Example Floating Point Problem

Problem 1:

onsider the following 7-bit floating point representation based on the IEEE floating point format:

- There is a sign bit in the most significant bit.
- The next k = 3 bits are the exponent. The exponent bias is 3.
- The last n = 3 bits are the fractional part.

Numeric values are encoded in this format as a value of the form $V = (-1)^s \times M \times 2^E$, where s is the sign bit, E is exponent after biasing, and M is the significand.

Part I

Answer the following problems using either decimal (e.g., 1.375) or fractional (e.g., 11/8) representations for numbers that are not integers.

A. For denormalized numbers:

- (a) What is the value *E* of the exponent after biasing?
- (b) What is the largest value M of the significand?

B. For normalized numbers:

- (a) What is the smallest value E of the exponent after biasing?
- (b) What is the largest value *E* of the exponent after biasing?
- (c) What is the largest value *M* of the significand?

Part II

Fill in the blank entries in the following table giving the encodings for some interesting numbers.

Description	E	M	V	Binary Encoding
Zero		0	0	0 000 0000
Smallest Positive (nonzero)				
Largest denormalized				
Smallest positive normalized				
One			1	
Largest finite number				
NaN	_		NaN	
Infinity			$+\infty$	

Recommended Book Practice Problems: 2.33, 2.34, 2.37 Solutions are at the end of the chapter.