
15-814 Fall 2003, Homework #6

selected solutions

Aleksey Kliger

2 December 2003

Please see the book’s solutions to 15.2.5 and 15.3.6.

Problem 1 (26.2.2). Give a couple of examples of pairs of types that are

related by the subtype relation of full F<: but are not subtypes in kernel F<:.

Solution Recall that in kernel F<:, the bounds on the parameters of two
quantified types ∀X<:T1.S1 and ∀X<:T2.S2 must be the same (i.e., T1 = T2).
So one easy example that is typable in full F<: is

....
` {a:nat, b : nat} <: {a:nat} X <: {a:nat, b:nat} ` T <: T

` ∀X<:{a:nat}.T <: ∀X<:{a:nat, b:nat}.T

for any type T .

Problem 2. Suppose Counter, c1 and c2 are defined as follows:

Counter = ∃α.α × (α → nat) × (α → α)

c1 = {∗nat, 〈0, λx:nat.x, λx:nat.succ x〉} as Counter

c2 = {∗nat×nat, 〈〈0, 0〉 , λx:nat × nat.x.1 + x.2, λx:nat × nat. 〈succ x.2, x.1〉〉} as Counter

Show that c1 u c2 : Counter

Solution Let v1 = 〈0, λx:nat.x, λx:nat.succ x〉 and

v2 = 〈〈0, 0〉 , λx:nat × nat.x.1 + x.2, λx:nat × nat. 〈succ x.2, x.1〉〉

respectively.
Let Q = α × (α → nat) × (α → α)
Recall the definition of logical equivalence (given in Figure 1, extended to

n-ary product types). By definition, it suffices to show that for some candiate
C = (nat, nat × nat, R), v1 uval v2 : Q[C/α], for some appropriate R. Indeed
aside from pushing through the definition, the problem essentially boils down
to finding the appropriate relation R.

1

t1 u t2 : Q whenever t1 ⇓ iff t2 ⇓ and for all v1, v2

if ti →
∗ vi, then v1 uval v2 : T

v1 uval v2 : b v1 = v2, where b is a base type (such as nat)
v1 uval v2 : (T1, T2, R) whenever (v1, v2) ∈ R
v1 uval v2 : Q1 × · · · × Qn whenever for each 1 ≤ i ≤ n, v1.i u v2.i : Qi

v1 uval v2 : Q1 → Q2 whenever for all v′

1 ∈ Val(Left(Q1))
and v′

2
∈ Val(Right(Q1)),

if v′
1

uval v′
2

: Q1 then v1v
′

1
u v2v

′

2
: Q2

v1 uval v2 : ∀α.Q whenever for all candidates C = (T1, T2, R),
v1[T1] u v2[T2] : Q[C/α]

v1 uval v2 : ∃α.Q whenever v1 = {∗T1, v
′

1
} and v2 = {∗T2, v

′

2
}

and there is some candidate C = (T1, T2, R)
such that v′

1
uval v2 : Q[C/α]

Figure 1: Logical Equivalence

Informally, the second counter “works” by alternately incrementing either
the first or second component of the pair, in the end when converting the counter
to a natural number it adds up the components to get the total number of
increments. So it is an invariant of the second counter that a counter’s value is
i + j where 〈i, j〉 is the representation. So one possibility for the relation R is
{(n, 〈i, j〉)|i + j →∗ n}1.

Returning to the proof, it suffices to show (from the definition of logical
equivalence for n-tuples) that v1.i u v2.i : Qi for i = 1, 2, 3 where Q1 = C, Q2 =
C → nat, Q3 = C → C.

In each of the three cases, evidently v1.i ⇓ iff v2.i ⇓, and indeed we can take
an evaluation step to get at the appropriate component of vi.

So it suffices to show:

1. 0 uval 〈0, 0〉 : C

2. λx:nat.x uval λx:nat × nat.x.1 + x.2 : C → nat

3. λx:nat.succ x uval λx:nat × nat. 〈succ x.2, x.1〉 : C → C

To show (1), by definition it suffices to show that (0, 〈0, 0〉) ∈ R. And since
evidently 0 + 0 →∗ 0, it holds.

To show (2), suffices to show that if w1, w2 ∈ R (where ` w1 : nat, ` w2 :
nat × nat), then (λx:nat.x)w1 u (λx:nat × nat.x.1 + x.2)w2 : nat. By taking a
few steps of evaluation, we see that it suffices to show w1 u w2.1 + w2.2 : nat.
Now since w2 has type nat × nat, by canonical forms, w2 = 〈w21, w22〉. So by
some more evaluation, we see it suffices to show that w1 u w21 + w22 : nat.

1Here + is the addition operation of the programming language. Another possibility is
R′ = {(n, 〈i, j〉)|i + j = n} where + is the mathematical operation of addition. The proof
works for either relation, although it is somewhat shorter for R

2

However recall that (w1, 〈w21, w22〉) ∈ R. So w21 + w22 →∗ w1. So we have
w1 uval w1 : nat which is true by definition of logical equivalence at base type.

To show (3), suffices to show that if (w1, w2) ∈ R, that (λx:nat.succ x)w1 u

(λx:nat × nat. 〈succ x.2, x.1〉)w2 : C. By taking a few steps of evaluation, it
suffices to show that succ w1 uval 〈succ w22, w21〉 : C where w2 = 〈w21, w22〉.
By definition of logical equivalence at a candidate, it suffices to show that if
(succ w1, 〈succ w22, w21〉) ∈ R. That is, we wish to show that succ w22 +w21 →∗

succ w1. However this follows easily from (w1, w2) ∈ R by a lemma about natural
numbers:

Lemma 2.1. If v1 + v2 →∗ v then succ v1 + v2 →∗ succ v.

Proof. By induction on v1, using the definition of +.

Problem 3. Suppose ` f : ∀α.α → α → α, and ` v1 : T and ` v2 : T . Show

that if f [T]v1v2 →∗ v then either v = v1 or v = v2.

Solution We will use parametricity and an appropriate candidate C = (T, T, R)
to show that this is the case. The choice of a particular R will be critical. One
way to pick the appropriate R is to proceed with the proof while holding R
abstract, and collect from the chain of logical inference a set of constraints on
R. Then find an appropriate relation that makes those constraints true.

So, by parametricity, f uval f : ∀α.α → α → α. Therefore, from the defi-
nition of logical equivalence, for all candidates C, f [Left(C)] u f [Right(C)] :
C → C → C. So pick C = (T, T, R). Then since f [T]v1v2 →∗ v, it follows
that f [T] →∗ w. Therefore, by definition of logical equivalence, w uval w :
C → C → C. By definition of logical equivalence for values of arrow type, since
v1 uval v1 : C2, it follows that wv1 u wv1 : C → C. Again since f [T]v1v2 →∗ v,
it follows that wv1 →∗ w′ and w′

uval w′ : C → C. By definition of logi-
cal equivalence for values of arrow type, since v2 uval v2 : C3, it follows that
w′v2 u w′v2 : C. Finally, since w′v2 →∗ v, it follows that v uval v : C. By defi-
nition of logical equivalence of values at a candidate, that means that (v, v) ∈ R.
Therefore4, v = v1 or v = v2.

So, spelling out the details from the footnotes, it turns out that we chose
R = {(v1, v1), (v2, v2)}.

2Note that I haven’t picked what R is yet, but I am adding the constraint that whatever
it is, it has to at least include (v1, v1)

3...and R must include at least (v2 , v2)
4... and those must be are the only things in the relation R

3

