
Andrew login ID:

Full Name:

CS 15-213, Fall 2003

Final Exam
December 9, 2003

Instructions:

� Make sure that your exam is not missing any sheets, then writeyour full name and Andrew login ID
on the front.

� The exam has a maximum score of 88 points.

� This exam is OPEN BOOK. You may use any books or notes you like.You may use a calculator, but
no laptops or other wireless devices. Good luck!

1 (08):

2 (09):

3 (04):

4 (08):

5 (08):

6 (10):

7 (08):

8 (09):

9 (06):

10 (08):

11 (10):

TOTAL (88):

Page 1 of 21

Problem 1. (8 points):

Consider the following� -bit floating-point representation based on the IEEE floating-point format:

� There is a sign bit-field in the most significant bits.

� The next
�

bit-fields are the exponentexp.

� The last� bit-fields are the significandfrac.

In this format, a given numeric value� is encoded in the form� � ����	
 �
 �
 , where� is the sign
bit, � is exponent after biasing, and� is the significand.

Part I

Give a formula for the largest odd integer that can be represented exactly.

Part II

Give a formula for the smallest positive normalized value.

Page 2 of 21

The following data structure declarations pertain to the next problem.

(Feel free to remove this page from your exam packet for easy reference.)

struct s1 {
char a[3];
union u1 *b;
int c;

};

struct s2 {
struct s1 d;
struct s1 *e;
struct s2 *f;
double g;
int h[4];

};

union u1 {
int i;
struct s2 j;
struct s1 *k;

};

Page 3 of 21

Problem 2. (9 points):

In the following problem, you are given the task of reconstructing C code based on the declarations of C
structures and unions from the previous page, and the IA32/Linux assembly code generated when compiling
the C code.

For each IA32 assembly code sequence below on the left, fill inthe missing portion of corresponding C
source line on the right.

A proc1:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl 4(%eax),%eax
movl 40(%eax),%eax
movl %ebp,%esp
popl %ebp
ret

int proc1(struct s1 *x)
{
return x->___________________ ;

}

B proc2:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl 32(%eax),%eax
movl %ebp,%esp
popl %ebp
ret

int proc2(struct s2 *x)
{
return x->___________________ ;

}

C proc3:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl (%eax),%eax
movl 4(%eax),%eax
movl (%eax),%eax
movl %ebp,%esp
popl %ebp
ret

int proc3(union u1 *x)
{
return x->___________________ ;

}

Page 4 of 21

Problem 3. (4 points):
This problem concerns the indexing of C arrays.

Consider the C code below, whereN is a constant declared with#define.

int foo (int A[16][N], int i, int j)
{

return A[i][j];
}

Suppose the above C code generates the following assembly code:

foo:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%ecx
movl 16(%ebp),%edx
movl 12(%ebp),%eax
sall $2,%edx
sall $3,%eax
subl 12(%ebp),%eax
leal (%edx,%eax,4),%eax
movl %ebp,%esp
popl %ebp
movl (%ecx,%eax),%eax
ret

What is the value ofN?

N =

Page 5 of 21

Problem 4. (8 points):
Consider the following four C and IA32 functions. Next to each of the four IA32 functions, write the name
of the C function that it implemnts. If the assembly routine doesn’t match any of the above functions, write
NONE. To save space, the startup code for each IA32 function is omitted:

pushl %ebp
movl %esp,%ebp

int *winter(int foo[12][8],
int i, int j)

{
return &foo[i][j];

}

int *spring(int foo[12][8],
int i, int j)

{
return foo[i+j];

}

int *summer(int** foo,
int i, int j)

{
return &foo[i][j];

}

int *fall(int** foo,
int i, int j)

{
return foo[i+j];

}

movl 8(%ebp), %eax
movl 12(%ebp), %edx
movl (%eax,%edx,4), %edx
movl 16(%ebp), %eax
popl %ebp
leal (%edx,%eax,4), %eax
ret

movl 16(%ebp), %eax
movl 12(%ebp), %ecx
movl 8(%ebp), %edx
popl %ebp
addl %ecx, %eax
sall $5, %eax
addl %edx, %eax
ret

movl 12(%ebp), %edx
movl 16(%ebp), %eax
addl %edx, %eax
movl 8(%ebp), %edx
popl %ebp
movl (%edx,%eax,4), %eax
ret

movl 12(%ebp), %eax
movl 16(%ebp), %ecx
movl 8(%ebp), %edx
sall $3, %eax
popl %ebp
addl %ecx, %eax
sall $2, %eax
addl %edx, %eax
ret

Page 6 of 21

Problem 5. (8 points):

This problem tests your understanding of basic cache operations.

(Note: This is the same problem from Exam 2, with one exception. In Exam 2 we asked you to complete two
iterations, say

�
and

� � �, of the game. In this problem, we are asking you to do the next two iterations,� � � and
� � �

.

Harry Q. Bovik has written the mother of all game-of-life programs. The Game-of-life is a computer game
that was originally described by John H. Conway in the April 1970 issue of Scientific American. The game
is played on a 2 dimensional array of cells that can either be alive (= has value 1) or dead (= has value 0).
Each cell is surrounded by 8 neighbors. If a life cell is surrounded by 2 or 3 life cells, it survives the next
generation, otherwise it dies. If a dead cell is surrounded by exactly 3 neighbors, it will be born in the next
generation.

Harry uses a very, very large�
 � array ofint’s, where� is an integral power of 2. It is so large that
you don’t need to worry about any boundary conditions. The inner loop uses two int-pointers�� � and���
that scan the cell array. There are two arrays:�� � is scanning the current generation while��� is writing the
next generation. Thus Harry’s inner loop looks like this:

...
int *src, *dst;

...
{ int n;

/* Count life neigbors */
n = src[1];
n += src[1 - N];
n += src[- N];
n += src[-1 - N];
n += src[-1];
n += src[-1 + N];
n += src[N];
n += src[1 + N];

/* update the next generation */
*dst = (((*src != 0) && (n == 2)) || (n == 3)) ? 1 : 0;

dst++;
src++;

}
...

You should assume that the pointers�� � and��� are kept in registers and that the counter variable� is also in
a register. Furthermore, Harry’s machine is fairly old and uses a write-through cache with no-write-allocate
policy. Therefore, you donot need to worry about the write operation for the next generation.

Each cache line on Harry’s machine holds 4 int’s (16 Bytes). The cache size is 16 KBytes, which is too
small to hold even one row of Harry’s game of life arrays. Hint: each row has� elements, where� is a
power of 2.

Page 7 of 21

Figure 1 shows how Harry’s program is scanning the game of life array. The thick vertical bars represent the
boundaries of cache lines: four consecutive horizontal squares are one cache line. A neighborhood consists
of the 9 squares (cells) that are not marked with an X. The center square is theint cell that is currently
pointed to by�� �.
The 2 neighborhoods shown in Figure 1 represent 2 successiveiterations (case A and B) through the inner
loop. The�� � pointer is incremented one cell at a time and moves from left to right in these pictures.

You shall mark each of the 9 squares those with either a ’H’ or a’M’ indicating if the corresponding memory
read operation hits (H) or misses (M) in the cache. Cells thatcontain an X do not belong to the neighborhood
that is being evaluated and you should not mark these.

Part 1

In this part, assume that the cache is organized as a direct mapped cache. Please mark the left column in
Figure 1 with your answer. The right column may be used as scratch while you reason about your answer.
We will grade the left column only.

Figure 1:Game of Life with a direct mapped cache

Page 8 of 21

Part 2

In this part, assume a 3-way, set-associative cache with true Least Recently Used replacement policy (LRU).
As in Part 1 of this question, please provide your answer by marking the empty squares of the left column
in Figure 2 with your solution.

Figure 2:Game of Life with a set associative cache

Page 9 of 21

For the next problem, you are given four different cache organizations. All four caches are of the same size,
namely 1024 bytes. However the caches are organized differently:

A. Cache A: is a direct mapped cache with a line size of 8 bytes (= 2int’s).

B. Cache B: is a 4-way, set-associative cache with a line size of 8 bytes (= 2int’s) and least recently
used (LRU) replacement policy.

C. Cache C: is a direct mapped cache with a line size of 64 bytes (= 16int’s).

D. Cache D: is a 4-way, set-associative cache with a line size of 64 bytes(= 16 int’s) and LRU
replacement policy.

(Feel free to remove this page from your exam packet for easy reference.)

Page 10 of 21

Problem 6. (10 points):

This problem tests your understanding of how the cache organization can impact the performance of a
program.

For each kernel listed below, you should determine which of the 4 cache organizations from the previous
page performs best, circling the letters (A, B, C, D) associated those cache organizations.

For this problem we define“best” to mean that the cache has the least number of cache misses. You should
assume that the caches are cold prior to executing the kernels. In other words, the caches have no valid
data and the first access to any datum will cause a cache miss. In some cases, “best” is not unique, so that
there are two or more cache organizations that perform equally well. In this case, you must list all cache
organizations that have the same performance for full credit.

For example, a kernel that touches only one variable will always miss on that access, no matter how the
cache is organized. So the correct answer would be to circle A, B, C, and D.

Each kernel has some loop variables (i,j) and a working variable (x), which are kept in registers and which
do not cause any memory accesses. Likewise, you are supposedto ignore instruction fetches.

1. Kernel 1 (2 pts):

int A[127][127];
...
{

int i, j, x = 0;

for (i = 0; i < 127; i++)
for (j = 0; j < 127; j++)
x += A[j][i];

return x;
}

The best cache organization(s) is(are): A B C D

2. Kernel 2 (2 pts):

int A[127][127];
...
{

int i, j, x = 0;

for (i = 0; i < 127; i++)
for (j = 0; j < 127; j++)
x += A[i][j];

return x;
}

The best cache organization(s) is(are): A B C D

Page 11 of 21

3. Kernel 3 (3 pts):

int A[127][127], B[127][127];
...
{

int i, j, x = 0;

for (i = 0; i < 127; i++)
for (j = 0; j < 127; j++)
x += A[i][j] * B[i][j];

return x;
}

The best cache organization(s) is(are): A B C D

4. Kernel 4 (3 pts):

int A[16][16], B[16][16];
...
{

int i, j, x = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
x += A[j][i] * B[i][j];

return x;
}

The best cache organization(s) is(are): A B C D

Page 12 of 21

The following C program and declarations are part of the nextproblem. For each part, the three comment
lines

/* LINE 1 */
/* LINE 2 */
/* LINE 3 */

will be replaced with different fragments of code. (For space reasons, we are not checking error return
codes, so assume that all functions return normally.)

int counter = 2;

void foo() {
counter++;
printf("%d", counter);

}

int main() {
pthread_t tid[2];
int i;

for (i = 0; i < 2; i++) {

/* LINE 1 */
/* LINE 2 */
/* LINE 3 */

}

counter++;
printf("%d", counter);

}

(Feel free to remove this page from your exam packet for easy reference.)

Page 13 of 21

Problem 7. (8 points):

This problem tests your understanding of the differences between processes and threads.

Part 1

Suppose the following code replaces the three comment linesin the program on the previous page:

LINE 1:
LINE 2: Pthread_create(&tid[i], 0, foo, 0);
LINE 3:

What is thefirst number that gets printed on stdout? Circle only one answer.

3
4
5
Could be either 3 or 4 or 5
Could be either 3 or 4

Part 2

Suppose the following code replaces the three comment lines.

LINE 1: Pthread_create(&tid[i], 0, foo, 0);
LINE 2: Pthread_join(tid[i], 0);
LINE 3:

What is thefirst number that gets printed on stdout? Circle only one answer.

3
4
5
Could be either 3 or 4 or 5
Could be either 3 or 4

Page 14 of 21

Part 3

Suppose the following code replaces the three comment lines.

LINE 1: if (fork() == 0) {
LINE 2: foo();
LINE 3: }

What is thefirst number that gets printed on stdout? Circle only one answer.

3
4
5
Could be either 3 or 4 or 5
Could be either 3 or 4

Part 4

Consider thesamecode asPart 3. What is theSECOND number that gets printed on stdout? Circle only
one answer.

3
4
5
Could be either 3 or 4 or 5
Could be either 3 or 4

Page 15 of 21

Problem 8. (9 points):
This problem tests your understanding of signals.

For each of the code segments below, circle thelargest value that could be printed to stdout. Remember
that when the system executes a signal handler, it blocks signals of the type currently being handled (and no
others).

int i = 0;

void handler(int s){
if(!i){

kill(getpid(),
SIGINT);

}
i++;

}

int main(){
signal(SIGINT,

handler);
kill(getpid(),

SIGINT);

printf("%d\n",i);

return 0;
}

int i = 0;

void handler(int s){
if(!i){

kill(getpid(),
SIGINT);

kill(getpid(),
SIGINT);

}
i++;

}

int main(){
signal(SIGINT,

handler);
kill(getpid(),

SIGINT);

printf("%d\n",i);

return 0;
}

int i = 0;

void handler(int s){
if(!i){
kill(getpid(),

SIGINT);
kill(getpid(),

SIGUSR1);
}
i++;

}

int main(){
signal(SIGINT,

handler);
signal(SIGUSR1,

handler);
kill(getpid(),

SIGUSR1);

printf("%d\n",i);

return 0;
}

� 0

� 1

� 2

� 3

� 4

� 5

� 1000

� 0

� 1

� 2

� 3

� 4

� 5

� 1000

� 0

� 1

� 2

� 3

� 4

� 5

� 1000

Page 16 of 21

Problem 9. (6 points):

This problem tests your understanding of pointer arithmetic and pointer dereferencing.

Harry Q. Bovik has decided to exercise his creativity and hascreated the most exotic dynamic memory
allocator that the 213 staff has ever seen. The following is adescription of Harry’s block structure:

HDR ID STRING PAYLOAD FTR

� HDR - Header of the block (4 bytes)

� ID STRING - Unique ID string (8 bytes)

� PAYLOAD - Payload of the block (arbitrary size)

� FTR - Footer of the block (4 bytes)

The size of the payload of each block is stored in the header and the footer of the block. Since there is an 8
byte alignment requirement, the least significant of the 3 unused bits is used to indicate whether the block is
free (0) or allocated (1). Harry has also decided to uniquelylabel each block with a string stored right after
the header of the block. The size of this ID field is 8 bytes.

For this problem, you can assume that:

� sizeof(int) == 4 bytes

� sizeof(char) == 1 bytes

� sizeof(short) == 2 bytes

� The size of any pointer (e.g. char*) is 4 bytes.

Page 17 of 21

Your task is to help Harry figure out and circleclearly which of the following definitions of the macro
GET ID will causeprint block() to output the string that is stored in theID STRING field. There
may be multiple macros that are correct, so be sure to circle all of them.

Also, assume that the block pointerbp points to the first byte of the payload.

/* Harry Q. Bovik’s print_block() function
Refer to this function in order to figure out
the context in which the GET_ID macro is used.

*/
void print_block(void *bp){

printf("Found block ID: %s\n", GET_ID(bp));
}

/* A. */
#define GET_ID(bp) ((char *)(((int)bp) - 8))

/* B. */
#define GET_ID(bp) ((char *)(((char)bp) - 8))

/* C. */
#define GET_ID(bp) ((char *)(((char *)bp) - 4))

/* D. */
#define GET_ID(bp) ((char *)(((char *)bp) - 8))

/* E. */
#define GET_ID(bp) ((char *)(((int *)bp) - 4))

/* F. */
#define GET_ID(bp) ((char *)(((int *)bp) - 8))

/* G. */
#define GET_ID(bp) ((char *)(((char**)bp) - 8))

/* H. */
#define GET_ID(bp) ((char *)(((short*)bp) - 4))

/* I. */
#define GET_ID(bp) ((char *)(((short*)bp) - 8))

Page 18 of 21

Problem 10. (8 points):

Suppose the filefoo.txt contains letters, and,bar.txt contains numbers. Examine the following C
code, and answer the questions below. (For space reasons, weare not checking error return codes, so
assume that all functions return normally.)

int main() {

int fda, fdb, fdc, pid;
char c;

fda = open("foo.txt", O_RDONLY, 0);
fdb = open("foo.txt", O_RDONLY, 0);
fdc = open("bar.txt", O_RDONLY, 0);

if ((pid = fork()) == 0) {
dup2(fdb, fdc);
read(fda, &c, 1);
read(fdb, &c, 1);
read(fdc, &c, 1);

}

if (pid)
wait(0);

dup2(fda, fdb);
read(fda, &c, 1);
read(fdb, &c, 1);
read(fdc, &c, 1);
close(fdb);
fdb = open("bar.txt", O_RDONLY, 0);
read(fda, &c, 1);
read(fdb, &c, 1);
read(fdc, &c, 1);

exit(0);
}

Immediately before the child exits:
How many letters have been read so far? ________

How many numbers have been read so far? ________

Immediately before the parent exits:
How many letters have been read since the child exited? ________

How many numbers have been read since the child exited? ________

Page 19 of 21

Problem 11. (10 points):
This problem tests your understanding of concurrency and synchronization.

Below are some code segments that use threads. For each segment, list all possible output number sequences
that could be printed. If a code segment possibly does not output any numbers, write “NONE” as one of the
possibilities.

Note: You may assume that the code contains no errors other than the ones that may arise due to concur-
rency issues. Also assume that all thread library calls always work without any errors. Lastly, assume no
optimization is done during compilation.

Code Segment 1

void *square(void *x)
{

int *y = x;
printf("%d", (*y) * (*y));
return NULL;

}

int main()
{

pthread_t t;
int i = 2;

pthread_create(&t, NULL, square, &i);
printf("%d", ++i);

pthread_join(t, NULL);
return 0;

}

Possible output sequences:

Page 20 of 21

Code Segment 2

/* The following code is a simple simulation of a bar:
* - each thread represents a customer
* - visit() represents a customer’s visiting the bar
* - occupancy represents current number of customers in the bar
* - bartender represents the person in charge of the bar
*/

sem_t bartender;
int occupancy=0;

void *visit(void *customerID)
{

sem_wait(&bartender); /* P(&bartender) */
occupancy++;

if ((int)customer == -1)
printf("%d", occupancy);

occupancy--;
sem_post(&bartender); /* V(&bartender) */

return NULL;
}

int main()
{

pthread_t t[5];
int i;

sem_init(&bartender, 0, 2); /* initialized with the value 2 */

/* let customers in */
for (i=0; i < 5; i++)
pthread_create(&t[i], NULL, visit, (void *)i);

visit((void *)-1);

return 0; /* close down the bar */
}

Possible output sequences:

Page 21 of 21

