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7.1 Preliminaries

Recall Markov’s inequality: for any nonnegative random variable X with E[X] = µ, we have

Pr[X > t] ≤
µ

t
(7.1.1)

Pr[X > kµ] ≤
1

k
. (7.1.2)

This immediately implies Chebyshev’s inequality: If X is a random variable with mean µ and
variance σ2, then we have

Pr[|X − µ| > t] ≤
Var[X]

t
(7.1.3)

Pr[|X − µ| > kσ] ≤
1

k2
. (7.1.4)

7.2 Random Graphs

We will be working in the G(n, p) random graph model (also known as the Erdős-Rényi model).
The model defines a probability measure on graphs G = (V,E) over n nodes:

Pr[G] =

(

n2

m

)

pm(1 − p)n2−m (7.2.5)

(where m = |E|). In other words, a member of G(n, p) is obtained stochastically by starting with n

disconnected nodes and for each pair of nodes x 6= y in G, flipping a p-biased coin, independently, to
determine whether there is an edge connecting x and y. We will be looking at asymptotic properties
of various families of random graphs; in this case p will be considered as a function of n.

We will use the notation p � p0 to mean

lim
n→∞

p(n)

p0(n)
→ ∞

(p � p0 means p0 � p).

It turns out that many natural properties of random graphs have a phase-transition behavior. We
will focus on the property that a random graph has a K4 subgraph:

Theorem 7.2.1 There exists a p0(n) such that

(i) if p � p0 then Pr[G ∈ G(n, p) has a K4 subgraph] → 0
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(ii) if p � p0 then Pr[G ∈ G(n, p) has a K4 subgraph] → 1.

Proof: Let X be the random variable defined as the number of K4 subgraphs in G = (V,E).
Then

X =
∑

S⊂V
|S|=4

XS (7.2.6)

where XS is the indicator random variable for the event that every pair of vertices in S is connected
by an edge in G. Since S has 6 pairs of vertices and the probability of any edge being present is p,
we have

E[XS ] = p6 (7.2.7)

E[X] =

(

n

4

)

p6. (7.2.8)

Take p0 = n−2/3. Then we have

p � p0 =⇒ E[X] → 0 (7.2.9)

p � p0 =⇒ E[X] → ∞. (7.2.10)

The limit in (7.2.9) immediately implies (i) via Markov’s inequality. However, (ii) does not im-
mediately follow from (7.2.10), since there exist random variables whose mean grows unboundedly
while the random variable goes to zero in probability. (As an example of such a random variable,
consider Y = n2 w.p. 1

n and Y = 0 w.p. 1 − 1

n .)

Instead, we are going to prove (ii) by bounding Pr[X = 0]:

Pr[X = 0] ≤ Pr[|X − µ| ≥ µ] (7.2.11)

≤
Var[X]

E[X]2
, (7.2.12)

where (7.2.11) holds because the event X = 0 is contained in the event |X −µ| ≥ µ, and the second
inequality is Chebyshev’s.

Let us compute

Var[X] = Var

[

∑

S

XS

]

(7.2.13)

=
∑

S

Var[XS ] +
∑

S 6=T

Cov(XS , XT ). (7.2.14)

Now Var[XS ] = E[XS ] − E[XS ]2 = O(p6), so
∑

Var[XS ] = O(n4p6). Recall that Cov(Y,Z) =
E[Y Z] −E[Y ]E[Z]. We compute Cov(XS , XT ) for three simple cases:
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(a) |S ∩ T | = 0, 1: In this case, XS and XT are independent, so Cov(XS , XT ) = 0.

(b) |S ∩ T | = 2: In this case

∑

S 6=T

Cov(XS , XT ) =

(

n

6

)(

6

4

)(

4

2

)

p11 − p12 = O(n6p11).

(c) |S ∩ T | = 3: In this case
∑

S 6=T

Cov(XS , XT ) = O(n5p9).

Therefore

Var[X]

E[X]2
=

O(n4p6 + n6p11 + n5p9)

O(n4p6)2
(7.2.15)

which goes to 0 if p � p0. This establishes (ii) and proves the theorem.
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