
Scalable Defect Tolerance for Molecular Electronics

Mahim Mishra and Seth C. Goldstein
fmahim,sethg@cs.cmu.edu

Computer Science Department
School of Computer Science
Carnegie Mellon University

Abstract

Chemically assembled electronic nanotechnology (CAEN)
is a promising alternative to CMOS-based computing.
However, CAEN-based circuits are expected to have huge
defect densities. To solve this problem CAEN can be used
to build reconfigurable fabrics which, assuming the defects
can be found, are inherently defect tolerant. In this paper,
we propose a scalable testing methodology for finding de-
fects in reconfigurable devices.

1 Introduction

One alternative to CMOS-based computing that is un-
der intense investigation is chemically assembled elec-
tronic nanotechnology (CAEN). CAEN uses directed self-
assembly and self-alignment to construct electronic cir-
cuits out of nanometer scale devices (e.g., [1, 2, 3]).
Current estimates show that CAEN-based devices should
achieve densities of at least 1010 gate-equivalents/cm2.
This represents a significant increase in resources over
state-of-the art photo-lithography based silicon. CAEN-
based devices will, however, suffer from a major disadvan-
tage vis-a-vis CMOS devices: their defect densities will be
significantly higher than for CMOS-based devices. In fact,
we expect that the very nature of CAEN-based fabrication
will result in defect densities of as much as 10%. Such
high defect densities require a completely new approach to
manufacturing computational devices. No longer will it be
possible to test a device and throw it away if it has a de-
fect since we expect that every chip will have a significant
number of defects. Instead, we will have to devise a way
to use defective chips.

A natural solution is suggested by looking at reconfig-
urable fabrics, i.e., Field-programmable gate arrays (FP-
GAs), and the work on the Teramac custom computer [4,
5]. An FPGA is an interconnected set of programmable
logic elements. Both the interconnect and logic elements
may be programmed, or configured, to implement any cir-

cuit. The Teramac is essentially a very large FPGA with
a very rich interconnect that works in spite of the fact that
75% of the chips contained in the Teramac had some num-
ber of defects. The key idea behind making Teramac work
is that reconfigurability allows one to find the defects and
then to avoid them. Before the Teramac can be used it is
first configured for self-diagnosis. The result of the diagno-
sis phase is a map of all the defects. Then, one implements
a particular circuit by configuring around the defects.

In some sense, Teramac introduces a new manufacturing
paradigm; one which trades-off complexity at manufac-
turing time with post-fabrication programming. The re-
duction in manufacturing time complexity makes recon-
figurable fabrics a particularly attractive architecture for
CAEN-based circuits, since directed self-assembly will
most easily result in highly regular, homogeneous struc-
tures. We will call CAEN-based reconfigurable fabrics,
nanoFabrics [3]. We expect that the fabrication process
for these fabrics will be followed by a testing phase, where
a defect map will be created and shipped with the fabric.
The defect map will be used by compilers to route around
the defects.

In this paper we address the problem of finding the defects
in a nanoFabric. This problem would be trivial if we could
test the individual components. However, this will not be
possible. In general, the testing strategy should needs to
satisfy the following constraints:

� It should not require access to the individual compo-
nents.

� It should scale with the number of defects.
� It should scale with fabric size, so that testing does not

become a bottleneck in the manufacturing process.

The remainder of this paper explores some ways of solv-
ing this problem: Section 2 describes previous approaches
to tackle similar problems, Section 3 describes the re-
quirements that a testing strategy will need to satisfy and
presents our proposed testing strategy, Section 4 describes
simulations we have carried out to validate the methods we
propose, Section 5 outlines some of the work that remains

2to be done, and Section 6 presents our conclusions.

2 Related Work

Modern DRAM and SRAM chips and FPGAs are able to
tolerate the presence of some defects by having some re-
dundancy built into them: for instance, a row containing
a defect might be replaced with a spare row after fabri-
cation. With nanofabrics, this will not be possible: it is
unlikely that a row of any appreciable size will be defect
free. Moreover, CAEN-based devices are being projected
as a replacement not just for memories but for logic too,
where simple row-replacement will not work since logic is
less regular.

Problems similar to this have been addressed in the domain
of custom computing systems. For example, the Piperench
reconfigurable processor [6] and more notably the Tera-
mac custom computer [4, 5] had a notion of testing, defect-
mapping and defect-avoidance built into them. Upto 75%
of the FPGAs used in the Teramac were defective; assem-
bly was followed by a testing phase where the defects in the
FPGAs were identified and mapped. Compilers for gen-
erating FPGA configurations then use this defect map to
avoid these defects. The testing strategy we are propos-
ing is similar to the one used for the Teramac. However,
the problem we address is significantly harder because the
Teramac used CMOS devices whose defect rates are much
lower than those predicted for nanofabrics.

An alternative approach to achieve defect tolerance would
be to use techniques developed for fault-tolerant circuit de-
sign (e.g., [7, 8]). Such circuit designs range from simple
ones involving triple-mode redundancy to more complex
circuits that perform computation in an alternative, sparse
code space, so that a certain number of errors in the output
(up to half the minimum distance between any two code
words) can be corrected. Fault-tolerant circuits do not suit
our purpose for the following reasons:

1. The best techniques for fault tolerance available to-
day require a significant amount of extra physical re-
sources, and also result in a (non-negligible) slow-
down of the computation.

2. These circuits work reliably only if the number of de-
fects are below a certain hard threshold.

3. Designing such circuits is a non-trivial task, particu-
larly for a compiler.

3 Testing Strategy

As was done on the Teramac, we propose configuring the
components on the nanofabric1 into test circuits, which are
capable of giving us information about the presence or ab-
sence of defects in their constituent components. Each
component is made a part of many different test circuits,
and information about the error status of each of those cir-
cuits is collected. This information is used to deduce and
confirm the exact location of the defects.

Configuration 1 Configuration 2

Defect−free Component

Defective Component Passing Test

Failing Test

Figure 1: An example, showing how a defective compo-
nent is located using two different test-circuit configura-
tions. The components within one rectangular block are
part of one test-circuit

As an example, consider the situation in Figure 1. Five
components are configured into one test-circuit, which
computes a simple mathematical function. This function is
such that defects in one or more circuit components would
cause the answer to diverge from the correct value; there-
fore, by comparing the circuit’s output with the correct an-
swer, the presence or absence of any defects in the circuit
components can be detected. In the first run, the compo-
nents are configured vertically, and test circuit 2 detects an
defect. In the next run, the components are configured hor-
izontally, and test circuit 3 fails. Since no other errors are
detected, we can say that the component at the intersection
of these two circuits is defective, and all others are good.

For the rest of this paper, we use the following terminology,
and make the following assumptions about the fabrics and
the nature of the defects:

1. The fabric under test has n components.

1We are deliberately leaving the meaning of “component” unspeci-
fied. It will depend on the final design of the nanofabric: a component
may be one or more simple logic gates, or a look-up table implementing
an arbitrary logic function; also, the on-fabric interconnects will also be
“components” in the sense that they may also be defective.

32. Defects are randomly occurring, independent events
with each component having a probability p of being
defective.

3. The total number of defects in the fabric is m (and,
with a large enough fabric, this is expected to equal
n � p).

4. Each test-circuit we use has size k; we assume that we
have an arbitrary level of connectivity on the fabric,
and a test-circuit can consist of any set of components
and not just ones that are adjacent to one another 2.

5. The components on the fabric are configured as part of
many different test-circuits, and we call each of these
configurations a tiling (in the simple example above,
we used 2 tilings: horizontal and vertical). We as-
sume that circuits within the same tiling do not share
any components, and that any 2 circuits belonging,
respectively, to 2 different tilings share at most one
component. We make this assumption to simplify the
analysis in the rest of this paper; testers that share
more than one component are certainly possible but
the results would be more difficult to analyze. We let
t denote the number of tilings we make.

As has been explained in Section 1, we do not have access
to the individual fabric components. This implies that our
test circuits will have to be large, and will consist of tens
and perhaps even hundreds of components. With the high
defect rates, each circuit can now potentially have multi-
ple defective components; this will considerably compli-
cate the simple picture presented in the example above. In
the rest of this section, we will show how the testing strat-
egy will need to change as we try to scale with defect den-
sity and with the fabric size.

3.1 Scaling with Defect Density

We shall begin by analyzing some simple cases where the
defect densities are low: these will help explain our ap-
proach, and also motivate our proposal to deal with higher
defect densities. Using the terminology described above,
k � p is the number of defective components that each test
circuit is expected to have. Not surprisingly, the difficulty
of locating the errors scales with k�p; we analyze the prob-
lem for the following three cases and describe how our tests
can handle each of them:

1. k � p� 1
e.g., k = 10, p = 0:01, k � p = 0:1

2Note that the wires connecting computational elements on the fabric
are also “components” with a probability of failure less than or equal to p

2. k � p � 1
e.g., k = 10, p = 0:1, k � p = 1

3. k � p� 1
e.g., k = 100, p = 0:1, k � p = 10

3.1.1 k � p� 1

The defect rates here are small, and there is very little like-
lihood of a test circuit containing a defect. For example,
with k = 10 and p = 0:01, 9 out of 10 test circuits are
expected to be free of defects. The defect rates found in
today’s CMOS devices would put them in this regime. The
testing strategy for such defect rates would consist of the
following steps 3:

1. Using a particular tiling, configure the components
into test circuits which indicate the presence or ab-
sence of an error. If there is no error, mark all the
components that are part of the circuit defect-free.

2. Repeat this for many tilings, so that each component
is part of many different test circuits.

The number of tilings needed will depend on the desired
yield. By yield, we mean what fraction of the defect-free
components are marked defect-free at the end of the above
procedure. Note that we identify all the defective compo-
nents as being defective (i.e., there are no false positives).
However, in the process, some good components may also
be marked bad and thus lower the yield.

Consider a defect-free component, X; X is marked defect-
free if it is part of a test circuit that has no other defects.
The probability of X being defective is p, the size of each
test circuits is k, and t different tilings are used (i.e., X is
made a part of t different test circuits which only have X
in common). Let P (A) be the probability of eventA; then,

P (X is marked defect free)

= P (one out of the t test circuits is defect free)

= 1� P (all t test circuits have at least one defect each)

= 1� P (1 test circuit has at least one defect)t

= 1� f1� P (1 test circuit has no defects)gt

= 1� f1� (1� p)k�1gt

(1)

If we want the yield (i.e., the probability of each defect-
free component to be marked defect-free by this process)
to be y, we get:

3The Teramac achieved defect tolerance for defect densities of this
order using essentially the method described above

4

1� f1� (1� p)k�1gt > y

) t >
log (1� y)

log f1� (1� p)k�1g

(2)

Let us consider the case where k = 10 and p = 0:01 (and,
therefore, k � p = 0:1). If we desire a yield of 99%, we get
t > 1:88, i.e., t = 2. This implies that with only 2 tilings
(e.g., horizontal and vertical) we should be able to identify
at least 99% of the good components; the remaining good
components, and all the bad ones, are marked defective and
not used.

3.1.2 k � p � 1

Each test circuit now has the expectation of having 1 error.
However, this does not mean there are no defect-free cir-
cuits; in fact, the probability of any given circuit of size k
being completely defect free is (1 � p)k � (1 � 1

k
)k �

1

e
� 0:35, i.e., a third of the circuits can be expected to

be free of defects. In this situation, the method outlined
for the previous case should work; however, the number
of tilings required would be more. For example, if we let
k = 10, p = 0:1 and the desired yield y > 0:99, we get
t = 10. Under our assumption of arbitrary connectivity,
finding this many tilings is easy; however, this may not be
the case in realistic situations.

3.1.3 k � p� 1

This is a significantly more difficult problem than the
above two, since each circuit is now expected to contain
multiple errors, and obtaining a test circuit that is entirely
defect free is going to be very unlikely. For example, for
the representative numbers k = 100 and p = 0:1, the prob-
ability of a circuit having no defects at all is (1 � p)k =
0:9100 = 2:66 � 10�5. In fact, for these values of k and p,
Equation (2) tells us that 1:76 � 105 tilings will be needed
for a yield of 99%; with our definition of tiling, of course,
this number is unattainable. Therefore, the strategy of
putting a component into different circuits till one that is
free of any errors is found is not going to work. There are
three possible ways of getting around this problem:

1. Make k smaller, so that k � p is closer to 1.

2. Put the tester in a tight feedback loop, so that it may
use the results of the previous tests to decide what
the next test-circuit configuration is going to be. The
tester can then selectively test areas of the fabric that
appear to be promising until it finds a sufficient num-
ber of defect-free circuits.

3. Use more powerful test circuits.

Reducing the value of k may not be possible because of the
lack of fine-grained access to the fabric components. The
second approach is likely to be extremely slow, since new
configurations will be generated during the testing, and the
time required to place and route them will add to the testing
time. Therefore, using more powerful test circuits seems
to be the most viable approach. For example, the circuit
might compute a mathematical function whose output will
deviate from the correct value if any of the circuit’s com-
ponents are defective; if the amount of this deviation de-
terministically depends on the number of defective com-
ponents, then a comparison of the circuit’s output with the
correct result can tell us the number of defects present in
the circuit, instead of just the yes/no answer about the pres-
ence/absence of errors that our earlier circuits were return-
ing. Circuits designed for fault tolerance that compute in a
sparse, error-correcting code-space (such as Reed Solomon
codes [9]) are good examples. Circuits used for this pur-
pose will have to satisfy the following two conditions:

1. A defect in a circuit component should translate in a
deterministic manner to an error in the circuit’s out-
put (and, therefore, a knowledge of the error in the
circuit’s output should translate to a count of the de-
fects in the circuit).

2. Fault-tolerant circuits can count upto a certain number
of errors, and return an incorrect count if the number
of faults exceeds their threshold. The testing circuit,
however, should be able to say when the error count is
above its threshold. This can be ensured by using two
different circuits simultaneously, both of which fail in
different ways when their threshold is exceeded. A
difference in their defect counts will then imply more
defects than the threshold.

Note that our proposal to use fault-tolerant circuits for find-
ing the defects is not inconsistent with our rejection of
them for performing general computation, since they are
now being used as part of the manufacturing process where
the disadvantages we listed above are not relevant.

Using these defect-counting circuits, we propose split-
ting the process of defect-mapping into two phases: a
probability-assignment phase and a defect location phase.
The probability-assignment phase attempts to separate the
components in the fabric into two groups: those that are
probably good and those that are probably bad. The former
will have an expected defect density that is low enough so
that in the defect-location phase, we can use methods pro-
posed in Section 3.1.1 or 3.1.2 to pin-point the defects.

The first phase, that of probability-assignment, works as
follows:

51. The components are arranged in test-circuits in a
particular tiling (for example, vertically), and defect
counts (or the fact that the number of defects were
more than the test circuit’s threshold) for all the test
circuits are noted. This is done for a number of differ-
ent tilings (for our simulations, the number of tilings
= test circuit size = k)

2. Given these counts for all the circuits, we find the
probability that any particular component is good.
This is done as follows:

Let A be the event that any particular component a is
good.

Let a1, a2, ..., ak be the number of defective compo-
nents in each test circuit that a is a part of.

Let B be the event of obtaining these counts for all
these test circuits.

Therefore, we need to find P (A
B
).

Now, from Bayes’ rule,

P (
A

B
) =

P (A \ B)

P (B)

=
P (A \ B)

P (A \ B) + P (A \ B)

Determining the numerator and denominator of the
RHS is trivial, since a is the only component these
circuits share. After simplification, we get

P (
A

B
) =

1

1 +
(1� p)k�1kk

pk�1(k � a1)(k � a2):::(k � ak)

This equation is solved for each component to obtain
its probability of being good 4.

3. The components with a low probability of being good
are discarded, and this whole process is repeated. This
is continued for a pre-determined number of times
(say, N1) or till a certain fraction of the components
are discarded, whichever is earlier.

At the end of this process, we have divided the compo-
nents into two groups: those with a high probability of be-
ing good, and those with a high probability of being bad.
The latter are discarded, while in the former, the fraction
of faulty components is expected to be down to such a

4To maintain clarity, what happens when the number of faults is more
than the test-circuit’s threshold has not been described above; these num-
bers are discarded and the formulas are adjusted accordingly.

level that methods described in Section 3.1.1 and 3.1.2 can
be applied. Therefore, the second phase, that of defect-
location, proceeds as follows:

1. The test circuits are run again on the reduced set of
components; if a defect count of zero is obtained for
any circuit, all its components are marked as good.
This is done for all k tilings.

2. Some of the components that were removed in Phase
1 (for having a low probability of being good) are
added back and the tests are repeated. This is done
for some pre-determined number of times (say, N 2).

3. Finally, all the components marked as good are de-
clared good, and the others are declared bad.

We have not been able to work out a mathematical model
of how good this method is going to be, given different
values of k, p and the defect-counting threshold of the test
circuits; in particular, the values of N1 and N2 are deter-
mined heuristically. However, there are a number of points
to note here:

1. The quality of the results will depend on the defect-
counting threshold of the test circuit; the higher this
threshold, the more information can be obtained and
the better the results should be.

2. A number of good components are marked bad. This
is because in Phase 1, the counts for all circuits are
not available (because the threshold is less than the
actual number of errors in many cases) and due to this
incomplete information, many good components get
discarded. This is the waste of the procedure.

3. Each of the 2 phases is being run in multiple steps (N1

and N2 respectively) and each of these steps discards
some components which are not used in later steps;
therefore, it will not be possible to completely pre-
determine the test circuits a-priori, and some feed-
back dependent configuration on the part of the tester
will be required, although this will be limited to
routing the pre-determined test circuit configurations
around the discarded components 5.

To test the effectiveness of this procedure, and to measure
the impact of the defect-counting threshold on the output,
we ran a number of simulations, the details of which are
presented in Section 4.

5N1 and N2 are set greater than 1 to maximize the yield that this pro-
cess provides us; we have found in our simulations that for more powerful
test circuits or smaller defect counts, setting N1 = N2 = 1 provides ac-
ceptable results.

63.2 Scaling with Fabric Size

We next have to ensure that the testing procedure scales
with the fabric size. A short testing time is crucial to main-
tain the low cost and usefulness of these fabrics. We shall
begin by analyzing the testing strategy above to see how
long it takes to run.

For a k � k piece of the fabric, we make at most N1 +N2

sets (N1 in the first phase andN2 in the second) of k tilings
each in the fabric, and each tiling consists of k different test
circuits. However, in any particular tiling, no two test cir-
cuits have any component in common; therefore, all the
test circuits for a particular tiling can be run in parallel.
This leaves us with (N1 + N2) � k steps, each requiring
a reconfiguration of the entire fabric being tested. If the
fabric is larger then k � k it can be split into many sec-
tions of size k � k, each of which can be tested separately.
As mentioned above, we do not have a model to describe
how N1 and N2 scale with k; however, our simulations
show that even for very weak test circuits and fairly high
defect densities, the yields plateau out beyondN1 = 6 and
N2 = 4. We therefore believe that the number of reconfig-
urations required would be linear in k, i.e., proportional to
the square root of the size of the fabric’s part under test.

Figure 2: A schematic representation of how testing will
proceed in a wave-like manner through the fabric. The
black area is tested and configured as a tester by the exter-
nal tester; each darker-shaded area then tests and config-
ures a lighter-shaded neighbor. For large fabrics, multiple
such waves may grow out from different externally-tested
areas.

The above description shows that testing a particular part
of the fabric takes time proportional to the square root of
the part’s size; however, since the number of such parts
grows linearly with the size of the fabric, testing time
would still appear to grow linearly with fabric size. This
misses the crucial point that the fabric itself is reconfig-
urable - in this situation, reconfigurability helps in two
ways:

1. Once a part of the fabric is tested and defect-mapped,
it can be configured to act as a tester for the other
parts, thus bringing down the time required on the ex-
ternal tester drastically.

2. Once the tester is configured onto the fabric, there is
nothing to prevent us from having multiple testers ac-
tive simultaneously. In such a scenario, the first area
to be tested tests its adjacent ones, which test their ad-
jacent ones and so on, and the testing can move in a
wave through the fabric (see Figure 2). Now, as the
fabric size increases, testing time grows linearly with
the distance this wave has to traverse through the fab-
ric, which is proportional to the length of the fabric’s
side, and to the square root of the components in the
fabric.

Thus, by leveraging the reconfigurability of the chip, the
time on the external tester, and also the total testing time,
can be reduced by a significant amount.

4 Simulation and Results

We have checked the usefulness of each testing strategy we
present by simulating it on a number of test cases. We do
this in the following way:

1. The fabric is represented by a matrix of 0s (for good
components) and 1s (for defective components).

2. The errors (i.e., the 1s in the matrix) are generated
randomly with probability p.

3. A “test circuit” is simulated simply by examining its
constituent components and returning the relevant in-
formation; for example, if a circuit is supposed to tell
whether there is an error in a particular column or not,
we return “no error” if all the numbers in that column
are zeroes. The only way to access components of the
matrix is through this test circuit interface.

4. Using the information our test-circuits give us, we try
to reconstruct the error-map for the fabric. Our final
aim is to ensure that the output is correct, i.e., that no
defective component is declared good, and that there
is high yield, i.e., that as many good components are
declared good as possible.

All the results we present are in terms of the % yield, which
is defined as follows:

yield =
No. of good components identified

No. of good components actually present
� 100

7We first consider the cases where k � p� 1 and k � p � 1.
The two candidate sets of values used for our simulations
are (k = 11; p = 0:009) and (k = 11; p = 0:09) 6. As
described in Sections 3.1.1 and 3.1.2, we use test circuits
that can detect the presence or absence of any errors, and
measure the yields for different number of tilings t. This
entire process is run 1000 times for each set of values of k,
p and t, and the yields and averaged out.

Number Expected Achieved
of tilings t Yield (%) Yield (%)

k = 11 1 91.36 91.34
p = 0.009 2 99.25 99.29

1 38.94 38.05
k = 11 2 62.72 62.05
p = 0.09 5 91.51 91.17

10 99.28 99.24

Table 1: Simulation results comparing expected and
achieved yields for 2 sets of values of k and p

The results of our simulations are presented in Table 1.
We present both the expected yield, obtained by plugging
the values of k, p and t into Equation (1), and the yield
achieved in our simulations. As can be seen, the two fig-
ures closely match.

We next simulated the algorithm we describe in Sec-
tion 3.1.3 for the case where k � p � 1. For the simu-
lation, we used a fabric of size 101*101, k and t (the num-
ber of tilings used) were set equal to 101, N1 (the max-
imum number of times this set of tilings would be used
in the probability-assignment phase) was set to 6, and N2

(the maximum number of times the set of tilings would be
used in the defect-location phase) was set to 4. We then
measured the yield obtained as the defect densities, and
the number of defects our test-circuits could count, varied.
There results are summarized in Figure 3.

From our results, it is apparent that it is possible to achieve
high yields even with test-circuits that can count a small
number of defects, particularly if the defect density is low.
For example, for densities less than 10%, a test-circuit that
could count up to 4 errors achieved yields of over 80%.
With more powerful test circuits, yields of over 95% are
achievable. Also, although N1 and N2 have been set to 6
and 4, respectively, each set of tilings were run this many
times only for weak circuits (those that could count 3 de-
fects or less) or for very high defect densities (12 % and
over). For moderately powerful test circuits and defect
densities around the 10% mark, the set of tilings were used

6We choose the value 11 because we need k to be prime to keep our
analysis simple: it makes it easy to find a large number of tilings for the
test-circuits.

just once during each phase of the algorithm. Therefore,
we can say that the number of reconfigurations required is
linear in k, or proportional to the square root of the fabric
size.

5 Open Issues

Design of the test circuit: Test circuits still need to be
designed that give us the kind of information we require.
If the large amount of literature on fault-correcting circuit
design is anything to go by, this in itself is a fairly difficult
task.

Alternative circuit types: It may not be possible to design
circuits that return actual defect counts; however, it might
be possible to use other, less powerful circuits that are still
capable of providing useful information.

Accounting for limited fabric connectivity: The descrip-
tion and analysis presented above assume that we have un-
limited connectivity on the fabric. The actual scenario is
likely to be very different; we might be able to connect
a component only to its neighbors. This will require re-
ducing the number of tilings we need to make, and also
changing the mathematical analysis so that the tilings are
less restricted (e.g., circuits from different tilings may have
more than one component in common).

Accounting for real defect types and distributions:
These will not be known until we begin manufacturing
large-enough nanofabrics in some numbers. However, the
availability of this information will have interesting ramifi-
cations: for one, designing test-circuits for certain types of
defects, such as stuck-at defects, is fairly well-studied and
well-understood. Also, it might be found that defects tend
to occur in clusters; this will make it easier to detect the
defects, and less likely for good components to be marked
bad.

6 Conclusions

CAEN-based computing devices are expected to be inex-
pensive to produce, yielding devices with many billions of
components. However, this boon comes at the cost of large
defect densities. In order to make the entire process eco-
nomical it is important that the resulting devices be defect
tolerant. Assuming one can find the defects one possible
defect tolerant architecture is a reconfigurable computing
device. In this paper we have shown that it is possible to
find the defects in a reconfigurable computing device, even
when the device is large and has many defects.

There are two main axes to achieving scalable defect toler-

8

0

10

20

30

40

50

60

70

80

90

100

7 8 9 10 11 12 13
Defect Density (%)

Y
ie

ld
(%

o
f

G
o

o
d

D
ev

ic
es

)

inf

10

8

7

6

5

4

3

2

1

Figure 3: Yields achieved by varying the defect densities and the number of defects our test-circuits could count. The test-
circuits consisted of 101 components, and for each simulation run, a set of 101 tilings was used a maximum of 6 and 4 times
respectively in the two phases.

ance. First, the defect testing must scale with defect den-
sity. Second, the defect testing must scale with device size.
Our method, inspired by the Teramac, configures the fab-
ric under test with circuits that when run will indicate not
only whether the tested area is defective, but indicate how
many defects it contains. By using test circuits that can
“count” we show how defect testing can scale with defect
density. Our method requires that the underlying fabric
have a rich interconnect. By harnessing the reconfigurabil-
ity of the fabric we also show how the process can scale
with fabric size. Once a small portion of the fabric has
been diagnosed, it can be configured to test itself. If the
device can configure itself, then the testing can proceed in
parallel and the total time to test the device scales with the
square root of the device size.

Acknowledgments

This work was sponsored in part by DARPA, under the
Moletronics Program, and Hewlett-Packard Corporation.
The authors want to thank Phil Kuekes and Avrim Blum
for their helpful comments.

References

[1] J. H. Schön, H. Meng, and Z. Bao, “Self-assembled mono-
layer organic field-affect transistors,” Nature, vol. 413,
pp. 713–716, Oct. 2001.

[2] C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo,

J. F. Stoddart, P. J. Kuekes, R. S. Williams, and J. R. Heath,
“Electronically configurable molecular-based logic gates,”
Science, vol. 285, pp. 391–394, July 1999.

[3] S. C. Goldstein and M. Budiu, “NanoFabrics: Spatial Com-
puting Using Molecular Electronics,” in Proceedings of the
28th Annual International Symposium on Computer Archi-
tecture (ISCA 2001), pp. 178–191, July 2001.

[4] B. Culbertson, R. Amerson, R. Carter, P. Kuekes, and
G. Snider, “Defect Tolerance on the Teramac Custom Com-
puter,” in Proceedings of the 1997 IEEE Symposium on
FPGA’s for Custom Computing Machines (FCCM ’97),
1997.

[5] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams,
“A Defect-Tolerant Computer Architecture: Opportunities
for Nanotechnology,” Science, vol. 280, pp. 1716–1721, 12
June 1998.

[6] S. K. Sinha, P. M. Karmachik, and S. C. Goldstein, “Tunable
fault tolerance for runtime reconfigurable architectures,” in
Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM 2000), (Napa Valley,
CA), pp. 185–192, Apr. 2000.

[7] N. Pippenger, “Developments in ”The Synthesis of Reliable
Organisms from Unreliable Components”,” Proceedings of
Symposia in Pure Mathematics, vol. 50, pp. 311–324, 1990.

[8] D. A. Spielman, “Highly Fault-Tolerant Parallel Computa-
tion,” in Proceedings of the 37th Annual IEEE Conference
on Foundations of Computer Science, pp. 154–163, 1996.

[9] I. S. Reed and G. Solomon, “Polynomial codes over cer-
tain finite fields,” Journal of the Society for Industrial and
Applied Mathematics (J. SIAM), vol. 8, no. 2, pp. 300–304,
1960.

