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The Sprague-Grundy theory of impartial games gives an elegant way to eval-

uate sums of games. The sum of two games means the new game in which

a move consists of picking a game to move in, then moving in that game.

A player stuck with no move available loses. In Sprague-Grundy theory, we

assign a number (call it the nimber) to any position in the game. Then we

give an algorithm that takes as input the nimbers of two games, and com-

putes the nimber of sum of these two games. The algorithm, of course, is

nim addition.

In this lecture we attempt to generalize this theory to \partizan" games (as

opposed to impartial games). In these games, there are di�erent sets of moves

available for each of the two players. Our goal will be to label such games

with numbers, and then give an algorithm that lets us compute the number

of the sum of two games.

We'll only be partially successful. We will have to restrict the games some-

what in order to get the theory to work.

Let G be a game. Let the two players be called Left and Right. If Left

were to move in G, left might have several options. Call them GL
1
; GL

2
; : : : .

Let the set GL = fGL
1
; GL

2
: : : g. Similarly, Right may have several options

GR = fGR
1
; GR

2
: : : g. This completely characterizes the game. So we write:

G = fGLjGRg

If GL is the empty set, then Left loses when Left must move in the game

G. Similarly for Right. This is how the outcome of the game is determined.

We'll also assume that a game ends in a �nite number of moves.

The intuition of the labeling (numbering) we come up with will be that the

number of a game is the number of moves advantage that Left has over

Right in the game. And with the labeling we come up with summing games

corresponds to just adding the numbers together. Let N(G) be the number

assocated with G.

With this as a starting point, let's try to evaluate some games. (The \value"
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of a game will be the number we assign to it, and by \evaluating" it we mean

computing this value.)

What's the value of G = fjg? (This is the game in which neither player has

any moves available. So the next player to move loses.) If we add this game

to any other game, we know that it cannot change the game at all, because

it does not change the set of moves available to either player. Therefore we

know that N(G) = 0. That is, (omitting N()):

fjg = 0

Actually, we can �nd a whole class of other games that must have value 0.

Suppose we have ANY game G in which the next player to move can be

forced to lose. It turns out that we must have N(G) = 0. Why? Consider

any game H. What happens in G +H? Say Left going second in H has a

winning strategy in H. Then Left can win in G +H by seeing which game

Right moves in, and following the winning strategy in that game. Right will

eventually get stuck with no moves, and Left will win. The same thing works

if Left has a win going �rst in H, or Right has a win going �rst or second in

H. Therefore, for our theory to work we know that the outcome of a game

is not changed by adding G to it. This implies that N(G) = 0.

What about the game f0jg? (Note that we've used \0" to indicate a game of

value 0, the simplest example being fjg.) In f0jg, Left can move and leave

right looking at fjg, and Right has no move at all. Our guiding intuition

that the value should be the number of moves advantage to left indicates

that this game should have value 1.

f0jg = 1

By symmetry, we must have that:

fj0g = �1

We want addition to work, so this requires that:

f0jg+ fj0g = 0:

This is of course, not the same game as fjg. But it does have the property

that the �rst player to move in this game loses. So everything is consistent

so far.
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We can continue to build up games and their values. What about f1jg? This

clearly has value 2, because Left can make two moves to Right's zero. In

general

fnjg = n+ 1

fj � ng = �n� 1

What about the game f0j1g? What must its value be? (Perhaps working

this out with hackenbush makes this easier to see, but we'll proceed with the

set notation.) Consider the following game:

G = f0j1g+ f0j1g+ fj0g

What happens if Right moves �rst? Ignoring identical alternatives, he has

two options:

f0j1g+ f0j1g+ fjg {OR{ f0j1g+ 1 + fj0g

That is:

f0j1g+ f0j1g {OR{ f0j1g+ 1 +�1

That is:

f0j1g+ f0j1g {OR{ f0j1g

In either case, Left wins. (In the choice on the right, Left moves and leaves

Right with fjg, and in the left choice Left moves and leaves Right with f0j1g,

which loses for Right).

Now, going back to G, what happens when Left moves �rst? Left has only

one choice (eliminating symmetry), and leaves the following:

fjg+ f0j1g+ fj0g

That is:

f0j1g+ fj0g

Now right has two choices:

f0jg+ fj0g {OR{ f0j1g+ fjg = f0j1g

The choice on the left lets Right win, the other choice loses for Right, so he

avoids it.
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So game G has the property that whichever player starts that player loses.

This means it must have value 0. Let x be the value of f0j1g. We know that

x + x+ (�1) = 0

Therefore in order for our theory to work we have:

f0j1g =
1

2

We can go on this way and derive more and more results like this. For

example, you can prove that fj4g = 0, f3j5g = 4, f3j4g = 3+ 1

2
, etc. Instead,

let's just state the rule that de�nes these values, and prove the whole theory

works with these values.

De�nition of value of a game:

Say G = fGLjGRg. Recursively compute the values of each ele-

ment of GL, let the set of numbers that results be A. Similarly,

compute B from GR. Now A and B are sets of numbers. De�ne

a = max(A) and b = min(B), with the convention that if A is

empty a = �1, and if B is empty b =1. We require that a < b.

(Otherwise this procedure fails to assign a value to G.) Now the

value of G is the \simplest" number in the open interval (a; b).

It remains to explain what \simple" means. The integers are the

simplest numbers, with 0 being the simplest of all, followed by

�1 follwed by �2 etc. After that comes the dyadic numbers, that

is, rational numbers with powers of two in the denominator. The

lower the power of 2 the simpler the number.

[There is a unique simplest number in any interval (a; b). Because

if an interval contains two numbers of the same simplicity, then

it also contains an even simpler number.]

Note that this de�nition requires that a < b, and it requires this recursively

for all subgames of G. So, for example, this de�nition fails to assign a number

go f0j0g, which is the game where the �rst player to move wins. This value

of this game is not a number, and we denote it by �. We'll talk more about

games that don't have numbers later.
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Now our job is to prove that this way of assigning a value to a game has the

sum property.

Theorem: Let G and H be games that have values, and let these values be

g and h respectively. Then the game G+H has value g + h.

Proof: Let's �rst look closely at the game that is the sum of G and H. Let

G = fGLjGRg and H = fHLjHRg. What are the left sets of G+H? Left can

choose an element of GL and leave H intact, or Left can choose an element

of HL and leave G intact. The choices for Right are similar. Thus:

G+H = fGL +H;G+HLjGR +H;G+HRg

(Where by GL+H we mean the union of (X+H) over allX that are elements

of GL.)

Let gL and gR and hL and hR be the values of the left and right sides of G

and H respectively. That is, gL = max(GL) and gR = min(GR), etc. Then g

is the simplest number in (gL; gR) and h is the simplest number in (hL; hR).

Here's a schematic diagram of the situation:

---(------|----)---------(--|---)----------(---(--|---))---

g h g+h

The two parens to the left of g+h correspond to the options for Left: GL+H

(whose value is gL+h) and G+HL (whose value is g+hL). The ones to the

right of g + h are the choices for Right. (Note that this picture is logically

correct, even if some of the parens are located at �1 or 1.)

Clearly g+ h is in the range de�ned by these parentheses. We need to prove

that g + h is the simplest number in that range.

We break the proof down into a number of cases (can this be avoided?).

Case 1: g and h are integers. If g + h = 0, we're done, because 0 is the

simplest number of all. If g + h > 0 then we know that one of g or h is

positive, so assume wlog that h > 0. Therefore hL is at most 1 below h.

Therefore hL + g is at most one below g + h. And g + h is the simplest

number in the range. An analogous proof works if g+h < 0. This completes

case 1.
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Case 2: g is an integer, h is a dyadic number. g+ h is also a dyadic number,

with the same simplicity as h. In fact, the interval (hL + g; hR + g) is an

identical copy of (hL; hR) when viewed in terms of the simplicities of the

numbers in it. Therefore if h is the simplest number in (hL; hR), then g + h

must be the simplest number in (g + hL; g + hR). (And the interval that we

need to consider may even be smaller { it must be contained in (gL+h; gR+h)

too, but this only further reduces the choices available.)

Case 3: g and h are both dyadic numbers with g simpler than h. Actually,

the argument in case 2 works here too. Because the interval (hL+ g; hR+ g)

is an identical copy of (hL; hR), as described above.

Case 4: g and h are both dyadic numbers of the same simplicity. In this case

it turns out that g + h simpler than g and h (in fact it could be an integer).

Now the interval (hL+g; hR+g) is an identical copy of (hL; hR) when viewed

in terms of the simplicities of the numbers in it {EXCEPT{ that g + h is

simpler than g. Therefore, if g was the simplest in its interval, then g + h

it's certainly the simplest number in an even smaller interval around it.

QED.
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