15-814 Fall 2003, Homework #6 selected solutions

Aleksey Kliger

2 December 2003

Please see the book's solutions to 15.2.5 and 15.3.6.

Problem 1 (26.2.2). Give a couple of examples of pairs of types that are related by the subtype relation of full $F_{<:}$ but are not subtypes in kernel $F_{<:}$.

Solution Recall that in kernel $\mathsf{F}_{<:}$, the bounds on the parameters of two quantified types $\forall X <: T_1.S_1$ and $\forall X <: T_2.S_2$ must be the same (*i.e.*, $T_1 = T_2$). So one easy example that is typable in full $\mathsf{F}_{<:}$ is

$$\begin{array}{c} \vdots \\ \vdash \{a:\mathsf{nat}, b:\mathsf{nat}\} <: \{a:\mathsf{nat}\} \quad \overline{X <: \{a:\mathsf{nat}, b:\mathsf{nat}\} \vdash T <: T} \\ \vdash \forall X <: \{a:\mathsf{nat}\} . T <: \forall X <: \{a:\mathsf{nat}, b:\mathsf{nat}\} . T \end{array}$$

for any type T.

Problem 2. Suppose Counter, c_1 and c_2 are defined as follows:

 $\mathsf{Counter} = \exists \alpha. \alpha \times (\alpha \to \mathsf{nat}) \times (\alpha \to \alpha)$

 $c_1 = \{*\mathsf{nat}, \langle 0, \lambda x: \mathsf{nat}.x, \lambda x: \mathsf{nat}.\mathsf{succ} \ x \rangle\}$ as Counter

 $c_2 = \{*nat \times nat, \langle \langle 0, 0 \rangle, \lambda x: nat \times nat. x.1 + x.2, \lambda x: nat \times nat. \langle succ x.2, x.1 \rangle \rangle \}$ as Counter Show that $c_1 \cong c_2$: Counter

Solution Let $v_1 = \langle 0, \lambda x: \mathsf{nat.} x, \lambda x: \mathsf{nat.succ} x \rangle$ and

 $v_2 = \langle \langle 0, 0 \rangle, \lambda x: \mathsf{nat} \times \mathsf{nat}. x.1 + x.2, \lambda x: \mathsf{nat} \times \mathsf{nat}. \langle \mathsf{succ} x.2, x.1 \rangle \rangle$

respectively.

Let $Q = \alpha \times (\alpha \to \mathsf{nat}) \times (\alpha \to \alpha)$

Recall the definition of logical equivalence (given in Figure 1, extended to n-ary product types). By definition, it suffices to show that for some candiate $C = (\mathsf{nat}, \mathsf{nat} \times \mathsf{nat}, R), v_1 \cong_{\mathsf{val}} v_2 : Q[C/\alpha]$, for some appropriate R. Indeed aside from pushing through the definition, the problem essentially boils down to finding the appropriate relation R.

$t_1 \cong t_2 : Q$	whenever $t_1 \Downarrow$ iff $t_2 \Downarrow$ and for all v_1, v_2
	if $t_i \to^* v_i$, then $v_1 \cong_{val} v_2 : T$
$v_1 \cong_{val} v_2 : b$	$v_1 = v_2$, where b is a base type (such as nat)
$v_1 \cong_{val} v_2 : (T_1, T_2, R)$	whenever $(v_1, v_2) \in R$
$v_1 \cong_{val} v_2 : Q_1 \times \dots \times Q_n$	whenever for each $1 \leq i \leq n, v_1.i \approx v_2.i: Q_i$
$v_1 \cong_{val} v_2 : Q_1 \to Q_2$	whenever for all $v'_1 \in Val(Left(Q_1))$
	and $v'_2 \in Val(Right(Q_1)),$
	if $v'_1 \cong_{val} v'_2 : Q_1$ then $v_1 v'_1 \cong v_2 v'_2 : Q_2$
$v_1 \cong_{val} v_2 : \forall \alpha. Q$	whenever for all candidates $C = (T_1, T_2, R)$,
	$v_1[T_1] \cong v_2[T_2] : Q[C/\alpha]$
$v_1 \cong_{val} v_2 : \exists \alpha. Q$	whenever $v_1 = \{*T_1, v_1'\}$ and $v_2 = \{*T_2, v_2'\}$
	and there is some candidate $C = (T_1, T_2, R)$
	such that $v'_1 \cong_{val} v_2 : Q[C/\alpha]$

Figure 1: Logical Equivalence

Informally, the second counter "works" by alternately incrementing either the first or second component of the pair, in the end when converting the counter to a natural number it adds up the components to get the total number of increments. So it is an invariant of the second counter that a counter's value is i + j where $\langle i, j \rangle$ is the representation. So one possibility for the relation R is $\{(n, \langle i, j \rangle) | i + j \rightarrow^* n\}^1$.

Returning to the proof, it suffices to show (from the definition of logical equivalence for n-tuples) that $v_1 \cdot i \cong v_2 \cdot i : Q_i$ for i = 1, 2, 3 where $Q_1 = C, Q_2 = C \rightarrow \text{nat}, Q_3 = C \rightarrow C$.

In each of the three cases, evidently $v_1 i \Downarrow iff v_2 i \Downarrow$, and indeed we can take an evaluation step to get at the appropriate component of v_i .

So it suffices to show:

- 1. $0 \cong_{\mathsf{val}} \langle 0, 0 \rangle : C$
- 2. $\lambda x: \operatorname{nat.} x \cong_{\operatorname{val}} \lambda x: \operatorname{nat} \times \operatorname{nat.} x.1 + x.2: C \to \operatorname{nat}$
- 3. $\lambda x:$ nat.succ $x \cong_{\mathsf{val}} \lambda x:$ nat \times nat. $\langle \mathsf{succ} \ x.2, x.1 \rangle : C \to C$

To show (1), by definition it suffices to show that $(0, \langle 0, 0 \rangle) \in \mathbb{R}$. And since evidently $0 + 0 \rightarrow^* 0$, it holds.

To show (2), suffices to show that if $w_1, w_2 \in R$ (where $\vdash w_1 : \mathsf{nat}, \vdash w_2 : \mathsf{nat} \times \mathsf{nat}$), then $(\lambda x:\mathsf{nat}.x)w_1 \cong (\lambda x:\mathsf{nat} \times \mathsf{nat}.x.1 + x.2)w_2 : \mathsf{nat}$. By taking a few steps of evaluation, we see that it suffices to show $w_1 \cong w_2.1 + w_2.2 : \mathsf{nat}$. Now since w_2 has type $\mathsf{nat} \times \mathsf{nat}$, by canonical forms, $w_2 = \langle w_{21}, w_{22} \rangle$. So by some more evaluation, we see it suffices to show that $w_1 \cong w_{21} + w_{22} : \mathsf{nat}$.

¹Here + is the addition operation of the programming language. Another possibility is $R' = \{(n, \langle i, j \rangle) | i + j = n\}$ where + is the mathematical operation of addition. The proof works for either relation, although it is somewhat shorter for R

However recall that $(w_1, \langle w_{21}, w_{22} \rangle) \in R$. So $w_{21} + w_{22} \to^* w_1$. So we have $w_1 \simeq_{\mathsf{val}} w_1$: nat which is true by definition of logical equivalence at base type.

To show (3), suffices to show that if $(w_1, w_2) \in R$, that $(\lambda x: \text{nat.succ } x)w_1 \cong (\lambda x: \text{nat} \times \text{nat}. \langle \text{succ } x.2, x.1 \rangle)w_2 : C$. By taking a few steps of evaluation, it suffices to show that $\text{succ } w_1 \cong_{\text{val}} \langle \text{succ } w_{22}, w_{21} \rangle : C$ where $w_2 = \langle w_{21}, w_{22} \rangle$. By definition of logical equivalence at a candidate, it suffices to show that if $(\text{succ } w_1, \langle \text{succ } w_{22}, w_{21} \rangle) \in R$. That is, we wish to show that $\text{succ } w_{22} + w_{21} \rightarrow^*$ succ w_1 . However this follows easily from $(w_1, w_2) \in R$ by a lemma about natural numbers:

Lemma 2.1. If $v_1 + v_2 \rightarrow^* v$ then succ $v_1 + v_2 \rightarrow^* succ v$.

Proof. By induction on v_1 , using the definition of +.

Problem 3. Suppose $\vdash f : \forall \alpha. \alpha \to \alpha \to \alpha$, and $\vdash v_1 : T$ and $\vdash v_2 : T$. Show that if $f[T]v_1v_2 \to^* v$ then either $v = v_1$ or $v = v_2$.

Solution We will use parametricity and an appropriate candidate C = (T, T, R) to show that this is the case. The choice of a particular R will be critical. One way to pick the appropriate R is to proceed with the proof while holding R abstract, and collect from the chain of logical inference a set of constraints on R. Then find an appropriate relation that makes those constraints true.

So, by parametricity, $f \cong_{\mathsf{val}} f : \forall \alpha. \alpha \to \alpha \to \alpha$. Therefore, from the definition of logical equivalence, for all candidates C, $f[Left(C)] \cong f[Right(C)] : C \to C \to C$. So pick C = (T, T, R). Then since $f[T]v_1v_2 \to^* v$, it follows that $f[T] \to^* w$. Therefore, by definition of logical equivalence, $w \cong_{\mathsf{val}} w : C \to C \to C$. By definition of logical equivalence for values of arrow type, since $v_1 \cong_{\mathsf{val}} v_1 : C^2$, it follows that $wv_1 \cong wv_1 : C \to C$. By definition of logical equivalence for values of arrow type, since $v_1 \cong_{\mathsf{val}} v_1 : C^2$, it follows that $wv_1 \cong wv_1 : C \to C$. By definition of logical equivalence for values of arrow type, since $v_2 \cong_{\mathsf{val}} v_2 : C^3$, it follows that $w'v_2 \cong w'v_2 : C$. Finally, since $w'v_2 \to^* v$, it follows that $v \cong_{\mathsf{val}} v : C$. By definition of logical equivalence of values at a candidate, that means that $(v, v) \in R$. Therefore⁴, $v = v_1$ or $v = v_2$.

So, spelling out the details from the footnotes, it turns out that we chose $R = \{(v_1, v_1), (v_2, v_2)\}.$

²Note that I haven't picked what R is yet, but I am adding the constraint that whatever it is, it has to at least include (v_1, v_1)

³...and R must include at least (v_2, v_2)

⁴... and those must be are the only things in the relation R