15-814 Fall 2003, Homework \#6 selected solutions

Aleksey Kliger

2 December 2003

Please see the book's solutions to 15.2.5 and 15.3.6.
Problem 1 (26.2.2). Give a couple of examples of pairs of types that are related by the subtype relation of full $\mathrm{F}_{<\text {: }}$ but are not subtypes in kernel $\mathrm{F}_{<\text {: }}$.

Solution Recall that in kernel $\mathrm{F}_{<\text {: }}$, the bounds on the parameters of two quantified types $\forall X<: T_{1} . S_{1}$ and $\forall X<: T_{2} . S_{2}$ must be the same (i.e., $T_{1}=T_{2}$). So one easy example that is typable in full $F_{<\text {: }}$ is

$$
\begin{gathered}
\vdots \\
\vdash\{a: \text { nat, } b: \text { nat }\}<:\{a: \text { nat }\} \quad \overline{X<:\{a: \text { nat }, b: \text { nat }\} \vdash T<: T} \\
\vdash \forall X<:\{a: \text { nat }\} \cdot T<: \forall X<:\{a: \text { nat }, b \text { :nat }\} \cdot T
\end{gathered}
$$

for any type T.
Problem 2. Suppose Counter, c_{1} and c_{2} are defined as follows:

$$
\begin{gathered}
\text { Counter }=\exists \alpha . \alpha \times(\alpha \rightarrow \text { nat }) \times(\alpha \rightarrow \alpha) \\
c_{1}=\{* \text { nat, }\langle 0, \lambda x: \text { nat. } x, \lambda x: \text { nat.succ } x\rangle\} \text { as Counter }
\end{gathered}
$$

$c_{2}=\{*$ nat \times nat, $\langle\langle 0,0\rangle, \lambda x$:nat \times nat. $x .1+x .2, \lambda x$:nat \times nat. $\langle\operatorname{succ} x .2, x .1\rangle\rangle\}$ as Counter Show that $c_{1} \approx c_{2}$: Counter

Solution Let $v_{1}=\langle 0, \lambda x$:nat. $x, \lambda x$:nat.succ $x\rangle$ and

$$
v_{2}=\langle\langle 0,0\rangle, \lambda x: \text { nat } \times \text { nat. } x .1+x .2, \lambda x: \text { nat } \times \text { nat. }\langle\operatorname{succ} x .2, x .1\rangle\rangle
$$

respectively.
Let $Q=\alpha \times(\alpha \rightarrow$ nat $) \times(\alpha \rightarrow \alpha)$
Recall the definition of logical equivalence (given in Figure 1, extended to n-ary product types). By definition, it suffices to show that for some candiate $C=$ (nat, nat \times nat, R), $v_{1} \approx_{\text {val }} v_{2}: Q[C / \alpha]$, for some appropriate R. Indeed aside from pushing through the definition, the problem essentially boils down to finding the appropriate relation R.

$t_{1} \approx t_{2}: Q$	whenever $t_{1} \Downarrow$ iff $t_{2} \Downarrow$ and for all v_{1}, v_{2} if $t_{i} \rightarrow{ }^{*} v_{i}$, then $v_{1} \widetilde{\cong}_{\text {val }} v_{2}: T$
$v_{1} \widetilde{\simeq}_{\text {val }} v_{2}: b$	$v_{1}=v_{2}$, where b is a base type (such as nat)
$v_{1} \approx_{\text {val }} v_{2}:\left(T_{1}, T_{2}, R\right)$	whenever $\left(v_{1}, v_{2}\right) \in R$
$v_{1} \widetilde{\approx}_{\text {val }} v_{2}: Q_{1} \times \cdots \times Q_{n}$	whenever for each $1 \leq i \leq n, v_{1} . i \cong v_{2} . i: Q_{i}$
	whenever for all $v_{1}^{\prime} \in \operatorname{Val}\left(\operatorname{Left}\left(Q_{1}\right)\right)$ and $v_{2}^{\prime} \in \operatorname{Val}\left(\operatorname{Right}\left(Q_{1}\right)\right)$,
$v_{1} \widetilde{\simeq}_{\text {val }} v_{2}: \forall \alpha . Q$	whenever for all candidates $C=\left(T_{1}, T_{2}, R\right)$, $v_{1}\left[T_{1}\right] \approx v_{2}\left[T_{2}\right]: Q[C / \alpha]$
$v_{1} \widetilde{\cong}_{\text {val }} v_{2}: \exists \alpha . Q$	whenever $v_{1}=\left\{* T_{1}, v_{1}^{\prime}\right\}$ and $v_{2}=\left\{* T_{2}, v_{2}^{\prime}\right\}$ and there is some candidate $C=\left(T_{1}, T_{2}, R\right)$ such that $v_{1}^{\prime} \approx_{\text {val }} v_{2}: Q[C / \alpha]$

Figure 1: Logical Equivalence

Informally, the second counter "works" by alternately incrementing either the first or second component of the pair, in the end when converting the counter to a natural number it adds up the components to get the total number of increments. So it is an invariant of the second counter that a counter's value is $i+j$ where $\langle i, j\rangle$ is the representation. So one possibility for the relation R is $\left\{(n,\langle i, j\rangle) \mid i+j \rightarrow^{*} n\right\}^{1}$.

Returning to the proof, it suffices to show (from the definition of logical equivalence for n-tuples) that $v_{1} . i \approx v_{2} . i: Q_{i}$ for $i=1,2,3$ where $Q_{1}=C, Q_{2}=$ $C \rightarrow$ nat, $Q_{3}=C \rightarrow C$.

In each of the three cases, evidently $v_{1} . i \Downarrow$ iff $v_{2} . i \Downarrow$, and indeed we can take an evaluation step to get at the appropriate component of v_{i}.

So it suffices to show:

1. $0 \approx_{\text {val }}\langle 0,0\rangle: C$
2. $\lambda x:$ nat. $x \approx_{\text {val }} \lambda x:$ nat \times nat. $x .1+x .2: C \rightarrow$ nat
3. λx :nat.succ $x \approx_{\text {val }} \lambda x$:nat \times nat. \langle succ $x .2, x .1\rangle: C \rightarrow C$

To show (1), by definition it suffices to show that $(0,\langle 0,0\rangle) \in R$. And since evidently $0+0 \rightarrow^{*} 0$, it holds.

To show (2), suffices to show that if $w_{1}, w_{2} \in R$ (where $\vdash w_{1}:$ nat, $\vdash w_{2}$: nat \times nat $)$, then $(\lambda x:$ nat. $x) w_{1} \approx(\lambda x$:nat \times nat. $x .1+x .2) w_{2}:$ nat. By taking a few steps of evaluation, we see that it suffices to show $w_{1} \approx w_{2} \cdot 1+w_{2} \cdot 2$: nat. Now since w_{2} has type nat \times nat, by canonical forms, $w_{2}=\left\langle w_{21}, w_{22}\right\rangle$. So by some more evaluation, we see it suffices to show that $w_{1} \approx w_{21}+w_{22}$: nat.

[^0]However recall that $\left(w_{1},\left\langle w_{21}, w_{22}\right\rangle\right) \in R$. So $w_{21}+w_{22} \rightarrow^{*} w_{1}$. So we have $w_{1} \approx_{\text {val }} w_{1}$: nat which is true by definition of logical equivalence at base type.

To show (3), suffices to show that if $\left(w_{1}, w_{2}\right) \in R$, that $(\lambda x$:nat.succ $x) w_{1} \cong$ (λx :nat \times nat. $\langle\operatorname{succ} x .2, x .1\rangle) w_{2}: C$. By taking a few steps of evaluation, it suffices to show that succ $w_{1} \widetilde{\approx}_{\text {val }}\left\langle\right.$ succ $\left.w_{22}, w_{21}\right\rangle: C$ where $w_{2}=\left\langle w_{21}, w_{22}\right\rangle$. By definition of logical equivalence at a candidate, it suffices to show that if (succ $\left.w_{1},\left\langle\operatorname{succ} w_{22}, w_{21}\right\rangle\right) \in R$. That is, we wish to show that succ $w_{22}+w_{21} \rightarrow^{*}$ succ w_{1}. However this follows easily from $\left(w_{1}, w_{2}\right) \in R$ by a lemma about natural numbers:

Lemma 2.1. If $v_{1}+v_{2} \rightarrow^{*} v$ then succ $v_{1}+v_{2} \rightarrow^{*}$ succ v.
Proof. By induction on v_{1}, using the definition of + .
Problem 3. Suppose $\vdash f: \forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$, and $\vdash v_{1}: T$ and $\vdash v_{2}: T$. Show that if $f[T] v_{1} v_{2} \rightarrow^{*} v$ then either $v=v_{1}$ or $v=v_{2}$.

Solution We will use parametricity and an appropriate candidate $C=(T, T, R)$ to show that this is the case. The choice of a particular R will be critical. One way to pick the appropriate R is to proceed with the proof while holding R abstract, and collect from the chain of logical inference a set of constraints on R. Then find an appropriate relation that makes those constraints true.

So, by parametricity, $f \widetilde{\approx}_{\text {val }} f: \forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. Therefore, from the definition of logical equivalence, for all candidates $C, f[\operatorname{Left}(C)] \approx f[\operatorname{Right}(C)]$: $C \rightarrow C \rightarrow C$. So pick $C=(T, T, R)$. Then since $f[T] v_{1} v_{2} \rightarrow^{*} v$, it follows that $f[T] \rightarrow^{*} w$. Therefore, by definition of logical equivalence, $w \approx_{\text {val }} w$: $C \rightarrow C \rightarrow C$. By definition of logical equivalence for values of arrow type, since $v_{1} \approx_{\text {val }} v_{1}: C^{2}$, it follows that $w v_{1} \approx w v_{1}: C \rightarrow C$. Again since $f[T] v_{1} v_{2} \rightarrow^{*} v$, it follows that $w v_{1} \rightarrow^{*} w^{\prime}$ and $w^{\prime} \approx_{\text {val }} w^{\prime}: C \rightarrow C$. By definition of logical equivalence for values of arrow type, since $v_{2} \approx_{\text {val }} v_{2}: C^{3}$, it follows that $w^{\prime} v_{2} \approx w^{\prime} v_{2}: C$. Finally, since $w^{\prime} v_{2} \rightarrow^{*} v$, it follows that $v \approx_{\text {val }} v: C$. By definition of logical equivalence of values at a candidate, that means that $(v, v) \in R$. Therefore ${ }^{4}, v=v_{1}$ or $v=v_{2}$.

So, spelling out the details from the footnotes, it turns out that we chose $R=\left\{\left(v_{1}, v_{1}\right),\left(v_{2}, v_{2}\right)\right\}$.

[^1]
[^0]: ${ }^{1}$ Here + is the addition operation of the programming language. Another possibility is $R^{\prime}=\{(n,\langle i, j\rangle) \mid i+j=n\}$ where + is the mathematical operation of addition. The proof works for either relation, although it is somewhat shorter for R

[^1]: ${ }^{2}$ Note that I haven't picked what R is yet, but I am adding the constraint that whatever it is, it has to at least include $\left(v_{1}, v_{1}\right)$
 ${ }^{3} \ldots$ and R must include at least $\left(v_{2}, v_{2}\right)$
 $4 \ldots$ and those must be are the only things in the relation R

