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Intro to Global Register Allocation

Problem:

• Allocation of variables (pseudo-registers) to hardware registers in a
procedure

One of the most important optimizations

• Memory accesses are more costly than register accesses

– True even with caches

– True even with CISC architectures

• Important for other optimizations

– E.g., CSE assumes old values are kept in registers

• When it does not work well, the performance impact is noticeable.
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Terminology

Allocation

• decision to keep a pseudo-register in a hardware register

• prior to register allocation, we assume an infinite set of registers

– (aka “temps” or “pseudo-registers” or (bad) “variables”).

Spilling

• when allocation fails...

• a pseudo-register is spilled to memory, if not kept in a hardware
register

Assignment

• decision to keep a pseudo-register in a specific hardware
register

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-4 4

What are the Problems?

• For this example:

• What is the minimum number of registers needed to avoid spilling?

• Given n registers in a machine, is spilling necessary?

• Find an assignment for all pseudo-registers, if possible.

• If there are not enough registers in the machine, how do we spill to memory?

IF A goto L1
A = ...

B = ... L1: C =...
 = A 
D = B 

= A
D = C

ret D 
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Abstraction for Reg Alloc & Assignment

Intuitively:

• Two pseudo-registers interfere if at some point in the program they
cannot both occupy the same register.

Interference graph: an undirected graph, where

• nodes = pseudo-registers

• there is an edge between two nodes if their corresponding
pseudo-registers interfere

IF A goto L1
A = ...

B = ... L1: C =...
 = A 
D = B 

= A
D = C

ret D 
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Register Allocation and Coloring

• A graph is n-colorable
if every node in the graph can be colored with one of n colors
such that two adjacent nodes do not have the same color.

• Assigning n registers (without spilling) = Coloring with n colors

– assign a node to a register (color) such that
no two adjacent nodes are assigned same registers(colors)

• Is spilling necessary? = Is the graph n-colorable?

• To determine if a graph is n-colorable is NP-complete, for n>2
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Simple Algorithm

Build an interference graph

• refining notion of a node

• finding the edges

Coloring

• use heuristics to try to find an n-coloring

– Success ⇒ colorable and we have an assignment

– Failure  ⇒ graph not colorable, or
graph is colorable, but we couldn’t find a coloring
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Nodes in an Interference Graph

IF A goto L1
A = ...

B = ... L1: C =...
 = A 
D = B 

= A
D = C

A = 2

= A
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Live Ranges & Merged Live Ranges

• Motivation: to create an interference graph that is easier to color

– Eliminate interference in a variable’s “dead” zones.

– Increase flexibility in allocation:
can allocate same variable to different registers

• A live range consists of a definition and all the points in a program
(e.g. end of an instruction) in which that definition is live.

– How to compute a live range?

• Two overlapping live ranges for the same variable must be merged

a = 

= a

a = 
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Example

A = ...  (A1)
IF A goto L1

L1:
C = ...  (C1)
    = A
D = ...  (D1) 

B = ...  (B1)
   = A
D = B  (D2) 

A = 2  (A2)

   = A
ret D

{} {}
{A} {A1}
{A} {A1}

{A} {A1}
{A,B} {A1,B1}
{B} {A1,B1}
{D} {A1,B1,D2}

Live Variables
Reaching Definitions

{A} {A1}
{A,C} {A1,C1}
{C} {A1,C1}
{D} {A1,C1,D1}

{D} {A1,B1,C1,D1,D2}
{A,D} {A2,B1,C1,D1,D2}

{A,D} {A2,B1,C1,D1,D2}
{D} {A2,B1,C1,D1,D2}

Merge

A live range consists of a definition and all the
points in a program in which that definition is live.
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Merging Live Ranges

Merging definitions into equivalence classes:
• Start by putting each definition in a different equivalence class

• For each point in a program

– if variable is live,
and there are multiple reaching definitions for the variable

– merge the equivalence classes of all such definitions into a one equivalence
class

From now on, refer to merged live ranges simply as live range
• Merged live ranges are also known as “webs”
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Example: Merged Live Ranges

A = ...  (A1)
IF A goto L1

L1:
C = ...  (C1)
    = A
D = ...  (D1) 

B = ...  (B1)
   = A
D = B  (D2) 

A = 2  (A2)

   = A
ret D

{}
{A1}
{A1}

{A1}
{A1,B1}
{B1}
{D1,2}

{A1}
{A1,C1}
{C1}
{D1,2}

{D1,2}
{A2,D1,2}

{A2,D1,2}
{D1,2}
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Edges of Interference Graph

Intuitively:

• Two live ranges (necessarily of different variables) may interfere
if they overlap at some point in the program.

• Algorithm:

– At each point in program,
enter an edge for every pair of live ranges at that point

An optimized definition & algorithm for edges:
For each defining inst i

Let x be live range of definition at inst i
For each live range y present at end of inst i

insert an edge between x and y

• Faster

• Better quality?
A = 2  (A2)

{D1,2}  
{A2,D1,2}

Edge between A2 and D1,2
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Example 2

 If Q goto L1

A = L1: B = 

 If Q goto L2

= A L2: = B
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Example: Interference Graph

A1

C D
{D1,D2}

B

A2

So was it worth it to
split the live ranges?
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Coloring

• Reminder: coloring for n > 2 is NP-complete*

• Observations

– a node with degree < n ⇒

 can always color it successfully, given its neighbors’ colors

– a node with degree = n ⇒

– a node with degree > n ⇒

[1] H. Bodlaender, J. Gustedt, and J. A. Telle, “Linear-time register allocation for a fixed number of registers,” in Proceedings
of the ninth annual ACM-SIAM symposium on Discrete algorithms, pp. 574–583, Society for Industrial and Applied
Mathematics, 1998.
[2] S. Kannan and T. Proebsting, “Register allocation in structured programs,” in Proceedings of the sixth annual ACM-SIAM
symposium on Discrete algorithms, pp. 360–368, Society for Industrial and Applied Mathematics, 1995.
[3] M. Thorup, “All structured programs have small tree width and good register allocation,” Inf. Comput., vol. 142, no. 2, pp.
159–181, 1998.

*
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Coloring Algorithm

Algorithm

• Iterate until stuck or done

– Pick any node with degree < n

– Remove the node and its edges from the graph

• If done (no nodes left)

– reverse process and add colors

Example (n = 3)

• Note: degree of a node may drop in iteration

• Avoids making arbitrary decisions that make coloring fail

B

E C

D

A
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What Does Coloring Accomplish?

Done:
• colorable
• also obtained an assignment (colors correspond to registers)

Stuck (n = 2):
• colorable or not?

• One solution: optimistically remove nodes and hope we get lucky...

B

E C

D

A
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Checkpoint

Problems:

• Given n registers in a machine, is spilling avoided?

• Find an assignment for all pseudo-registers, whenever possible.

Solution:

• Abstraction: an interference graph

– nodes: (merged) live ranges

– edges: presence of live range at time of definition

• Register Allocation and Assignment problems
= n-colorability of interference graph

 ⇒ NP-complete

• Heuristics to find an assignment for n colors

– successful: colorable, and finds assignment

– unsuccessful: colorability unknown & no assignment
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Discussion

What about when we can’t k-color?
• spill to memory

Is the minimum coloring always what we want?
• Hint: no

What about architecture strangeness?
• subword registers (x86, 68k, ColdFire...)
• register pairing (HP PA-RISC, SPARC, x86)
• register classes (x86, 68k, ColdFire...)
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An Improvement: Move Coalescing

Basic idea:
• eliminate moves by assigning the src and dest to the same register
• copy propagation and dead code elimination can’t eliminate all

unnecessary moves

How can we modify our interference graph to do this?

X = 1 X = Y

Z = X+2

If we allocate X and Y
to the same register we

can eliminate X = Y

(copy prop couldn’t)
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An Exciting New Example

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <- w

  <- t

  <- u

v               

w           
x        

u     

t 

First compute live ranges...

v

x w

u

t

...then construct interference graph
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An Exciting New Example cont.

v

x w

u

t

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <- w

  <- t

  <- u

u and v are special:
A move whose source is not live-out of
the move is a candidate for coalescing

Want u and v to be
assigned same
color...

uv

...merge u and
v to form a
single node

That is, if the src and
dest don’t interfere
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Is Coalescing Always Good?

y

u x

b

av

uv

y

u x

b

av

move edge vs.

And the winner is?
3 colorable2 colorable
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When should we coalesce?

Always
• If we run into trouble start un-coalescing

– no nodes with degree < k, see if breaking up coalesced nodes fixes
• yuck

Only if we can prove it won’t cause problems
• Briggs: Conservative Coalescing
• George: Iterated Coalescing

y u x

b

av

When we simplify the
graph, we remove nodes
of degree < k...

want to make sure we will
still be able to simplify
coalesced node, uv
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Briggs: Conservative Coalescing

y u x

b

av

•Can coalesce u and v if:

–(# of neighbors of uv with degree ≥ k) < k

•Why?

–Simplify pass removes all nodes with degree < k

–# of remaining nodes < k

–Thus, uv can be simplified

What does Briggs
say about

k = 3?

k = 2?
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George: Iterated Coalescing
Can coalesce u and v if

foreach neighbor t of u
– t interferes with v, or,
– degree of t < k

Why?
• let S be set of neighbors of u with degree < k
• If no coalescing, simplify removes all nodes in S, call that

graph G1

• If we coalesce we can still remove all nodes in S, call that
graph G2

• G2 is a subgraph of G1

doesn’t change degree

removed by simplification

Resulting node uv will
(after simplification)
have degree equal to
degree of v
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George: Iterated Coalescing

u

v

S1

S2 S3

S4

x1

x2

u

v
x1

x2

No coalescing,
after

simplification

uv
x1

x2

After coalescing and
simplificationk = 4

G1

G2
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Why Two Methods?

• Why not?
• With Briggs, one needs to look at all neighbors of a & b
• With George, only need to look at neighbors of a.

So:
• Use George if one of a & b has very large degree
• Use Briggs otherwise
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Where We Are

Build

Simplify

Coalesce
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Where We’re Going

Build

Simplify

Potential Spill

Select

Actual Spill

Coalesce

plus a bunch of
important details...
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Review: Build

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <- w

  <- t

  <- u

v               

w           
x        

u     

t 

First compute live ranges:
- use both reach defs and liveness

- live range defined by definition point

- ends when variable dies

- merge overlapping ranges of same var

a = 

= a

a = 
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Review: Build

v

x w

u

t

Construct interference graph:

- each node represents a live range

- edges represent live ranges that overlap

- put in move edges between move operands 
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Review: Simplify

v

u

wx

t

k = 4Reduce the graph:

- remove non-move related, easy to color, nodes

- easy to color: degree < k

- place on stack 

t

x

w

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-4 35

Review: Coalesce

v

u

k = 4

t

x

w

Coalesce moves:

- conservatively combine operands of a move

- Briggs, George heuristics for being conservative

uv

Simplify

Coalesce

Repeat Simplify

-Detail: If both Simplify and Coalesce get
stuck, start simplifying move related nodes

uv
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Transition Slide!

Build

Simplify

Potential Spill

Select

Actual Spill

Coalesce
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What if we can’t simplify?

x

u

t

w

v

k = 3

v

Now what?

Be optimistic:

- Put a node with degree ≥ k on stack

- Lose guarantee that anything we
put on stack is colorable

- If we’re lucky this node will still be
colorable when popped from stack

Be realistic:

- If unlucky, this node will have to be
spilled (allocated to memory)

- Mark as potential spill to avoid
recomputation later

w

t
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Select

w

t

v

u

wx

t

k = 3

v

u

x

Pop a node from the stack

Assign it a color that does not
conflict with neighbors in
interference graph

This will always be possible,
unless the node is a potential spill

If it is not possible must spill
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Spilling to Memory

RISC Architectures
• Only load and store can access memory

– every use requires load

– every def requires store

– create new temporary for each location

CISC Architectures

• can operate on data in memory directly

– makes writing compiler easier(?), but isn’t necessarily faster

• pseudo-registers inside memory operands still have to be handled
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Spilling
v <- 1

w1 <- v + 3

Mw[]<- w1

w2 <- Mw[]

x <- w2 + v

u <- v

t <- u + x

  <-   x

w3 <- Mw[]

  <- w3

  <- t

  <- u

Allocate w to memory
location Mw

v               

w1           

x        

u     

t 

w2           

w3           

Now Start Over...

...compute live ranges...

Spilled variables are allocated to
the stack in an area completely
controlled by the compiler.
These memory locations are
special in that they can be
optimized without concern for
memory aliasing issues.
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Build Take Two

v

x

u

t

w1 w2 w3

Recalculate interference graph

k = 3

v <- 1

w1 <- v + 3

Mw[]<- w1

w2 <- Mw[]

x <- w2 + v

u <- v

t <- u + x

  <-   x

w3 <- Mw[]

  <- w3

  <- t

  <- u
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Simplify->Coalesce->Select

v

x

u

t

w1 w2 w3

k = 3

uv
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Spilling

We have to start from scratch every time we spill

• Suggestions?

– Fewer iterations?

– Faster iterations?
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What to Spill?

When choosing potential spill node want:

• A node that makes graph easier to color

– Fewer spills later

• A node that isn’t “expensive” to spill

– First nodes pushed on stack are last to be colored

 more likely to be spilled

– An expensive node would slow down the program if spilled

• We can apply heuristics both when choosing potential spill nodes
and when choosing actual spill nodes

– not required to spill node that we popped off stack and can’t color
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A Spill Heuristic

Pick node (live range) n that minimizes:

This heuristic prefers nodes that:

• Are used infrequently

• Aren’t used inside of loops

• Have a large degree

Could use any one of several other heuristics as well...

€ 

10depth(def )
def ∈n
∑ + 10depth(use )

use∈n
∑

degree(n)
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Reducing Stack Frame Size

• How do you allocate spilled live ranges?
- every live range gets its own location on the stack frame
- or we can be smarter...

• What about mov a,b where both a & b have been spilled?
• Use graph-coloring with aggressive coalescing!

• Use liveness info to create an interference graph of the
spilled nodes

• Always coalesce
• Simplify/Select
• Colors map to frame locations

Is it worth it?
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Rematerialization

An alternative to spilling

• Recompute value of variable instead of store/load to memory

• Example:

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <- w

  <- t

  <- u

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

w <-  4

  <- w

  <- t

  <- u
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Checkpoint

Build

Simplify

Potential Spill

Select

Actual Spill

Coalesce
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Special Registers

Which registers can be used?
• Some registers have special uses.

– Register 0 or 31 is often hardwired to contain 0.
– Special registers to hold return address, stack pointer, frame pointer, etc.
– Reserved registers for operating system.

• Typically, leaves about 20 or so registers for other general uses.

Impact on register allocation:
• Temps should be assigned only to the non-reserved registers (allocable).
• Hard registers are pre-colored in the interference graph.

movl    foo.a,%eax
cltd   (eax,edx) <- eax
idivl   foo.b (eax,edx)<- (eax,edx)/foo.b
movl    %eax,$vr0
movl    $vr0,%eax
ret

eax

foo.a

vr0

foo.b

edx
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Register Usage Conventions

Certain registers are used for specific purposes defined by the
standard calling convention.

• 4-6 argument registers.
– The first 4-6 arguments to procedures/functions are always passed in these

registers.
• ~8 callee-save registers.

– These registers must be preserved across procedure calls.  Thus, if a
procedure wants to use a callee-save register, it must first save the old value
and then restore it before returning.

• The remainder are caller-save registers.
– These are not preserved across procedure calls.  Thus, a procedure is free to

use them without saving first.
– Includes the argument registers.

How do we support these?
• neat trick for handling callee save
• call instruction
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Allocating Callee-Save Registers

Move callee-save reg to temp at start of procedure
Move it back at end of procedure
What happens if there is no register pressure?
What happens if there is a lot of register pressure?

entry: define r

temp <- r

…

exit:r <- temp

use r
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Allocating to callee-save registers

CALL instruction “modifies” all caller-save regs

entry: define re
t1 <- re
x <-
…
call
  (r1,r2,r3 <-)
   ( <- r1,r2,r3)

…
<- x

exit:re <- t1
use re

x

t1
r1

r2

r3

re
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Reducing Register Pressure

Recall: Split pseudo-registers into live ranges
to create an interference graph that is easier to color

• Eliminate interference in a variable’s “dead” zones.

• Increase flexibility in allocation:
can allocate same variable to different registers

IF A goto L1
A = ...

B = ... L1: C =...
 = A 
D 

= A
D = 

A = D

= A

A1

CB

D

A2

= B = C
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Insight

Split a live range into smaller regions (by paying a small cost)
to create an interference graph that is easier to color

• Eliminate interference in a variable’s “nearly dead” zones.

– Cost: Memory loads and stores
Load and store at boundaries of regions with no activity

– # active live ranges at a program point can be > # registers

• Can allocate same variable to different registers

– Cost: Register operations
a register copy between regions of different assignments

– # active live ranges cannot be > # registers
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Examples

Example 1:

FOR i = 0 TO 10
   FOR j = 0 TO 10000

A = A + ...
(does not use B)

   FOR j = 0 TO 10000
B = B + ...
(does not use A)

Example 2:

a = 

b = 
= a + b

c = 

= b+c

b = 

c = 
= a + c
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Live-Range Splitting

When do we apply live range splitting?

Which live range to split?

Where should the live range be split?

How to apply live-range splitting with coloring?

• Advantage of coloring:

– defers arbitrary assignment decisions until later

• When coloring fails to proceed, may not need to split live range

– degree of a node >= n does not mean that the graph
definitely is not colorable

• Interference graph does not capture positions of a live range
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One Algorithm

Observation: Spilling is absolutely necessary if

• number of live ranges active at a program point > n

Apply live-range splitting before coloring

• Identify a point where number of live ranges > n

• For each live range active around that point

– find the outermost “block construct” that does not access the variable

• Choose a live range with the largest inactive region

• Split the inactive region from the live range

not degree in graph
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Alternative Allocators

Graph allocator, as described, has issues
• What are they?

Alternative: Single pass graph coloring
• Build, Simplify, Coalesce as before
• In select, if can’t color with register, color with stack location

– Keep going
• Requires second, reload phase

– “fixes” spilled variables
– Requires that we reserve a register
– Can get messy

Claim: Does a pretty good job
• Why?

– Key is order nodes are colored…

Advantages?  Disadvantages?
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Alternative Allocators

Local/Global Allocation
• Allocate “local” pseudo-registers

– Lifetime contained within basic block
– Register sufficiency no longer NP-Complete!

• Allocate global pseudo-registers
– Single pass global coloring

• Reload pass to fix spills (allocator does not generate spill code)

• Can also do global then local (Morgan)

• Advantages? Disadvantages?

gcc’s approach,
unless -fnew-ra
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How good is it in practice?

•Used gcc -fnew-ra to
compile >10,000 functions from
Mediabench, Spec95,
Spec2000, and micro-
benchmarks

•Recorded for which functions
graph coloring had to spill

Percent of functions 
with no spills

97.3
90

54.35
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PPC (32 registers)
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68k (16 registers)
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x86 (8 registers)
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What’s Next

Good Question


