
1 A few notes on Lecture 14

1.1 The distance bound

Recall that we want to bound

|Zi − Zi−1| = |E[f(X1, . . . , Xi−1,Xi, Xi+1, . . . , Xn)

−f(X1, . . . , Xi−1,X̂i, Xi+1, . . . , Xn) | X1, X2, . . . , Xi]| (1)

Note that we do not want to just use the 2
√

2-Lipschitz property, since that will be too weak, and will only
give us

Pr[|f − Ef | ≤ λ] ≤ exp{−λ2/O(n)}.

We want something much better!

Claim 1.1

f(X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn)− f(X1, . . . , Xi−1, X̂i, Xi+1, . . . , Xn)

≤ 2
(
min
j 6=i

d(Xi, Xj) + min
j 6=i

d(X̂i, Xj)
)
.

Proof: Let A = X1, . . . , Xi−1, Xi+1, . . . , Xn be all the points except Xi and X̂i, and let T (A) be the optimal
TSP tour on A. Note that f(A) = length(T (A)). For any point x and set S, define d(x, S) = miny∈S d(x, y).

Note that if take T (A), and to it we add two edges from Xi to its closest point in A, and from X̂i to its
closest point in A, then we have an Eulerian graph on the n + 1 points A ∪ {Xi, X̂i} of total length at most

f(A) + 2
(
d(Xi, A) + d(X̂i, A)

)
. (2)

Using the triangle inequality to shortcut repeated vertices gives us TSP tour of length at most (2), and hence
the length of the optimal tour on A ∪ {Xi, X̂i} has length

f(A ∪ {Xi, X̂i}) ≤ f(A) + 2
(
d(Xi, A) + d(X̂i, A)

)
. (3)

Finally, using the fact that

f(A) ≤ f(A ∪ {Xi}) ≤ f(A ∪ {Xi, X̂i})

f(A) ≤ f(A ∪ {X̂i}) ≤ f(A ∪ {Xi, X̂i})

implies that

|f(A ∪ {Xi})− f(A ∪ {X̂i})| ≤ f(A ∪ {Xi, X̂i})− f(A)

≤ 2
(
d(Xi, A) + d(X̂i, A)

)
, (4)

the last inequality using (3). This is just a rephrasing of the claim that we want to prove.

Corollary 1.2 Define B = {Xj | j > i}. Then

f(X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn)− f(X1, . . . , Xi−1, X̂i, Xi+1, . . . , Xn) ≤ 2
(
d(Xi, B) + d(X̂i, B)

)
. (5)

Proof: The quantity on the right of (5) is larger than the quantity on the right of (4), since B ⊆ A.
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Lemma 1.3

|Zi − Zi−1| ≤ 2
(
E[d(Xi, B) | Xi] + E[d(X̂i, B)]

)
. (6)

Proof: Plug in the result of Claim 1.1 into (1), and note that d(Xi, B) is independent of X1, X2, . . . , Xi−1,
whereas d(X̂i, B) is independent of all X1, . . . Xi. Simplifying gives us the lemma.

1.2 The Rest of the Argument

Suppose we throw down n− i points randomly in U , and define the random variable Qi(x) to be the distance
of x to the closest point amongst these n− i. Let R be the set of random points, and hence Qi(x) = d(x, R).
We proved that

Claim 1.4 For any x ∈ U ,

E[Qi(x)] ≤ O(1)√
n− i

. (7)

Proof: This was the geometric proof, and I am going to omit it.

Hence we can upper bound both E[d(Xi, B) | Xi] and E[d(X̂i, B)] by O(1)√
n−i

. Finally, using (6), we get

|Zi − Zi−1| ≤ 2
(

O(1)√
n− i

+
O(1)√
n− i

)
(8)

This implies that we can set ci = O(1)√
n−i

in Azuma’s inequality, which is much better than the bound that we

get just plugging in the 2
√

2-Lipschitz-ness of f . Now
∑

i c2
i = O(log n), and hence we get

Pr[|f − Ef | ≤ λ] ≤ exp{−λ2/O(log n)}, (9)

as claimed.
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