Andrew login ID:
Full Name:

CS 15-213, Fall 2003

Final Exam

December 9, 2003
Instructions:

e Make sure that your exam is not missing any sheets, then yaitefull name and Andrew login ID
on the front.

e The exam has a maximum score of 88 points.

¢ This exam is OPEN BOOK. You may use any books or notes you Yka.may use a calculator, but
no laptops or other wireless devices. Good luck!

1 (08):

2 (09):

3 (04):

4 (08):

5 (08):

6 (10):

7 (08):

8 (09):

9 (06):

10 (08):

11 (10):

TOTAL (88):

Page 1 of 21

Problem 1. (8 points):

Consider the followingn-bit floating-point representation based on the IEEE flgapoint format:

e There is a sign bit-field in the most significant &it
e The nextk bit-fields are the exponelip

e The lastn bit-fields are the significanfitac.

In this format, a given numeric valué is encoded in the forny = (—1)* x M x 2F, wheres is the sign
bit, £ is exponent after biasing, ardd is the significand.

Part |

Give a formula for the largest odd integer that can be reptedeexactly.

Part Il

Give a formula for the smallest positive normalized value.

Page 2 of 21

The following data structure declarations pertain to the peoblem.
(Feel free to remove this page from your exam packet for egfgeyance.)

struct sl {
char a[3];
uni on ul *b;
int c;

H

struct s2 {
struct sl d;
struct sl *e;
struct s2 *f;
doubl e g;
int h[4];
b

uni on ul {

int i;
struct s2 j;
struct sl *Kk;

b

Page 3 of 21

Problem 2. (9 points):

In the following problem, you are given the task of reconsing C code based on the declarations of C
structures and unions from the previous page, and the |1AB2flassembly code generated when compiling
the C code.

For each 1A32 assembly code sequence below on the left, filémmissing portion of corresponding C
source line on the right.

A procl: int procl(struct sl *x)
pushl %ebp {
movl %esp, Yebp return x-> ;
movl 8(%bp), Yeax }

movl 4(%ax), Y%eax
movl 40(%eax), Y%eax
movl %ebp, Yesp

popl %bp
ret
B proc2: int proc2(struct s2 *x)
pushl %ebp {
novl %esp, Yebp return x-> :
nmovl 8(%bp), Yeax }

nmovl 32(%ax), Y%eax
nmovl %ebp, Yesp

popl %bp
ret
C proc3: int proc3(union ul *x)
pushl %ebp {
movl %esp, Yebp return x-> ;
movl 8(%ebp), Yeax }

movl (%eax), Y%eax
movl 4(%ax), Yeax
movl (%eax), Yeax
movl %ebp, Yesp
popl %bp

ret

Page 4 of 21

Problem 3. (4 points):

This problem concerns the indexing of C arrays.

Consider the C code below, whdxgs a constant declared wittdef i ne.

int foo (int A[16][N], int i, int j)
{

}

return A[i][j];

Suppose the above C code generates the following assend#y co

foo:
pushl %bp
novl %esp, Yebp
nmovl 8(%ebp), ¥ecx
nmovl 16(%ebp) , %edx
nmovl 12(%bp) , ¥%eax
sal | $2, %edx
sal | $3, %eax
subl 12(%bp), Y%eax
| eal (%edx, Y%eax, 4), Y%eax
nmovl %ebp, Yesp
popl %ebp
novl (%ecx, %eax), ¥eax
ret

What is the value oN?

N=

Page 5 of 21

Problem 4. (8 points):

Consider the following four C and IA32 functions. Next to kaxf the four IA32 functions, write the name
of the C function that it implemnts. If the assembly routireesin’t match any of the above functions, write
NONE. To save space, the startup code for each 1A32 functiomitted:

pushl %bp
nmovl %esp, Y%ebp

nov| 8(%bp), %eax
nov| 12(%bp), %edx
nov| (%eax, %edx, 4), %edx
nov| 16(%bp), %eax
popl %ebp
| eal (%edx, %eax, 4), %ax
int *winter(int foo[12][8], ret
int i, int j)
{
return &oo[i][j]; mov| 16(%ebp), %eax
} nov| 12(%bp), %ecx
nov| 8(%ebp), %edx
. . . popl %ebp
int *spring(int foo[12][8], add| Yecx, Y%eax
int i, int j) sal | $5, %ax
{ o addl %edx, %eax
return fooli+j]; r et
}
int *summer (int** foo, mov| 12(%ebp), %edx
int i, int j) novl 16(%bp), %eax
{ addl %edx, %eax
return & oo[i][j]; mov| 8(%bp), %edx
} popl %ebp
nov| (%edx, %eax, 4), %eax
ret
int *fall (int** foo,
int i, int j)
{ o nov| 12(%bp), %eax
return fooli+j]; mov| 16(%ebp), %ecx
} nov| 8(%bp), %edx
sal | $3, Y%eax
popl %ebp
addl %ecx, %Yeax
sal | $2, Y%eax
addl %edx, %eax

ret

Page 6 of 21

Problem 5. (8 points):

This problem tests your understanding of basic cache opesat

(Note: This is the same problem from Exam 2, with one exaepitioExam 2 we asked you to complete two
iterations, sayk and k + 1, of the game. In this problem, we are asking you to do the mexiterations,
k+2andk + 3.

Harry Q. Bovik has written the mother of all game-of-life grams. The Game-of-life is a computer game
that was originally described by John H. Conway in the Ap8ifQ issue of Scientific American. The game
is played on a 2 dimensional array of cells that can eithetilde &= has value 1) or dead (= has value 0).
Each cell is surrounded by 8 neighbors. If a life cell is sumaed by 2 or 3 life cells, it survives the next

generation, otherwise it dies. If a dead cell is surroundedxactly 3 neighbors, it will be born in the next

generation.

Harry uses a very, very largi¥ x N array ofi nt's, whereN is an integral power of 2. It is so large that
you don’t need to worry about any boundary conditions. Timeiroop uses two int-pointers-c anddst
that scan the cell array. There are two arrays:is scanning the current generation whilg is writing the
next generation. Thus Harry’s inner loop looks like this:

int *src, *dst;
{ int n;

/* Count |ife neigbors */
=src[1 1;

+=src[1 - N;

+= src| - N

+= src[-1 - N;

+= src[-1 1;

+= src[-1 + N|

+= src| N|

+=src[1 + N;

5 3 3 3 5 5 5 S5

/* update the next generation */
*dst = (((*src '=0) & (n ==2)) || (n==3)) 21 : O

dst ++;
SrCc++;

You should assume that the pointerg anddst are kept in registers and that the counter varialikalso in
a register. Furthermore, Harry’s machine is fairly old asdaia write-through cache with no-write-allocate
policy. Therefore, you daot need to worry about the write operation for the next genenati

Each cache line on Harry’s machine holds 4 int's (16 Byted)e Tache size is 16 KBytes, which is too
small to hold even one row of Harry’s game of life arrays. Hieach row hagV elements, wherdV is a
power of 2.

Page 7 of 21

Figure 1 shows how Harry’s program is scanning the gameeélifay. The thick vertical bars represent the
boundaries of cache lines: four consecutive horizontahiszgiare one cache line. A neighborhood consists
of the 9 squares (cells) that are not marked with an X. Theeceguare is theént cell that is currently
pointed to bysrc.

The 2 neighborhoods shown in Figure 1 represent 2 succdssiggons (case A and B) through the inner
loop. Thesrc pointer is incremented one cell at a time and moves fromdefight in these pictures.

You shall mark each of the 9 squares those with either a 'H”bY éndicating if the corresponding memory
read operation hits (H) or misses (M) in the cache. Cellsadbatain an X do not belong to the neighborhood
that is being evaluated and you should not mark these.

Part 1

In this part, assume that the cache is organized as a dirgmiedacache. Please mark the left column in
Figure 1 with your answer. The right column may be used asdtrahile you reason about your answer.
We will grade the left column only.

Your Answer in this column Scratch / Spare column

XEX| X[X| XX X[X]|X]X XEX| X[X| XX X[X]|X]}X
XEX| X[X X[XX X X| X[X X| X X
XEX| X[X XXX CaseA XX|X|X X[X[X
XEX| X[X X[XX X X| X| X X| XX
XEX| X[X| XEX| X[X]| X} X XEX| X[X| XX X[X]| X} X
XEX| X[X| XEX| X[X]| XX XEX| X[X| XEX| X[X]| XX
XX X|X]| X X X XX X|X]| X X X
XEX| X X| X X|X CaseB XIX| X| X| X X X
XEX| X[X]| X X X XX X|X]| X X[X
XEX| X[X| XEX| X[X]| XX XEX| X[X| XEX| X[X]| X} X

== Direction of array traversal

Figure 1:Game of Life with a direct mapped cache

Page 8 of 21

Part 2

In this part, assume a 3-way, set-associative cache witH iast Recently Used replacement policy (LRU).
As in Part 1 of this question, please provide your answer brkimg the empty squares of the left column
in Figure 2 with your solution.

Your Answer in this column Scratch / Spare column

XEX| X[X| XX X[X]|X]X XEX| X[X| XX X[X]|X]}X
XEX| X[X X[XX X X| X[X X| XX
XEX| X[X XXX CaseA XX|X|X X[X[X
XEX| X[X X[XX X X| X| X X| XX
XEX| X[X| XEX| X[X]| X} X XEX| X[X| XX X[X]| X} X
XEX| X[X| XEX| X[X]| XX XEX| X[X| XEX| X[X]| XX
XX X|X]| X X X XX X|X]| X X X
XEX| X X| X X|X CaseB XIX| X| X| X X X
XEX| X[X]| X X X XX X|X]| X X[X
XEX| X[X| XEX| X[X]| XX XEX| X[X| XEX| X[X]| X} X

== Direction of array traversal

Figure 2:Game of Life with a set associative cache

Page 9 of 21

For the next problem, you are given four different cache mimgions. All four caches are of the same size,
namely 1024 bytes. However the caches are organized diffgre

A. Cache A:is a direct mapped cache with a line size of 8 bytes (m’ s).

B. Cache B:is a 4-way, set-associative cache with a line size of 8 bytexsi (nt * s) and least recently
used (LRU) replacement policy.

C. Cache C:is a direct mapped cache with a line size of 64 bytes (46’ s).

D. Cache D:is a 4-way, set-associative cache with a line size of 64 bf#e$6i nt’ s) and LRU
replacement policy.

(Feel free to remove this page from your exam packet for ezfgyance.)

Page 10 of 21

Problem 6. (10 points):

This problem tests your understanding of how the cache @ag@#on can impact the performance of a
program.

For each kernel listed below, you should determine whicthef4 cache organizations from the previous
page performs best, circling the letters (A, B, C, D) asdedighose cache organizations.

For this problem we definthest” to mean that the cache has the least number of cache misseshdild
assume that the caches are cold prior to executing the kerielother words, the caches have no valid
data and the first access to any datum will cause a cache missme cases, “best” is not unique, so that
there are two or more cache organizations that perform gowall. In this case, you must list all cache
organizations that have the same performance for full tredi

For example, a kernel that touches only one variable willaglsvmiss on that access, no matter how the
cache is organized. So the correct answer would be to circk &, and D.

Each kernel has some loop variables |) and a working variablex(), which are kept in registers and which
do not cause any memory accesses. Likewise, you are supjmoiggabre instruction fetches.

1. Kernel 1 (2 pts):.
int A[127][127];

{

int i, j, x = 0;

for (i = 0; i < 127; i++)
for (j = 0; jJ < 127; j++)

x += A[jl[i];
return Xx;
}
The best cache organization(s) is(are): A B C D

2. Kernel 2 (2 pts):
int A[127][127];

{

int i, j, x =0;
for (i = 0; i < 127; i++)
for (j = 0; j < 127; j++)
x += Ali][j];

return x;

}

The best cache organization(s) is(are): A B C D

Page 11 of 21

3. Kernel 3 (3 pts).
int A[127][127], B[127][127];

{

int i, j, x =0;
for (i =0; i < 127; i++)
for (j =0; j < 127; j++)
x += Ali][j] * Bli][j];

return Xx;

}

The best cache organization(s) is(are): A B
4. Kernel 4 (3 pts):.
int A[16][16], B[16][16];

{

int i, j, x =0;
for (i =0; i < 16; i++)
for (j =0; j < 16; j++)
x += AjI[i] * BLil[jl];

return Xx;

}

The best cache organization(s) is(are): A B

Page 12 of 21

The following C program and declarations are part of the peablem. For each part, the three comment
lines

/[* LINE 1 */
/[* LINE 2 */
/* LINE 3 */

will be replaced with different fragments of code. (For spaeasons, we are not checking error return
codes, so assume that all functions return normally.)

int counter = 2;

void foo() {
count er ++;
printf("%l", counter);

int main() {
pthread_t tid[2];
int i;
for (i =0; i <2; i++) {
/* LINE 1 */

/* LINE 2 */
/* LINE 3 */

}

count er ++;
printf("%l", counter);

(Feel free to remove this page from your exam packet for egfeyance.)

Page 13 of 21

Problem 7. (8 points):

This problem tests your understanding of the differencésdxen processes and threads.

Part 1

Suppose the following code replaces the three commentilirtee program on the previous page:

LI NE 1:
LI NE 2: Pt hread create(&tid[i], 0, foo, 0);
LI NE 3:

What is thefirst number that gets printed on stdout? Circle only one answer.

3

4

5

Could be either 3 or 4 or 5
Coul d be either 3 or 4

Part 2

Suppose the following code replaces the three comment lines

LI NE 1: Pt hread create(&tid[i], 0, foo, 0);
LI NE 2: Pthread_join(tid[i], 0);
LI NE 3:

What is thefirst number that gets printed on stdout? Circle only one answer.

3

4

5

Could be either 3 or 4 or 5
Coul d be either 3 or 4

Page 14 of 21

Part 3

Suppose the following code replaces the three comment lines

LI NE 1: if (fork() == 0) {
LI NE 2: foo();
LI NE 3: }

What is thefirst number that gets printed on stdout? Circle only one answer.

3

4

5

Could be either 3 or 4 or 5
Coul d be either 3 or 4

Part 4

Consider thesamecode adPart 3. What is theSECOND number that gets printed on stdout? Circle only
one answer.

3

4

5

Could be either 3 or 4 or 5
Coul d be either 3 or 4

Page 15 of 21

Problem 8. (9 points):

This problem tests your understanding of signals.

For each of the code segments below, circlel#ingest value that could be printed to stdout. Remember
that when the system executes a signal handler, it blockalsigf the type currently being handled (and no

others).

int i =0;

int i =0;

int i = 0;

void handler(int s){

voi d handler(int s){ if(i){
voi d handler(int s){ ifC i){ kill (getpid(),
if(i){ kill (getpid(), SI G NT) ;
kill (getpid(), SI G NT) ; kill (getpid(),
SI G NT) ; kill (getpid(), SI GUSR1) ;
} S| G NT) ; }
[} i ++:
} i ++; }
}
int main(){ int main(){
si gnal (SI G NT, int main(){ si gnal (SI G NT,
handl er) ; si gnal (SI G NT, handl er) ;
kill (getpid(), handl er) ; si gnal (SI GUSR1,
SI G NT) ; kill (getpid(), handl er) ;
S| G NT) ; kill (getpid(),
printf("%l\n",i); SI GUSR1) ;
printf("%l\n",i);
return O; printf("%l\n",i);
} return O;
} return O;
}
e 0 e 0 e 0
e 1 o1 o1
e 2 ° 2 o 2
e 3 ¢ 3 e 3
e 4 e 4 o 4
e 5 e 5 e 5
e 1000 e 1000 e 1000

Page 16 of 21

Problem 9. (6 points):

This problem tests your understanding of pointer arithenatid pointer dereferencing.

Harry Q. Bovik has decided to exercise his creativity and ¢raated the most exotic dynamic memory
allocator that the 213 staff has ever seen. The followingdesription of Harry’s block structure:

| HDR | ID.STRING | PAYLOAD | FTR |

e HDR - Header of the block (4 bytes)
¢ ID_STRING - Unique ID string (8 bytes)
e PAYLOAD - Payload of the block (arbitrary size)

¢ FTR - Footer of the block (4 bytes)
The size of the payload of each block is stored in the headkttenfooter of the block. Since there is an 8
byte alignment requirement, the least significant of thesed bits is used to indicate whether the block is

free (0) or allocated (1). Harry has also decided to unigladgl each block with a string stored right after
the header of the block. The size of this ID field is 8 bytes.

For this problem, you can assume that:
e sizeof(int) == 4 bytes
e sizeof(char) == 1 bytes
e sizeof(short) == 2 bytes

e The size of any pointer (e.g. char*) is 4 bytes.

Page 17 of 21

Your task is to help Harry figure out and ciratdearly which of the following definitions of the macro
CET_ Dwill causepri nt bl ock() to output the string that is stored in th&_STRI NGfield. There
may be multiple macros that are correct, so be sure to circle lhof them.

Also, assume that the block pointep points to the first byte of the payload.

/* Harry Q Bovik’'s print_block() function
Refer to this function in order to figure out
the context in which the GET_ID macro is used.
*/
void print_bl ock(void *bp){
printf("Found block ID: %\n", GET_ID(bp));
}

[* A */
#define GET_ID(bp) ((char *)(((int)bp) - 8))

/[* B. */
#define GET_ID(bp) ((char *)(((char)bp) - 8))

/[* C. */
#define GET_ID(bp) ((char *)(((char *)bp) - 4))

/[* D. */
#define GET_ID(bp) ((char *)(((char *)bp) - 8))

/* E */
#define GET_ID(bp) ((char *)(((int *)bp) - 4))

/* F. */
#define GET_ID(bp) ((char *)(((int *)bp) - 8))

[* G */
#define GET_ID(bp) ((char *)(((char**)bp)

8))

[* H */
#define GET_ID(bp) ((char *)(((short*)bp) - 4))

[* 1. */
#define GET_ID(bp) ((char *)(((short*)bp) - 8))

Page 18 of 21

Problem 10. (8 points):

Suppose the filé 00. t xt contains letters, andyar . t xt contains numbers. Examine the following C
code, and answer the questions below. (For space reasoraewwt checking error return codes, so
assume that all functions return normally.)

int main() {

int fda, fdb, fdc, pid
char c;

f da
fdb
fdc

open("foo.txt", O RDONLY, 0)
open("foo.txt", O RDONLY, 0)
open("bar.txt", O RDONLY, 0)

if ((pid=fork()) ==0) {
dup2(fdb, fdc);
read(fda, &c, 1);
read(fdb, &c, 1);
read(fdc, &c, 1);

}

if (pid)

wai t (0);
dup2(fda, fdb);
read(fda, &c, 1);
read(fdb, &c, 1);
read(fdc, &c, 1);
cl ose(fdb);
fdb = open("bar.txt", O RDONLY, 0)
read(fda, &c, 1);
read(fdb, &c, 1);
read(fdc, &c, 1);

exit(0);

I medi ately before the child exits:

How many |etters
How many nunbers

I medi ately before

have been read so far?
have been read so far?

the parent exits:

How many | etters have been read since the child exited?

How many nunbers have been read since the child exited?

Page 19 of 21

Problem 11. (10 points):
This problem tests your understanding of concurrency andtspnization.

Below are some code segments that use threads. For eachnéglighall possible output number sequences
that could be printed. If a code segment possibly does npubany numbers, write “NONE” as one of the
possibilities.

Note: You may assume that the code contains no errors otherttie ones that may arise due to concur-
rency issues. Also assume that all thread library calls ydweork without any errors. Lastly, assume no
optimization is done during compilation.

Code Segment 1

voi d *square(void *x)

{
int *y = x;
printf("%d", (*y) * (*y));
return NULL,;

}

int main()
{
pthread t t;
int i = 2;
pt hread_create(& , NULL, square, &);
printf("%", ++i);

pt hread_join(t, NULL);
return O;

Possible output sequences:

Page 20 of 21

Code Segment 2

/* The following code is a sinple sinulation of a bar

* - each thread represents a custoner

* - visit() represents a custoner’s visiting the bar

* - occupancy represents current nunber of custonmers in the bar
* - bartender represents the person in charge of the bar

*/

semt bartender;
i nt occupancy=0;

void *visit(void *customerl D)

{
sem wai t (&bartender); [* P(&bartender) */
occupancy++;
if ((int)customer == -1)
printf("%l", occupancy);
occupancy- -;

sem post (&art ender) ; [* V(&bartender) */

return NULL;
}

int main()
{
pthread_t t[5];
int i;
sem.init(&artender, 0, 2); /* initialized with the value 2 */
/* let custonmers in */
for (i=0; i < 5; i++)
pthread create(&[i], NULL, visit, (void *)i);
visit((void *)-1);

return 0; /* close down the bar */

Possible output sequences:

Page 21 of 21

