
Optimizing Compilers -Partial Redundancy Elimination 1 T. Mowry

Carnegie Mellon University

Lecture 11

Partial Redundancy Elimination

• Global code motion optimization

• Remove partially redundant expressions

• Loop invariant code motion

• Can be extended to do Strength Reduction

• No loop analysis needed

• Bidirectional flow problem

Optimizing Compilers -Partial Redundancy Elimination 2 T. Mowry

Carnegie Mellon University

References

1. E. Morel and C. Renvoise, “Global Optimization by Suppression of
Partial Redundancies,” CACM 22 (2), Feb. 1979, pp. 96-103.

2. Knoop, Rüthing, Steffen, “Lazy Code Motion,” PLDI 92.

3. F. Chow, A Portable Machine-Independent Global Optimizer--
Design and Measurements. Stanford CSL memo 83-254.

4. Dhamdhere, Rosen, Zadeck, “How to Analyze Large Programs Effi-
ciently and Informatively,” PLDI 92.

5. K. Drechsler, M. Stadel, “A Solution to a Problem with Morel and
Renvoise’s ‘Global Optimization by Suppression of Partial Redundan-
cies,’” ACM TOPLAS 10 (4), Oct. 1988, pp. 635-640.

6. D. Dhamdhere, “Practical Adaptation of the Global Optimization Al-
gorithm of Morel and Renvoise,” ACM TOPLAS 13 (2), April 1991.

7. D. Dhamdhere, “A Fast Algorithm for Code Movement Optimisa-
tion,” SIGPLAN Not. 23 (10), 1988, pp. 172-180.

8. S. Joshi, D. Dhamdhere, “A composite hoisting --- strength reduc-
tion transformation for global program optimisation,” International Jour-
nal of Computer Mathematics, 11 (1982), pp. 21-41, 111-126.

Optimizing Compilers -Partial Redundancy Elimination 3 T. Mowry

Carnegie Mellon University

Redundancy

• A Common Subexpression is a Redundant Computation

• Occurrence of expression E at P is redundant if E is available there:

• E is evaluated along every path to P, with no operands redefined

since.

• Redundant expression can be eliminated

t1 = a + b t2 = a + b

t3 = a + b

Optimizing Compilers -Partial Redundancy Elimination 4 T. Mowry

Carnegie Mellon University

Partial Redundancy

• Partially Redundant Computation

• Occurrence of expression E at P is partially redundant if E is
partially available there:

• E is evaluated along at least one path to P, with no operands re-

defined since.

• Partially redundant expression can be eliminated if we can insert
computations to make it fully redundant.

t1 = a + b

t3 = a + b

Optimizing Compilers -Partial Redundancy Elimination 5 T. Mowry

Carnegie Mellon University

Loop Invariants are Partial Redundancies

• Loop invariant expression is partially redundant

• As before, partially redundant computation can be eliminated if we
insert computations to make it fully redundant.

• Remaining copies can be eliminated through copy propagation or
more complex analysis of partially redundant assignments.

t1 = a + b

a = ...

Optimizing Compilers -Partial Redundancy Elimination 6 T. Mowry

Carnegie Mellon University

Partial Redundancy Elimination

• The Method:

1. Insert Computations to make partially redundant expression(s)
fully redundant.

2. Eliminate redundant expression(s).

• Issues [Outline of Lecture]:

1. What expression occurrences are candidates for elimination?

2. Where can we safely insert computations?

3. Where do we want to insert them?

• For this lecture, we assume one expression of interest, a+b.

• In practice, with some restrictions, can do many expressions in

parallel.

Optimizing Compilers -Partial Redundancy Elimination 7 T. Mowry

Carnegie Mellon University

Which occurrences might be eliminated?

• In CSE,

• E is available at P if it is previously evaluated along every path

to P, with no subsequent redefinitions of operands.

• If so, we can eliminate computation at P.

• In PRE,

• E is partially available at P if it is previously evaluated along at

least one path to P, with no subsequent redefinitions of oper-

ands.

• If so, we might be able to eliminate computation at P, if we can

insert computations to make it fully redundant.

• Occurrences of E where E is partially available are candidates for
elimination.

Optimizing Compilers -Partial Redundancy Elimination 8 T. Mowry

Carnegie Mellon University

Finding Partially Available Expressions

• Forward flow problem

• Lattice = { 0, 1 }, meet is union (∪), top = 0 (not PAVAIL),entry = 0

• For a block,

• Expression is locally available (AVLOC) if downwards ex-

posed.

PAVOUT i[] PAVIN i[] KILL i[]–() AVLOC i[]∪=

PAVIN i[]
0

PAVOUT p[]
p preds i()∈

∪⎝
⎜
⎛ i entry=

otherwise
=

Optimizing Compilers -Partial Redundancy Elimination 9 T. Mowry

Carnegie Mellon University

• Expression is killed (KILL) if any assignments to operands.

a = ...

... a + b

... a + b

a =...

Optimizing Compilers -Partial Redundancy Elimination 10 T. Mowry

Carnegie Mellon University

Partial Availability Example

• For expression a+b.

• Occurrence in loop is partially redundant.

t1 = a + b

a = ...

a = ...

t2 = a + b

KILL = 1

AVLOC=0

KILL = 0

AV-

KILL = 1

AVLOC=1

PAVIN=

PAVOUT=

PAVIN=

PAVOUT=

PAVIN=

PAVOUT=

Optimizing Compilers -Partial Redundancy Elimination 11 T. Mowry

Carnegie Mellon University

Where can we insert computations?

• Safety: Never introduce a new expression along any path.

• Insertion could introduce exception, change program behavior.

• If we can add a new basic block, can insert safely in most cases.

• Solution: Insert expression only where it is anticipated.

• Performance: Never increase the number of computations on any
path.

• Under simple model, guarantees program won’t get worse.

• Reality: might increase register lifetimes, add copies, lose.

t1 = a + b

t3 = a + b

Optimizing Compilers -Partial Redundancy Elimination 12 T. Mowry

Carnegie Mellon University

Finding Anticipated Expressions

• Backward flow problem

• Lattice = { 0, 1 }, meet is intersect (∩), top = 1 (PANT), exit = 0

• For a block,

• Expression locally anticipated (ANTLOC) if upwards exposed.

PANTIN i[] ANTLOC i[] PANTOUT i[] KILL i[]–()∪=

PANTOUT i[]
0

PANTIN s()
s succ i()∈

∩⎝
⎜
⎛ i exit=

otherwise
=

a = ...

... a + b

... a + b

a =...

Optimizing Compilers -Partial Redundancy Elimination 13 T. Mowry

Carnegie Mellon University

Anticipation Example

• For expression a+b.

• Expression is anticipated at end of first block.

• Computation may be safely inserted there.

t1 = a + b

a = ...

a = ...

t2 = a + b

KILL = 1

ANTLOC=0

KILL = 0

ANT-

KILL = 1

ANTLOC=0

ANTIN=

ANTOUT=

ANTIN=

ANTOUT=

ANTIN=

ANTOUT=

Optimizing Compilers -Partial Redundancy Elimination 14 T. Mowry

Carnegie Mellon University

Where do we want to insert computations?

• Morel-Renvoise and variants: “Placement Possible”

• Dataflow analysis shows where to insert:

• PPIN = “Placement possible at entry of block or before.”

• PPOUT = “Placement possible at exit of block or before.”

• Insert at earliest place PP = 1.

• Only place at end of blocks,

• PPIN really means “Placement possible or not necessary
in each predecessor block.”

• Don’t need to insert where expression is already available.

• Remove [upwards-exposed] computations where PPIN=1.

INSERT i[] PPOUT i[] P¬ PIN i[] KILL i[]∪() AVOUT i[]¬∩ ∩=

DELETE i[] PPIN i[] ANTLOC i[]∩=

Optimizing Compilers -Partial Redundancy Elimination 15 T. Mowry

Carnegie Mellon University

Where do we want to insert? Example

t1 = a + b

a = ...

a = ...

t2 = a + b

PPIN=

PPOUT=

PPIN=

PPOUT=

PPIN=

PPOUT=

Optimizing Compilers -Partial Redundancy Elimination 16 T. Mowry

Carnegie Mellon University

Formulating the Problem

• PPOUT: we want to place at output of this block only if

• we want to place at entry of all successors

• PPIN : we want to place at input of this block only if (all of):

• we have a local computation to place, or a placement at the end

of this block which we can move up

• we want to move computation to output of all predecessors

where expression is not already available (don’t insert at input)

• we can gain something by placing it here (PAVIN)

• Forward or Backward? BOTH!

• Problem is bidirectional, but lattice {0, 1} is finite, so

• as long as transfer functions are monotone, it converges.

Optimizing Compilers -Partial Redundancy Elimination 17 T. Mowry

Carnegie Mellon University

Computing “Placement Possible”

• PPOUT : we want to place at output of this block only if

• we want to place at entry of all successors

• PPIN : we want to place at start of this block only if (all of):

• we have a local computation to place, or a placement at the end

of this block which we can move up

• we want to move computation to output of all predecessors

where expression is not already available (don’t insert at input)

• we gain something by moving it up (PAVIN heuristic)

PPOUT i[]
0

PPIN s()
s succ i()∈

∩⎝
⎜
⎛ i exit=

otherwise
=

PPIN i[]

0

ANTLOC i[] PPOUT i[] KILL i[]–()∪[](
PPOUT p[] AVOUT p[]∪()

p preds i()∈
∩∩

PAVIN i[])∩

i entry=

otherwise

⎝
⎜
⎜
⎜
⎜
⎜
⎛

=

Optimizing Compilers -Partial Redundancy Elimination 18 T. Mowry

Carnegie Mellon University

“Placement Possible” Example 1

t1 = a + b

a = ...

a = ...

t2 = a + b

KILL = 1

AVLOC=0

ANTLOC=0

KILL = 0

AVLOC=1

ANTLOC=1

PAVIN=0

PAVOUT=0

AVOUT=0

KILL = 1

AVLOC=1

ANTLOC=0

PAVIN=1

PAVOUT=1

AVOUT=1

PAVIN=1

PAVOUT=1

AVOUT=1

PPIN=

PPOUT=

PPIN=

PPOUT=

PPIN=

PPOUT=

Optimizing Compilers -Partial Redundancy Elimination 19 T. Mowry

Carnegie Mellon University

“Placement Possible” Example 2

a = ...

a = ...

t1 = a + b

t2 = a + b

KILL = 1

AVLOC=1

ANTLOC=0

KILL = 1

AVLOC=0

ANTLOC=0

PAVIN=0

PAVOUT=1

AVOUT=1

KILL = 0

AVLOC=1

ANTLOC=1

PAVIN=1

PAVOUT=1

AVOUT=1

PAVIN=0

PAVOUT=0

AVOUT=0

PPIN=

PPOUT=

PPIN=

PPOUT=

PPIN=

PPOUT=

Optimizing Compilers -Partial Redundancy Elimination 20 T. Mowry

Carnegie Mellon University

“Placement Possible” Correctness

• Convergence of analysis: transfer functions are monotone.

• Safety: Insert only if anticipated.

• INSERT ⊆ PPOUT ⊆ ANTOUT, so insertion is safe.

• Performance: Never increase the number of computations on any
path

• DELETE = PPIN ∩ ANTLOC

• On every path from an INSERT, there is a DELETE.

• The number of computations on a path does not increase.

PPIN i[] PPOUT i[] KILL i[]–() ANTLOC i[]∪⊆

PPOUT i[]
0

PPIN s()
s succ i()∈

∩⎝
⎜
⎛ i exit=

otherwise
=

Optimizing Compilers -Partial Redundancy Elimination 21 T. Mowry

Carnegie Mellon University

Morel-Renvoise Limitations

• Movement usefulness tied to PAVIN heuristic

• Makes some useless moves, might increase register lifetimes:

• Doesn’t find some eliminations:,

• Bidirectional data flow difficult to compute.

a + b

a + b

a + b

a+ba + b

Optimizing Compilers -Partial Redundancy Elimination 22 T. Mowry

Carnegie Mellon University

Related Work

• Don’t need heuristic

• Dhamdhere, Drechsler-Stadel, Knoop,et.al.

• use restricted flow graph or allow edge placements.

• Data flow can be separated into unidirectional passes

• Dhamdhere, Knoop, et. al.

• Improvement still tied to accuracy of computational model

• Assumes performance depends only on the number of computa-

tions along any path.

• Ignores resource constraint issues: register allocation, etc.

• Knoop, et.al. give “earliest” and “latest” placement algorithms

which begin to address this.

• Further issues: more than one expression at once, strength
reduction, redundant assignments, redundant stores.

Optimizing Compilers -Partial Redundancy Elimination 23 T. Mowry

Carnegie Mellon University

Eliminating Complex Expressions

• Expression (a+b)•c:

• How can we do this?

• Consider 1 expression at a time, from top to bottom. - laborious.

• Eliminate temporaries, build explicit complex expressions.

t1 = a + b

t2 = t1 • c

a = ...

t3 = a + b

t1 = r1

t2 = r2

a = ...

r1 = a + b

r2 = r1 * c

t3 = r1

Optimizing Compilers -Partial Redundancy Elimination 24 T. Mowry

Carnegie Mellon University

Eliminating Complex Expressions 2

• If we know actual computed expression, can do sub/expr in
parallel:

• Only global operand assignments KILL the expression.

• Restriction on placement: Additional expr occurrences never

cause computation to be placed later in flow graph.

t1 = a + b

t2 = t1 • c [(a+b)•c]

a = ...

t3 = a + b

Optimizing Compilers -Partial Redundancy Elimination 25 T. Mowry

Carnegie Mellon University

Strength Reduction (Joshi-Dhamdhere 82)

• Suppose the expression x = i • k is available.

• Assignment i = i + 1 kills it, but recomputing x is trivial: x = x + k

• Distinguish between fast and slow computations:

• “one-unit” definition: x = x + k

• “Q-unit” definition: x = i • k

• One Q-unit definition is worth many one-unit definitions.

• Consider “killing” instruction which allows simple recomputation

to be transparent to Q-unit computations:

• i = i + c KILLs i + 3 but is X-Transparent to i • k.

• i = x + y kills i • k as well (XKILL)

Optimizing Compilers -Partial Redundancy Elimination 26 T. Mowry

Carnegie Mellon University

Strength Reduction Example

• Two placement computations - Q-unit, one-unit insertion

t1 = i • 5

i = i + 1

i = ... XKILL = 1

XAVLOC=0

ANTLOC=0

XKILL = 0

XAVLOC=1

ANTLOC=1

XPAVIN=0

XPAVOUT=0

XAVOUT=0

XPAVIN=1

XPAVOUT=1

XAVOUT=1

XPPIN=

XPPOUT=

XPPIN=

XPPOUT=

Optimizing Compilers -Partial Redundancy Elimination 27 T. Mowry

Carnegie Mellon University

Store Redundancy

• Dual problem with computation redundancy:

• First store partially redundant.

t1 = a + b

t3 = a + b

x = t2

x = t1

