1 A few notes on Lecture 14

1.1 The distance bound

Recall that we want to bound

$$
\begin{align*}
\left|Z_{i}-Z_{i-1}\right|=\mid & E\left[f\left(X_{1}, \ldots, X_{i-1}, X_{i}, X_{i+1}, \ldots, X_{n}\right)\right. \\
& \left.-f\left(X_{1}, \ldots, X_{i-1}, \widehat{X}_{i}, X_{i+1}, \ldots, X_{n}\right) \mid X_{1}, X_{2}, \ldots, X_{i}\right] \mid \tag{1}
\end{align*}
$$

Note that we do not want to just use the $2 \sqrt{2}$-Lipschitz property, since that will be too weak, and will only give us

$$
\operatorname{Pr}[|f-E f| \leq \lambda] \leq \exp \left\{-\lambda^{2} / O(n)\right\}
$$

We want something much better!

Claim 1.1

$$
\begin{aligned}
& f\left(X_{1}, \ldots, X_{i-1}, X_{i}, X_{i+1}, \ldots, X_{n}\right)-f\left(X_{1}, \ldots, X_{i-1}, \widehat{X}_{i}, X_{i+1}, \ldots, X_{n}\right) \\
& \leq 2\left(\min _{j \neq i} d\left(X_{i}, X_{j}\right)+\min _{j \neq i} d\left(\widehat{X}_{i}, X_{j}\right)\right)
\end{aligned}
$$

Proof: Let $A=X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}$ be all the points except X_{i} and \widehat{X}_{i}, and let $T(A)$ be the optimal TSP tour on A. Note that $f(A)=$ length $(T(A))$. For any point x and set S, define $d(x, S)=\min _{y \in S} d(x, y)$.
Note that if take $T(A)$, and to it we add two edges from X_{i} to its closest point in A, and from \widehat{X}_{i} to its closest point in A, then we have an Eulerian graph on the $n+1$ points $A \cup\left\{X_{i}, \widehat{X}_{i}\right\}$ of total length at most

$$
\begin{equation*}
f(A)+2\left(d\left(X_{i}, A\right)+d\left(\widehat{X}_{i}, A\right)\right) . \tag{2}
\end{equation*}
$$

Using the triangle inequality to shortcut repeated vertices gives us TSP tour of length at most (2), and hence the length of the optimal tour on $A \cup\left\{X_{i}, \widehat{X}_{i}\right\}$ has length

$$
\begin{equation*}
f\left(A \cup\left\{X_{i}, \widehat{X}_{i}\right\}\right) \leq f(A)+2\left(d\left(X_{i}, A\right)+d\left(\widehat{X}_{i}, A\right)\right) \tag{3}
\end{equation*}
$$

Finally, using the fact that

$$
\begin{aligned}
& f(A) \leq f\left(A \cup\left\{X_{i}\right\}\right) \leq f\left(A \cup\left\{X_{i}, \widehat{X}_{i}\right\}\right) \\
& f(A) \leq f\left(A \cup\left\{\widehat{X}_{i}\right\}\right) \leq f\left(A \cup\left\{X_{i}, \widehat{X}_{i}\right\}\right)
\end{aligned}
$$

implies that

$$
\begin{align*}
\left|f\left(A \cup\left\{X_{i}\right\}\right)-f\left(A \cup\left\{\widehat{X}_{i}\right\}\right)\right| & \leq f\left(A \cup\left\{X_{i}, \widehat{X}_{i}\right\}\right)-f(A) \\
& \leq 2\left(d\left(X_{i}, A\right)+d\left(\widehat{X}_{i}, A\right)\right) \tag{4}
\end{align*}
$$

the last inequality using (3). This is just a rephrasing of the claim that we want to prove.
Corollary 1.2 Define $B=\left\{X_{j} \mid j>i\right\}$. Then

$$
\begin{equation*}
f\left(X_{1}, \ldots, X_{i-1}, X_{i}, X_{i+1}, \ldots, X_{n}\right)-f\left(X_{1}, \ldots, X_{i-1}, \widehat{X}_{i}, X_{i+1}, \ldots, X_{n}\right) \leq 2\left(d\left(X_{i}, B\right)+d\left(\widehat{X}_{i}, B\right)\right) \tag{5}
\end{equation*}
$$

Proof: The quantity on the right of (5) is larger than the quantity on the right of (4), since $B \subseteq A$.

Lemma 1.3

$$
\begin{equation*}
\left|Z_{i}-Z_{i-1}\right| \leq 2\left(E\left[d\left(X_{i}, B\right) \mid X_{i}\right]+E\left[d\left(\widehat{X}_{i}, B\right)\right]\right) \tag{6}
\end{equation*}
$$

Proof: Plug in the result of Claim 1.1 into (1), and note that $d\left(X_{i}, B\right)$ is independent of $X_{1}, X_{2}, \ldots, X_{i-1}$, whereas $d\left(\widehat{X}_{i}, B\right)$ is independent of all $X_{1}, \ldots X_{i}$. Simplifying gives us the lemma.

1.2 The Rest of the Argument

Suppose we throw down $n-i$ points randomly in \mathcal{U}, and define the random variable $Q_{i}(x)$ to be the distance of x to the closest point amongst these $n-i$. Let R be the set of random points, and hence $Q_{i}(x)=d(x, R)$. We proved that
Claim 1.4 For any $x \in \mathcal{U}$,

$$
\begin{equation*}
E\left[Q_{i}(x)\right] \leq \frac{O(1)}{\sqrt{n-i}} \tag{7}
\end{equation*}
$$

Proof: This was the geometric proof, and I am going to omit it.
Hence we can upper bound both $E\left[d\left(X_{i}, B\right) \mid X_{i}\right]$ and $E\left[d\left(\widehat{X}_{i}, B\right)\right]$ by $\frac{O(1)}{\sqrt{n-i}}$. Finally, using (6), we get

$$
\begin{equation*}
\left|Z_{i}-Z_{i-1}\right| \leq 2\left(\frac{O(1)}{\sqrt{n-i}}+\frac{O(1)}{\sqrt{n-i}}\right) \tag{8}
\end{equation*}
$$

This implies that we can set $c_{i}=\frac{O(1)}{\sqrt{n-i}}$ in Azuma's inequality, which is much better than the bound that we get just plugging in the $2 \sqrt{2}$-Lipschitz-ness of f. Now $\sum_{i} c_{i}^{2}=O(\log n)$, and hence we get

$$
\begin{equation*}
\operatorname{Pr}[|f-E f| \leq \lambda] \leq \exp \left\{-\lambda^{2} / O(\log n)\right\} \tag{9}
\end{equation*}
$$

as claimed.

