15-745

Graph Coloring
Register Allocation

'STUPTO SOFTWARE? |

€S745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024 1

Register Allocation

Intro to Global Register Allocation

Problem:

« Allocation of variables (pseudo-registers) to hardware registers in a
procedure

One of the most important optimizations
« Memory accesses are more costly than register accesses
— True even with caches
— True even with CISC architectures
« Important for other optimizations
— E.g., CSE assumes old values are kept in registers

« When it does not work well, the performance impact is noticeable.

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024 2

Terminology

Allocation
« decision to keep a pseudo-register in a hardware register
< prior to register allocation, we assume an infinite set of registers
— (aka “temps” or “pseudo-registers” or (bad) “variables”).
Spilling

« when allocation fails...
< a pseudo-register is spilled to memory, if not kept in a hardware

register
Assignment
« decision to keep a pseudo-register in a specific hardware
register
Cs745: Register Alocation © Seih Gopen Goldsten & Todd C. Mowry & David Ryan Koes 2002-4

What are the Problems?

* For this example:

* What is the minimum number of registers needed to avoid spilling?
« Given n registers in a machine, is spilling necessary?
« Find an assignment for all pseudo-registers, if possible.

« If there are not enough registers in the machine, how do we spill to memory?

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024 4

Register Allocation

Abstraction for Reg Alloc & Assignment Register Allocation and Coloring

Intuitively: « Agraph is n-colorable
if every node in the graph can be colored with one of n colors

« Two pseudo-registers interfere if at some point in the program they such that two adjacent nodes do not have the same color.

cannot both occupy the same register.
+ Assigning n registers (without spilling) = Coloring with n colors
Interference graph: an undirected graph, where — assign a node to a register (color) such that

* nodes = pseudo-registers no two adjacent nodes are assigned same registers(colors)

« there is an edge between two nodes if their corresponding .

Is spilling necessary? = Is the graph n-colorable?
pseudo-registers interfere

A

« To determine if a graph is n-colorable is NP-complete, for n>2

IF A goto L1

o
i

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024 5 CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024 3

Simple Algorithm Nodes in an Interference Graph

Build an interference graph

A =
« refining notion of a node IF A goto L]
« finding the edges /\
B = ... Ll: C =
Coloring - A = A
D=B D=2¢C

< use heuristics to try to find an n-coloring
— Success = colorable and we have an assignment

— Failure = graph not colorable, or
graph is colorable, but we couldn’t find a coloring

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024 7 CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024 8

Live Ranges & Merged Live Ranges

« Motivation: to create an interference graph that is easier to color
— Eliminate interference in a variable’s “dead” zones.

— Increase flexibility in allocation:
can allocate same variable to different registers

« A live range consists of a definition and all the points in a program

(e.g. end of an instruction) in which that definition is live.

— How to compute a live range?

« Two overlapping live ranges for the same variable must be merged

N

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Register Allocation

Example

Live Variables

Reaching Definitions A (A) (,)A (3_\
IF A goto L1 §A§ gAg

A A} B=.. (B ;

we @ey |Pox ® S

B AB) |p-g (D =i ©) | no
o} {A1,B4,D2}) gg%

o 1
O} {A1,B4,Cy 3

{AD} {A,B1.CyE
{AD} {A;,B4,C4D1,Dy}
o} {A2,B1,C1,D4,Dz}

A live range consists of a definition and all the
points in a program in which that definition is live.

A}
{A1,C4}
{A1,C4}
{A1,C1.D4}

Merge

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Merging Live Ranges

Merging definitions into equivalence classes:
« Start by putting each definition in a different equivalence class

« For each point in a program

— if variable is live,
and there are multiple reaching definitions for the variable

— merge the equivalence classes of all such definitions into a one equivalence
class

{D} {AB1.CDD e
{AD} {A.B.CDyDg

From now on, refer to merged live ranges simply as live range
« Merged live ranges are also known as “webs”

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Example: Merged Live Ranges

IF A goto L1 (A}

A o

{A1B} - A}
{81} €= (G a0y
D - C
D) oy §D1>2)

(AZlD1 2)

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Edges of Interference Graph

Intuitively:
« Two live ranges (necessarily of different variables) may interfere
if they overlap at some point in the program.
« Algorithm:

— At each point in program,
enter an edge for every pair of live ranges at that point

An optimized definition & algorithm for edges:

For each defining inst i
Let x be live range of definition at inst i
For each live range y present at end of inst i
insert an edge between x and y

« Faster

« Better quality? D}
{A,D1 5} —» Edge between A, and D, ,

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Register Allocation

Example 2

If Q goto L1

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Example: Interference Graph

So was it worth it to
split the live ranges?

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Coloring

« Reminder: coloring for n > 2 is NP-complete*

* Observations
— a node with degree < n =
» can always color it successfully, given its neighbors’ colors

— a node with degree = n =

— a node with degree > n =

% [1]H. Bodlaender, J. Gustedt, and J. A. Telle, “Lincar-time register allocation for a fixed number of registers,” in Proceedings
of the ninth annual ACM-SIAM symposium on Discrete algorithms, pp. 574-583, Society for Industrial and Applied
Mathematics, 1998.

[2] S. Kannan and T. Proebsting, “Register allocation in structured programs,” in Proceedings of the sixth annual ACM-SIAM
symposium on Discrete algorithms, pp. 360-368, Society for Industrial and Applied Mathematics, 1995

[3] M. Thorup, “All structured programs have small tree width and good register allocation,” Inf. Comput., vol. 142, no. 2, pp.
159-181, 1998.

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Coloring Algorithm

Algorithm
Iterate until stuck or done
— Pick any node with degree < n
— Remove the node and its edges from the graph

If done (no nodes left)
— reverse process and add colors

Example (n = 3)

Note: degree of a node may drop in iteration

Avoids making arbitrary decisions that make coloring fail

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Checkpoint

Problems:
< Given n registers in a machine, is spilling avoided?

Solution:
« Abstraction: an interference graph
— nodes: (merged) live ranges
— edges: presence of live range at time of definition

« Register Allocation and Assignment problems
= n-colorability of interference graph
= NP-complete

« Heuristics to find an assignment for n colors
— successful: colorable, and finds assignment
— unsuccessful: colorability unknown & no assignment

< Find an assignment for all pseudo-registers, whenever possible.

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Register Allocation

What Does Coloring Accomplish?

Done:
« colorable
« also obtained an assignment (colors correspond to registers)

Stuck (n = 2):

< colorable or not?

« One solution: optimistically remove nodes and hope we get lucky...

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Discussion

What about when we can’t k-color?
« spill to memory

Is the minimum coloring always what we want?
« Hint: no

What about architecture strangeness?
< subword registers (x86, 68k, ColdFire...)
< register pairing (HP PA-RISC, SPARC, x86)
< register classes (x86, 68k, ColdFire...)

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Register Allocation

An Improvement: Move Coalescing

Basic idea:
< eliminate moves by assigning the src and dest to the same register
« copy propagation and dead code elimination can’t eliminate all
unnecessary moves

X=Y If we allocate X and Y
to the same register we
can eliminate X =Y

(copy prop couldn’t)

How can we modify our interference graph to do this?

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

An Exciting New Example

u<- v
<- u+x
N (v
<_
<- u

First compute live ranges...
...then construct interference graph

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024 2

An Exciting New Example cont.

<- 1 Want u and v to be
assigned same
w<- v+3 color...
X <- w4+ v ...merge u and
v to form a
u<- v single node
<- u +x
<- w
<_
<- u

u and v are special:
A move whose source is not live-out of
the move is a candidate for coalescing

That is, if the src and
dest don't interfere

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Is Coalescing Always Good?

move edge VS.

And the winner is?
2 colorable 3 colorable

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024 2

When should we coalesce?

Always
< If we run into trouble start un-coalescing
— no nodes with degree < k, see if breaking up coalesced nodes fixes
« yuck
Only if we can prove it won’t cause problems
< Briggs: Conservative Coalescing
« George: Iterated Coalescing

When we simplify the
graph, we remove nodes
of degree <Kk...

want to make sure we will
still be able to simplify
coalesced node, uv

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

George: Iterated Coalescing

Can coalesce u and v if
foreach .nelghbor t.Of u Resulting node uv will
— tinterferes with v, or, doesn't change degree } (after simplification)

— degree of t <k removed by simplification have degree equal to
degree of v

Why?
+ let S be set of neighbors of u with degree < k
+ If no coalescing, simplify removes all nodes in S, call that
graph G'
- If we coalesce we can still remove all nodes in S, call that
graph G2
» G2is a subgraph of G'

Register Allocation

Briggs: Conservative Coalescing

*Can coalesce u and v if:
—(# of neighbors of uv with degree = k) < k

*Why?
—Simplify pass removes all nodes with degree < k
—# of remaining nodes < k
—Thus, uv can be simplified

What does Briggs
say about

k=3?
k=2?

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

George: Iterated Coalescing

No coalescing,
after
simplification

After coalescing and
k=4 simplification

X~
\

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Why Two Methods?

Why not?
With Briggs, one needs to look at all neighbors of a & b
With George, only need to look at neighbors of a.

So:

Use George if one of a & b has very large degree
Use Briggs otherwise

Cs745: Register Allocation

© Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Register Allocation

Where We Are

Simplify

Coalesce

Cs745: Register Allocation

© Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Where We’re Going

Simplify

Coalesce

Potential Spill

Select

Actual Spill

plus a bunch of
important details...

Cs745: Registe

+ Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Review: Build

First compute live ranges:
- use both reach defs and liveness

- live range defined by definition point
- ends when variable dies

- merge overlapping ranges of same var

Cs745: Register Allocation

© Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Register Allocation

Review: Build

Construct interference graph:

- each node represents a live range

- edges represent live ranges that overlap °
s

- put in move edges between move operand

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Review: Simplify

Reduce the graph:
- remove non-move related, easy to color, nodes °
- easy to color: degree < k

- place on stack

O0/C

0“0

k=4

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Review: Coalesce

Coalesce moves:

k
- conservatively combine operands of a move
- Briggs, George heuristics for being conservative
Repeat Simplify
-Detail: If both Simplify and Coalesce get
stuck, start simplifying move related nodes
Simplify

Coalesce

]
£

)

uv

SN

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Transition Slide!

Simplify

Select

Actual Spill

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Register Allocation

What if we can’t simplify?

Now what?

Be optimistic:
- Put a node with degree = k on stack Q

- Lose guarantee that anything we

put on stack is colorable
- If we’re lucky this node will still be ° o

colorable when popped from stack

Be realistic:
- If unlucky, this node will have to be °

- Mark as potential spill to avoid
recomputation later °

spilled (allocated to memory) @

Cs745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Select

Pop a node from the stack

Assign it a color that does not
conflict with neighbors in

interference graph

This will always be possible,
unless the node is a potential spill

If it is not possible must spill

Cs745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Spilling to Memory

RISC Architectures
« Only load and store can access memory
— every use requires load
— every def requires store
— create new temporary for each location

CISC Architectures
« can operate on data in memory directly
— makes writing compiler easier(?), but isn’'t necessarily faster
« pseudo-registers inside memory operands still have to be handled

Cs745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Spilling
v <-
Allocate w to memory
W <= location M,,
M, [1<-
W, <— Spilled variables are allocated to
2 the stack in an area completely
x <- controlled by the compiler.
These memory locations are
u <- special in that they can be
optimized without concern for
t <- memory aliasing issues.
<_
wy <-
<_
< Now Start Over...
<- ...compute live ranges...

Cs745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

10

Register Allocation

Build Take Two

v <- 1
w, <- v + 3
M [1<- w,
w, <= M[]
x <- w, + Vv
u <- v
t <- u + x

<- x
wy <= M[]

<- W3

<- ot

- u Recalculate interference graph

Simplify->Coalesce->Select

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

a2

Spilling

We have to start from scratch every time we spill
« Suggestions?
— Fewer iterations?
— Faster iterations?

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

4

What to Spill?

When choosing potential spill node want:

« A node that makes graph easier to color
— Fewer spills later
+ A node that isn’t “expensive” to spill
— First nodes pushed on stack are last to be colored
» more likely to be spilled
— An expensive node would slow down the program if spilled

« We can apply heuristics both when choosing potential spill nodes
and when choosing actual spill nodes

— not required to spill node that we popped off stack and can'’t color

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

1

A Spill Heuristic

Pick node (live range) n that minimizes:

Elodepth(def)_l_ Elodepth(use)

def€n use€n

degree(n)

This heuristic prefers nodes that:

< Are used infrequently
« Aren’t used inside of loops
« Have a large degree

Could use any one of several other heuristics as well...

Register Allocation

Reducing Stack Frame Size

* How do you allocate spilled live ranges?
- every live range gets its own location on the stack frame
- orwe can be smarter...

* What about mov a, b where both a & b have been spilled?
» Use graph-coloring with aggressive coalescing!

» Use liveness info to create an interference graph of the
spilled nodes

+ Always coalesce

» Simplify/Select

» Colors map to frame locations

Is it worth it?

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

C745: Regster Alocaton © 56t Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-4 P
Rematerialization
An alternative to spilling
« Recompute value of variable instead of store/load to memory
« Example:
v<- 1 v<- 1
<- v + 3 <- v + 3
XxX<- w+v XxX<- w+v
u<- v u<- v
t<- u+x ‘ t<- u+x
<- w w <-
<- <- w
<- u <-
<- u
745 Regster Alocaton © 56t Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-4 P

Checkpoint

Simplify

Actual Splll

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

12

Register Allocation

Special Registers Register Usage Conventions

Which registers can be used? Certain registers are used for specific purposes defined by the

* Some registers have special uses. _ standard calling convention.
— Register 0 or 31 is often hardwired to contain 0. .
« 4-6 argument registers.

— Special registers to hold return address, stack pointer, frame pointer, etc. .
P d . . ’ P ' P ’ — The first 4-6 arguments to procedures/functions are always passed in these
— Reserved registers for operating system. registers
Typically, leaves about 20 or so registers for other general uses.) .
« ~8 callee-save registers.

Impact on register a”_ocat’on: . — These registers must be preserved across procedure calls. Thus, if a
Temps should be assigned only to the non-reserved registers (allocable). procedure wants to use a callee-save register, it must first save the old value
Hard registers are pre-colored in the interference graph. and then restore it before returning
« The remainder are caller-save registers.
— These are not preserved across procedure calls. Thus, a procedure is free to

mov1l foo.a, $eax use them without saving first.
cltd (eax,edx) <- eax — Includes the argument registers.
idivl foo.b (eax.edx)<- (eax,edx)/foo.b
movl %eax, $vr0 How do we support these?
movl Svr0, $eax « neat trick for handling callee save
ret « call instruction
C745: Register Alocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-4 P C745: Register Alocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-4 0

Allocating Callee-Save Registers Allocating to callee-save registers

Move callee-save reg to temp at start of procedure CALL instruction “modifies” all caller-save regs
Move it back at end of procedure .
What happens if there is no register pressure? entry: define r,
What happens if there is a lot of register pressure? t, <- r,
x <-
entry: define r call
temp <- r (rl,r2,r3 <-)

(<- rl,r2,r3)

exit:r <- temp <- x
exit:r <- t;
use r
use r,
CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024 51 CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-4 52

13

Reducing Register Pressure

Recall: Split pseudo-registers into live ranges
to create an interference graph that is easier to color

« Eliminate interference in a variable’s “dead” zones.
. ibility in
can allocate same variable to different registers

A =
IF A goto L

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Register Allocation

Insight

Split a live range into smaller regions (by paying a small cost)
to create an interference graph that is easier to color
« Eliminate interference in a variable’s “nearly dead” zones.

— Cost: Memory loads and stores
Load and store at boundaries of regions with no activity

— # active live ranges at a program point can be > # registers

« Can allocate same variable to different registers

— Cost: Register operations
a register copy between regions of different assignments

— # active live ranges cannot be > # registers

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Examples

Example 1:

FOR i = 0 TO 10
FOR j = 0 TO 10000
+

(does not use B)
FOR j = 0 TO 10000
=B +

(does not use A)

Example 2:
b= c=
a+b =a+¢c
c= b=
Cs745; Regiser Alocation © Seth Copen Goldsten & Todd C. Mowry & David Ryan Koes 2002-4 =

Live-Range Splitting

When do we apply live range splitting?
Which live range to split?
Where should the live range be split?

How to apply live-range splitting with coloring?
« Advantage of coloring:
— defers arbitrary assignment decisions until later
+ When coloring fails to proceed, may not need to split live range

— degree of a node >= n does not mean that the graph
definitely is not colorable

« Interference graph does not capture positions of a live range

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

14

One Algorithm

Observation: Spilling is absolutely necessary if
number of live ranges active at a program point > n not degree in graph

Apply live-range splitting before coloring
Identify a point where number of live ranges > n
For each live range active around that point
— find the outermost “block construct” that does not access the variable
Choose a live range with the largest inactive region
Split the inactive region from the live range

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Register Allocation

Alternative Allocators

Graph allocator, as described, has issues
« What are they?
Alternative: Single pass graph coloring
< Build, Simplify, Coalesce as before
« In select, if can’t color with register, color with stack location
— Keep going
+ Requires second, reload phase
— “fixes” spilled variables
— Requires that we reserve a register
— Can get messy
Claim: Does a pretty good job
< Why?
— Key is order nodes are colored...

Advantages? Disadvantages?

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

Alternative Allocators

Local/Global Allocation
« Allocate “local” pseudo-registers
— Lifetime contained within basic block
— Register sufficiency no longer NP-Complete!
« Allocate global pseudo-registers
— Single pass global coloring
« Reload pass to fix spills (allocator does not generate spill code)

gcc’s approach,
unless -fnew-ra

< Can also do global then local (Morgan)

« Advantages? Disadvantages?

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

How good is it in practice?

*Used gcc -fnew-ra to
compile >10,000 functions from
Mediabench, Spec95,

Percent of functions
with no spills

100 97.3 an Spec2000, and micro-
90 i benchmarks
80
= gg *Recorded for which functions
§ 50 graph coloring had to spill
[}
£ %

PPC 68k x86
(32) (1) (8)

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

15

Register Allocation

PPC (32 registers)
Increase in Spills as Number of Variables in Function Grows
2500
w
c
2 2000
t
5 1500 -
L m No Spills
N -
© 1000 - o Spilled
o
a
E 500
S
4
0 4
2 4 8 16 32 64 128 256 512 1024
Number of Variables in Function

68k (16 registers)
Increase in Spills as Number of Variables in Function Grows
2500
w
c
2 2000
t
5 1500 -
L m No Spills
N -
© 1000 - o Spilled
o
a
E 500
S
4
0 4
2 4 8 16 32 64 128 256 512 1024
Number of Variables in Function

x86 (8 registers)
Increase in Spills as Number of Variables in Function Grows
2500

n
c
2 2000
T
s
2 1500 ENo Spills
e .
E 1000 4 mSpilled
a
a8
E 500
3
r4

0 u

2 4 B 16 32 64 128 256 512 1024
Number of Variables in Function

What’s Next

Good Question

AS YOU CAN
CLEARLY SEE
IN SLIDE

"POWERPOINT”
POISONING.

www.dilberl.com scoftsdams@sol com

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 20024

16

