %s, read: %s\n", type, readok);
exit(0);

}

bass> ./statcheck statcheck.c
type: regular, read: yes
bass> chmod 000 statcheck.c
bass> ./statcheck statcheck.c
type: regular, read: no

– 23 – 15-213, S’04

Metadata as File (Plan 9, ReiserFS 4)Metadata as File (Plan 9, ReiserFS 4)

Access to metadata requires a different API and is not Access to metadata requires a different API and is not
easily extensible. The file notation can be used as a easily extensible. The file notation can be used as a
uniform assess mechanism in future file systems:uniform assess mechanism in future file systems:

�� Files as directories:Files as directories:

Bass> ls -l
-rw-r--r-- 1 bovik users 120 Nov 3 04:33 bar.c
-rw-r--r-- 1 agn users 727 Nov 3 04:35 foo. c
Bass> cat bar.c/..rwx
-rw-r--r--
Bass> echo 0777 > bar.c/..rwx
Bass> ls –l bar.c
-rwxrwxrwx 1 bovik users 120 Nov 3 04:33 bar.c
Bass> cp bar.c/..uid foo.c/..uid
Bass> ls -l
-rw-r--r-- 1 bovik users 120 Nov 3 04:33 bar.c
-rwxrwxrwx 1 bovik users 727 Nov 3 04:35 foo.c
Bass>

– 24 – 15-213, S’04

Accessing DirectoriesAccessing Directories

The only recommended operation on directories is to The only recommended operation on directories is to
read its entries.read its entries.

#include <sys/types.h>
#include <dirent.h>

{
DIR *directory;
struct dirent *de;
...
if (!(directory = opendir(dir_name)))

error("Failed to open directory");
...
while (0 != (de = readdir(directory))) {

printf("Found file: %s\n", de->d_name);
}
...
closedir(directory);

}

Page 7

– 25 – 15-213, S’04

How the Unix Kernel Represents
Open Files
How the Unix Kernel Represents
Open Files
Two descriptors referencing two distinct open disk Two descriptors referencing two distinct open disk

files. Descriptor 1 (files. Descriptor 1 (stdoutstdout) points to terminal, and) points to terminal, and
descriptor 4 points to open disk file.descriptor 4 points to open disk file.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat
struct

– 26 – 15-213, S’04

File SharingFile Sharing

Two distinct descriptors sharing the same disk file Two distinct descriptors sharing the same disk file
through two distinct open file table entriesthrough two distinct open file table entries
� E.g., Calling open twice with the same filename argument

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

File access

...

File size

File type

File A

File B

– 27 – 15-213, S’04

How Processes Share FilesHow Processes Share Files

A child process inherits its parent’s open files. H ere is A child process inherits its parent’s open files. H ere is
the situation immediately after a the situation immediately after a forkfork

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor
tables

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=2

...

File pos
refcnt=2

...

Parent's table

fd 0
fd 1
fd 2
fd 3
fd 4

Child's table

File access

...

File size

File type

File access

...
File size

File type

File A

File B

– 28 – 15-213, S’04

I/O RedirectionI/O Redirection
Question: How does a shell implement I/O redirectio n?Question: How does a shell implement I/O redirectio n?

unix> ls > foo.txt

Answer: By calling the Answer: By calling the dup2(oldfd, dup2(oldfd, newfdnewfd)) functionfunction
� Copies (per-process) descriptor table entry oldfd to entry

newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

Page 8

– 29 – 15-213, S’04

I/O Redirection ExampleI/O Redirection Example
Before calling Before calling dup2(4,1)dup2(4,1) , , stdoutstdout (descriptor 1) points (descriptor 1) points

to a terminal and descriptor 4 points to an open di sk to a terminal and descriptor 4 points to an open di sk
file.file.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

– 30 – 15-213, S’04

I/O Redirection Example (cont)I/O Redirection Example (cont)

After calling After calling dup2(4,1)dup2(4,1) , , stdoutstdout is now redirected to the is now redirected to the
disk file pointed at by descriptor 4.disk file pointed at by descriptor 4.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=0

...
File pos
refcnt=2

...

File access
...

File size

File type

File access

...

File size

File type

File A

File B

– 31 – 15-213, S’04

Standard I/O FunctionsStandard I/O Functions

The C standard library (The C standard library (libc.alibc.a) contains a collection of) contains a collection of
higherhigher --level level standard I/O standard I/O functionsfunctions
� Documented in Appendix B of K&R.

Examples of standard I/O functions:Examples of standard I/O functions:
� Opening and closing files (fopen and fclose)

� Reading and writing bytes (fread and fwrite)

� Reading and writing text lines (fgets and fputs)

� Formatted reading and writing (fscanf and fprintf)

– 32 – 15-213, S’04

Standard I/O StreamsStandard I/O Streams

Standard I/O models open files as Standard I/O models open files as streamsstreams
� Abstraction for a file descriptor and a buffer in m emory.

C programs begin life with three open streams (defi ned C programs begin life with three open streams (defi ned
in in stdio.hstdio.h))
� stdin (standard input)

� stdout (standard output)

� stderr (standard error)

#include <stdio.h>
extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf(stdout, “Hello, world\n”);

}

Page 9

– 33 – 15-213, S’04

Buffering in Standard I/OBuffering in Standard I/O

Standard I/O functions use buffered I/OStandard I/O functions use buffered I/O

printf(“h”);

h e l l o \n . .

printf(“e”);
printf(“l”);

printf(“l”);

printf(“o”);
printf(“\n”);

fflush(stdout);

buf

write(1, buf += 6, 6);

– 34 – 15-213, S’04

Standard I/O Buffering in ActionStandard I/O Buffering in Action

You can see this buffering in action for yourself, using You can see this buffering in action for yourself, using
the always fascinating Unix the always fascinating Unix stracestrace program:program:

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6...) = 6
...
_exit(0) = ?

#include <stdio.h>

int main()
{

printf("h");
printf("e");
printf("l");
printf("l");
printf("o");
printf("\n");
fflush(stdout);
exit(0);

}

– 35 – 15-213, S’04

Unix I/O vs. Standard I/O vs. RIOUnix I/O vs. Standard I/O vs. RIO

Standard I/O and RIO are implemented using lowStandard I/O and RIO are implemented using low --level level
Unix I/O.Unix I/O.

Which ones should you use in your programs?Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

RIO
functions

– 36 – 15-213, S’04

Pros and Cons of Unix I/OPros and Cons of Unix I/O

ProsPros
� Unix I/O is the most general and lowest overhead fo rm of I/O.

� All other I/O packages are implemented using Unix I /O
functions.

� Unix I/O provides functions for accessing file meta data.

ConsCons
� Dealing with short counts is tricky and error prone .

� Efficient reading of text lines requires some form of
buffering, also tricky and error prone.

� Both of these issues are addressed by the standard I/O and
RIO packages.

Page 10

– 37 – 15-213, S’04

Pros and Cons of Standard I/OPros and Cons of Standard I/O

Pros:Pros:
� Buffering increases efficiency by decreasing the nu mber of

read and write system calls.

� Short counts are handled automatically.

Cons:Cons:
� Provides no function for accessing file metadata

� Standard I/O is not appropriate for input and outpu t on
network sockets

� There are poorly documented restrictions on streams that
interact badly with restrictions on sockets

– 38 – 15-213, S’04

Pros and Cons of Standard I/O (cont)Pros and Cons of Standard I/O (cont)

Restrictions on streams:Restrictions on streams:
� Restriction 1: input function cannot follow output function

without intervening call to fflush , fseek , fsetpos , or
rewind .
� Latter three functions all use lseek to change file position.

� Restriction 2: output function cannot follow an inp ut
function with intervening call to fseek , fsetpos , or rewind .

Restriction on sockets:Restriction on sockets:
� You are not allowed to change the file position of a socket.

– 39 – 15-213, S’04

Pros and Cons of Standard I/O (cont)Pros and Cons of Standard I/O (cont)

Workaround for restriction 1:Workaround for restriction 1:
� Flush stream after every output.

Workaround for restriction 2:Workaround for restriction 2:
� Open two streams on the same descriptor, one for re ading

and one for writing:

� However, this requires you to close the same descri ptor
twice:

� Creates a deadly race in concurrent threaded progra ms!

FILE *fpin, *fpout;

fpin = fdopen(sockfd, “r”);
fpout = fdopen(sockfd, “w”);

fclose(fpin);
fclose(fpout);

– 40 – 15-213, S’04

Choosing I/O FunctionsChoosing I/O Functions

General rule: Use the highestGeneral rule: Use the highest --level I/O functions you level I/O functions you
can.can.
� Many C programmers are able to do all of their work using

the standard I/O functions.

When to use standard I/O?When to use standard I/O?
� When working with disk or terminal files.

When to use raw Unix I/O When to use raw Unix I/O
� When you need to fetch file metadata.
� In rare cases when you need absolute highest perfor mance.

When to use RIO?When to use RIO?
� When you are reading and writing network sockets or pipes.
� Never use standard I/O or raw Unix I/O on sockets o r pipes.

Page 11

– 41 – 15-213, S’04

Asynchronous I/OAsynchronous I/O
How to deal with multiple I/O operations concurrent ly?How to deal with multiple I/O operations concurrent ly?

For example: wait for a keyboard input, a mouse cli ck and input from a
network connection.

�� Select system callSelect system call

�� Poll system call (same idea, different implementati on)Poll system call (same idea, different implementati on)

�� /dev/poll (Solaris, being considered for Linux)/dev/poll (Solaris, being considered for Linux)

�� PosixPosix realreal --time signals + time signals + sigtimedwaitsigtimedwait ()()

�� Native Native PosixPosix Threads Library (NPTL)Threads Library (NPTL)

For more info see For more info see http://www.kegel.com/c10k.htmlhttp://www.kegel.com/c10k.html

int select(int n, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

int poll(struct pollfd *ufds, unsigned int nfds, int tim eout);

struct pollfd { int fd; /* file descriptor * /
short events; /* requested events */
short revents; /* returned events */

};

– 42 – 15-213, S’04

Asynchronous I/O (cont.)Asynchronous I/O (cont.)
POSIX P1003.4 Asynchronous I/O interface functions:POSIX P1003.4 Asynchronous I/O interface functions:

(available in Solaris, AIX, Tru64 Unix, Linux 2.6,…)(available in Solaris, AIX, Tru64 Unix, Linux 2.6,…)
� aio_cancel

cancel asynchronous read and/or write requests
� aio_error

retrieve Asynchronous I/O error status
� aio_fsync

asynchronously force I/O completion, and sets errno to ENOSYS
� aio_read

begin asynchronous read
� aio_return

retrieve return status of Asynchronous I/O operatio n
� aio_suspend

suspend until Asynchronous I/O Completes
� aio_write

begin asynchronous write
� lio_listio

issue list of I/O requests

– 43 – 15-213, S’04

For Further InformationFor Further Information

The Unix bible:The Unix bible:
� W. Richard Stevens, Advanced Programming in the Un ix

Environment, Addison Wesley, 1993.
Somewhat dated, but still useful.

� W. Richard Stevens, Unix Network Programming :
Networking Apis: Sockets and Xti (Volume 1), 1998

Stevens is arguably the best technical writer ever.Stevens is arguably the best technical writer ever.
� Produced authoritative works in:

� Unix programming
� TCP/IP (the protocol that makes the Internet work)
� Unix network programming
� Unix IPC programming.

Tragically, Stevens died Sept 1, 1999. Tragically, Stevens died Sept 1, 1999.

