15-814 Fall 2003, Homework #6
selected solutions

Aleksey Kliger
2 December 2003

Please see the book’s solutions to 15.2.5 and 15.3.6.

Problem 1 (26.2.2). Give a couple of examples of pairs of types that are
related by the subtype relation of full F-. but are not subtypes in kernel F..

Solution Recall that in kernel F.., the bounds on the parameters of two
quantified types VX <:T1.57 and VX <:T5.S3 must be the same (i.e., Ty = T5).
So one easy example that is typable in full F., is

F {a:nat,b : nét} <:{amat} X <:{anat,bnat}+-T <:T
FVX<{amnat}.T <: VX <:{a:nat,b:nat}.T

for any type T'.

Problem 2. Suppose Counter, ¢1 and co are defined as follows:
Counter = Ja.a X (¢ — nat) X (o — «)

c1 = {#nat, (0, \z:nat.z, Az:nat.succ z)} as Counter
ca = {*natxnat, ((0,0), Az:nat X nat.z.1 + 2.2, Az:nat x nat. (succ x.2,z.1))} as Counter

Show that c¢1 & ¢y : Counter

Solution Let v; = (0, Az:nat.z, Ax:nat.succ z) and
va = ({(0,0), Az:nat X nat.z.1 + 2.2, Aa:nat x nat. (succ x.2,2.1))

respectively.

Let Q = a x (@ — nat) x (o — «)

Recall the definition of logical equivalence (given in Figure 1, extended to
n-ary product types). By definition, it suffices to show that for some candiate
C = (nat,nat x nat, R), v1 Ry, v2 : Q[C/q], for some appropriate R. Indeed
aside from pushing through the definition, the problem essentially boils down
to finding the appropriate relation R.

th &ty Q whenever t1 | iff 5 | and for all vy, vs
if t; —* v;, then vy Byq v : T

V] Ryal U2 1 b v1 = vg, where b is a base type (such as nat)
V1 Ryl v2 : (Th,To, R) whenever (v1,v2) € R

V1 Ryal V2 1 Q1 X -+ X Qn, whenever for each 1 < i < n, v1.i ® v2.7: Q;
V1 Ryal V2 1 Q1 — Q2 whenever for all v{ € Val(Left(Q1))

and v} € Val(Right(Q1)),
if v} Ry v+ Q1 then v1v] = vavh : Q2

V1 Rya U2 : Va.Q whenever for all candidates C' = (T1,Th, R),
vi[Th] = v2[To] : Q[C/a]
V1 Ryal U2 1 Ja.Q) whenever vy = {*T1,v]} and vy = {*Th, v}}

and there is some candidate C' = (Ty,Ts, R)
such that v} =y ve : Q[C/q]

Figure 1: Logical Equivalence

Informally, the second counter “works” by alternately incrementing either
the first or second component of the pair, in the end when converting the counter
to a natural number it adds up the components to get the total number of
increments. So it is an invariant of the second counter that a counter’s value is
i + j where (i, j) is the representation. So one possibility for the relation R is
{(n 4i,)i + 5 —* n}.

Returning to the proof, it suffices to show (from the definition of logical
equivalence for n-tuples) that v1.i & ve.i: Q; for i =1,2,3 where Q1 = C, Q2 =
C —nat,Q3=C —C.

In each of the three cases, evidently vy.: |} iff v5.7 ||, and indeed we can take
an evaluation step to get at the appropriate component of v;.

So it suffices to show:

1. 0 =ya <0,0> :C
2. Azr:nat.x =y, Axr:nat X nat.z.1 + .2 : C' — nat
3. Am:nat.succ & &, Az:nat X nat. (succ x.2,z2.1) : C — C

To show (1), by definition it suffices to show that (0, (0,0)) € R. And since
evidently 0 + 0 —* 0, it holds.

To show (2), suffices to show that if wy,wy € R (where F wy : nat, - wy :
nat x nat), then (Az:nat.x)w; & (Az:nat x nat.z.1 + z.2)ws : nat. By taking a
few steps of evaluation, we see that it suffices to show w; = ws.1 + ws.2 : nat.
Now since wy has type nat x nat, by canonical forms, ws = (wa1,wa2). So by
some more evaluation, we see it suffices to show that wy = w1 + waes : nat.

1Here + is the addition operation of the programming language. Another possibility is
R’ = {(n,{i,j))|: + 7 = n} where + is the mathematical operation of addition. The proof
works for either relation, although it is somewhat shorter for R

However recall that (wy, (wa1,we2)) € R. So wa + waa —* wi. So we have
w1 Rya wy ¢ nat which is true by definition of logical equivalence at base type.

To show (3), suffices to show that if (w1, ws2) € R, that (Az:nat.succ z)w; =
(Az:nat x nat. (succ z.2,z.1))ws : C. By taking a few steps of evaluation, it
suffices to show that succ w; &y, (succ was, wa1) : C where wo = (wa1, waz).
By definition of logical equivalence at a candidate, it suffices to show that if
(succ wy, (succ waz,w21)) € R. That is, we wish to show that succ was +wa —*
succ wy. However this follows easily from (w1, wz) € R by alemma about natural
numbers:

Lemma 2.1. If v; + vy —* v then succ v + vy —™ succ v.
Proof. By induction on vy, using the definition of +. O

Problem 3. Suppose - f :Va.ao - o — «, and - vy : T and - vy : T. Show
that if f[T]vive —* v then either v = vy or v = vs.

Solution We will use parametricity and an appropriate candidate C = (T, T, R)
to show that this is the case. The choice of a particular R will be critical. One
way to pick the appropriate R is to proceed with the proof while holding R
abstract, and collect from the chain of logical inference a set of constraints on
R. Then find an appropriate relation that makes those constraints true.

So, by parametricity, f =va f : Voo — a — «a. Therefore, from the defi-
nition of logical equivalence, for all candidates C, f[Left(C)] = f[Right(C)] :
C — C — C. So pick C = (T,T,R). Then since f[T]vivs —* v, it follows
that f[T] —* w. Therefore, by definition of logical equivalence, w =, w :
C — C — (. By definition of logical equivalence for values of arrow type, since
v1 Ryar v1 1 C2, it follows that wvy & wvy : C — C. Again since f[T]viva —* v,
it follows that wv; —* w’ and w’ =, w' : C — C. By definition of logi-
cal equivalence for values of arrow type, since vy &, vs : C3, it follows that
w'vg & w'vg : C. Finally, since w'vy —* v, it follows that v &, v : C. By defi-
nition of logical equivalence of values at a candidate, that means that (v,v) € R.
Therefore?, v = vy or v = vs.

So, spelling out the details from the footnotes, it turns out that we chose
R ={(v1,v1), (v2,v2)}.

2Note that I haven’t picked what R is yet, but I am adding the constraint that whatever
it is, it has to at least include (v1,v1)

3...and R must include at least (v2,v2)

4... and those must be are the only things in the relation R

