
Proceedings of Eighth International Conference on Software Specification and Design (IWSSD-8), March 1996

A Case Study in Architectural Modelling:
The AEGIS System�

Robert Allen David Garlan
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract
Software architecture is receiving increasingly attention

as a critical design level for software systems. However, the
current practice of architectural description is largely in-
formal and ad hoc, with the consequence that architectural
documents serve as a poor communication mechanism, are
difficult to analyze, and may have very little relationship
to the implemented system. In an attempt to address these
problems several researchers have experimented with for-
malisms for architectural specification and modelling. One
such formalism is WRIGHT. In this paper we show how
WRIGHT can be used to provide insight into an architec-
tural design by modelling a prototype implementation of
part of the AEGIS Weapons System.

1 Introduction
A critical aspect of any complex software system is its

architecture. At an architectural level of design a system is
typically described as a composition of high-level, interact-
ing components. Components represent a system’s main
computational elements and data stores: clients, servers,
filters, databases, etc. Interactions between these elements
range from the simple and generic (e.g., procedure call,
pipes, shared data access) to the complex and domain-
specific (e.g., implicit invocation mechanisms, client-server
protocols, database protocols).

The description of a system at an architectural level of
design is important for several reasons. Perhaps the most
significant is that an architectural description makes a com-
plex system intellectually tractable by characterizing it at
a high level of abstraction. In particular, the architectural
design exposes the top-level design decisions and permits
a designer to reason about satisfaction of system require-
ments in terms of assignment of functionality to design
elements.

For example, for a system in which data throughput is a
key issue, an appropriate architectural design would allow

�The research reported here was sponsored by the Wright Laboratory,
Aeronautical Systems Center, Air Force Materiel Command, USAF, and
the AdvancedResearch Projects Agency (ARPA) under grant F33615-93-
1-1330; by National Science FoundationGrant CCR-9357792. Views and
conclusionscontained in this documentare those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of Wright Laboratory, the US Department of Defense, the United
States Government, the National Science Foundation. The US Govern-
ment is authorized to reproduce and distribute reprints for Government
purposes, notwithstanding any copyright notation thereon.

the software architect to make system-wide estimates based
on values of the throughputs for the individualcomponents.
Other issues relevant to this level of design include organi-
zation of a system as a composition of components; global
control structures; protocols for communication, synchro-
nization, and data access; assignment of functionality to
design elements; physical distribution; scaling and per-
formance; dimensions of evolution; and selection among
design alternatives.

Unfortunately, the current state of the practice is to use
informal, diagrammatic notations (such as box-and-line di-
agrams) and idiomatic characterizations (such as “client-
server organization,” “layered system,” or “blackboard ar-
chitecture”). The meanings of such diagrams and phrases,
if they are given meanings at all, are typically established
by informal convention among a small set of developers.
(E.g., “in this diagram a line means a pipe.”) This relative
informality leads to architectural designs that are inherently
ambiguous, difficult to analyze, and hard to mechanize.

To address these problems several researchers are in-
vestigating the application of formalisms for architectural
specification and modelling. The general thrust of these
efforts is to investigate the applicability of existing for-
mal models (sometimes with new surface syntax) to the
problem of characterizing and reasoning about software
architectures.

An important challenge for this research community is to
evaluate these languages and to understand their respective
strengths and weaknesses. In the past, software specifica-
tion languages faced similar needs. One mechanism for
comparison has been the use of benchmark problems. Ex-
amples from the formal specification community include
the library problem, the lift problem, the package router,
etc.

What are the comparable problems for architecture?
One candidate problem is the “AEGIS Weapons System.”
AEGIS is a large software system used to control ships for
the US Navy. In 1994 a part of the system was used by the
ARPA Prototech community as a vehicle to demonstrate
their prototyping languages. While (architecturally speak-
ing) the constructed system was relatively simple – less
than a dozen architectural components – during the course
of construction, it raised a surprisingly number of thorny
architectural problems for the system implementors and
integrators. The challenge for architectural specification
languages, then becomes: could these problems have been
detected and/or resolved through appropriate descriptive

1

formalisms?
In this paper we pick up the gauntlet. Specifically, we

look at ways in which the WRIGHT architectural specifica-
tion language can be used to characterize and reason about
the AEGIS architecture. We begin with a brief character-
ization of related work. Next we outline AEGIS and the
challenges that it represents. We then provide a naive ar-
chitectural description of the architecture, and show how
architectural formalism helps expose and resolve some of
the architectural problems that arose in the course of im-
plementing the system. We finish by providing a revised,
more accurate description of the final system.

2 Related work
Our approach to architectural specification is based on

the use of CSP to model the behavior of the components
and their interactions in an architectural design. A number
of other formalisms have been proposed for modelling ar-
chitectures of software systems. Inverardi and Wolf have
used the Chemical Abstract Machine [BB92] as a formal
basis for architectural description [IW95]. Architectural
elements are represented by “molecules” and architectural
interaction by “reactions.” Reactions operate as a set of
rewrite rules, which determine how the computations pro-
ceed over time. We understand that this formalism has been
applied to the AEGIS problem.

In their work on architectures for distributed systems,
Magee and Kramer have used the�-calculus to model the
dynamic aspects of architectures described in the Darwin
language [MK95]. Their work can be viewed as a good
example of formalization for a particular style (embodied
in Darwin) using a semantic model different than the one
we use in this paper.

In their investigations of architectural refinement, Mori-
coni and his colleagues have characterized styles as theories
in first order predicate logic and with Lamport’s TLA Ac-
tions [MQR95]. The latter treatment is consistent with our
approach, although it is based on a somewhat different for-
mal model, and is more concerned with understanding the
relationship between different architectural styles than with
the expressiveness of an architectural formalism for a given
system.

Rapide [L+95] is a module description language, whose
interface model is based on partially ordered event sets and
event patterns. Rapide’s main advantage is that it can be
executed to produce event traces that can be examined for
violation of interaction invariants. This is in contrast to
Wright, which provides a stronger basis for static analysis.
Rapide has been used to model the AEGIS System, and in
fact was one of the original prototyping languages applied
to the problem.

In earlier work the authors and other colleagues have
used Z to model architectural style [AG92, GN91, AAG93].
While this work demonstrated that many properties of ar-
chitecture can be handled in a set-theoretic context, we also
found that Z was a poorly matched to the problem of cap-
turing the dynamic behavior of architectural systems. It
was this insight (among other things) that led us to develop
WRIGHT.

Currently, it is difficult to compare these different for-
malisms, except in a very abstract way. In fact, it is an open
and challenging research problem in itself to determine
which of the proposed formalisms are most appropriate

for architectural specification. However, one of the ways
in which this evaluation can take place is through the use
of shared case studies. It is the purpose of this paper to
contribute to this process: by exhibiting a case study of a
non-trivial system, one that others are also investigating,
we hope to provide a more concrete basis for comparison
and discussion by the architecture community.

The use of model problems for software architecture
is not without precedent. Shaw and her colleagues have
devised a set of “challenge problems” for architectures,
including “compiler”, “ATM”, “KWIC”, “cruise control”,
“sea buoy”, and others [S+94]. This list is an evolving
and one and we expect that through efforts like this paper,
AEGIS will be added to the list.

3 The AEGIS “Problem”
The problem was first posed by Bob Balzer at an ARPA

program meeting in Fall 1994. It was later re-presented
as a challenge problem at the 1995 Dagstuhl Workshop on
Software Architecture [GPT95].

The AEGIS Weapons System is a large, complex soft-
ware system that controls many of the defense functions of
modern US Navy ships. As described in one DoD report:

The AEGIS Weapons Systems (AWS) is an
extensive array of sensors and weapons designed
to defend a battle group against air, surface and
subsurface threats. These weapons are con-
trolled through a large number of control con-
soles, which provide a wide variety of tactical
decision aids to the crew. To manage complexity,
the crew can preset conditions under which auto-
mated or semi-automated responses occur. This
capability is generally referred to as doctrine.

The motivation for using AEGIS as a challenge problem
arose through a demonstration exercise of the ARPA Proto-
typing Technology Program in 1993. Engineers on the real
AEGIS system provided a design for a part of the system
that takes monitored sensor data about moving objects near
the ship, and decides what actions to take. To do this the
system must resolve the “tracks” of moving objects against
its geometrical model of the ship and nearby entities.

An informal description of the proposed architecture of
the system is shown in Figure 1. The system consists of
seven modules. The Experment Control module provides
simulated input from the operator and sensors. Tracking
data is sent to the Track Server, which maintains a record
of the currently-monitored moving objects (missiles, other
planes, submarines, etc.) within its tracking region. The
Doctrine Authoring module receives input describing rules
of engagement and activation. The GeoServer module
takes doctrine information (from the Doctrine Authoring
module), and track information (from the Track Server)
and based on its own geometric models, determines which
tracks intersect which geometric regions. This information
(together with track and doctrine information) is fed to the
Doctrine Reasoning module, which determines what action
should take place. For the purposes of the prototype these
actions, as well as other status information is displayed to
the user via a Display Server module. The arrows in the
figure indicate the direction of information flow.

2

GeoServer

Display

Server

Doctrine

Reasoning

Server

Track

Validation

Doctrine

Authoring

Doctrine

CS1

Control

Experiment

CS2

CS4 CS5

CS7 CS8

CS10

CS6 CS9

CS3

Figure 1: The AEGIS Prototype Architecture

In the Prototech demonstration, each of the research
teams in the program was assigned the task of implement-
ing one or more modules of the system. The modules were
to be integrated into a running system that could then be
demonstrated for the program sponsors. To make this in-
tegration possible the teams had to agree on the nature of
the architectural connection that they would use. For im-
plementation reasons (they were building on top of Unix
with sockets) they initially agreed to use a uniform client-
server organization, in which clients requested data from
the servers. Thus information would be “pulled” from the
top to the bottom of the figure: i.e., clients at the tip of the
arrows, and the servers at the tails. Components that have
both incoming and outgoing arrows, would act both as a
client and a server.

Putting aside internal details of the individual modules,
this sounds like a relatively straightforward task. Unfortu-
nately, it turned out to be anything but trivial. First, there
were some serious misconceptions about the meaning of
client-server interactions. Which party initiated the con-
nection? Was it reestablished after each request? Was the
data transferred synchronously? Moreover, there turned out
to be restrictions induced by implementation constraints of
the modules making it infeasible for certain modules to
act both as clients and as servers. Furthermore, the ba-
sic design did not account for some advanced monitoring
capabilities of the inter-module communication. The net
result was that (according to one of the participants) the
final integration was something of a nightmare, and the re-
sulting system considerably more complex than had been
originally envisioned.

In the remainder of this paper we use the WRIGHT ar-
chitectural specification language to expose some of these
problems. While space does not allow us to treat all of the
issues, we will focus on a few key problems – primarily
those relating to potential deadlock. We start by character-
izing the naive architectural design. Then we show how it

must be modified to characterize the “as-built” system.

4 TheWRIGHT Notation
Before presenting the AEGIS specification, we provide

a brief overview of the WRIGHT notation. (We will assume
rudimentary familiarity with CSP [Hoa85].) Details of the
semantic model and the supporting toolset can be found
elsewhere [AG94b, AG94a].1

WRIGHT describes the architecture of a system as a col-
lection of components interacting via instances of connec-
tor types. A simple Client-Server system description is
shown in Figure 2. This example shows the three elements
of a system description: style declaration, instance dec-
larations, and attachments. The instance declarations and
attachments together define a system configuration.

An architectural style is a family of systems with a com-
mon vocabulary and rules for configuration. A simple style
definition is illustrated in Figure 3. This style defines the
vocabulary for the system example of Figure 2. (Although
not illustrated in this paper a style can also define topolog-
ical constraints on systems that use the style.)

In WRIGHT, the description of a component has two
important parts, theinterface and thecomputation. An
interface consists of a number ofports. Each port defines
the set of possible interactions in which the component may
participate.

A connector represents an interaction among a collection
of components. For example, a pipe represents a sequential
flow of data between two filters. A WRIGHT description of
a connector consists of a set ofroles and theglue. Each role
defines the behavior of one participant in the interaction. A

1The version of WRIGHT used in this paper differs in minor ways from
previously publishedpapers. In particular, this version distinguishes input
and outputevents, and introducesa quantificationoperator and conditional
process expression. These differences are elaborated in this section.

3

SystemSimpleExample
Style ClientServer
Instances

s: Server
c: Client
cs: C-S-connector

Attachments
s.provideascs.server;
c.requestascs.client

end SimpleExample.

Figure 2: A Simple Client-Server System

Style ClientServer
ComponentServer

Port Provide[provide protocol]
Computation [Server specification]

ComponentClient
Port Request[request protocol]
Computation [Client specification]

ConnectorC-S-connector
RoleClient [client protocol]
RoleServer[server protocol]
Glue [glue protocol]

end ClientServer.

Figure 3: A Simple Client-Server Style

pipe has two roles, the source of data and the recipient. The
glue defines how the roles will interact with each other.

Each part of a WRIGHT description – port, role, com-
putation, and glue – is defined using a variant of CSP. For
example, a simple client role might be defined as:

RoleClient = (request !result?x ! Client)u x
A participant in an interaction repeatedly makes a request
and receives a result, or chooses to terminate successfully.

As is partially evident from this example, WRIGHT ex-
tends CSP in some minor syntactic ways. First, it dis-
tinguishes betweeninitiating an event andobserving an
event. An event that is initiated by a process is written with
an overbar: The specification of theClient’s Request port
would use the eventrequest to indicate that it initiates a re-
quest. TheServer’s Provide port, on the other hand, waits
for some other component to initiate a request (itobserves
the event), so in its specification this event would be written
without an overbar:request.

Second, a special event in WRIGHT is
p

, which indicates
the successful termination of a computation. Because this
event is not a communication event, it is not considered
either to be initiatedor observed. Typically, use of

p
occurs

only in the process that halts immediately after indicating
termination:x= p!STOP.

Third, to permit parameterization of connector and
component types, WRIGHT uses a quantification opera-
tor: 8 x : S hopiP(x). This operator constructs a new
process based on a process expression and the setS ,
combining its parts by the operatorhopi. For example,

8 i : f1; 2; 3g Pi = P1 P2 P3. A special case is
8 x : S ; P(x), which is some unspecified sequencing of
the processes:8 x : S ; P(x) = 8 x : Su(P(x) ; 8 y :
S n fxg ; P(y)).

The final extension is the use of “conditional processes,”
which we will illustrate in the next section.

As discussed in [AG94b], descriptions of connectors
can be used to determine whether the glue constrains the
roles enough to guarantee critical properties such as local
absence of deadlock. These descriptions can also be used to
determine whether a configuration is properly constructed,
e.g., whether the interfaces of a component are appropriate
for use in a particular role. But these issues are beyond the
scope of this paper.

The global behavior of a WRIGHT architecturesystem in-
stance is constructed from the processes introduced by the
component and connector types in the style definition. For
each component instance, the process specifying the com-
ponent type’sComputation is relabelled with the compo-
nent instances name and placed in parallel (CSP operator
k) with the other component instances. The connector
instances influence the components’ communication path-
ways by appearing as similarly relabelledGlue processes.

In addition to relabelling the glue processes so that dif-
ferent instances of the same connector have distinct event
names, the connector instances’ events are also renamed
so that the attachments represent a communication path-
way. For example, the attachment ’s.provide ascs.server,’
shown in figure 2, would mean that each event with the pre-
fix cs.server (for examplecs.server.e) would be renamed to
have the prefixs.provide (for examples.provide.e). The net
effect of this renaming is that a connector instance that has
its roles attached to a particular set of ports synchronizes
the events of those ports in the global system behavior. In
figure 2, this means that the glue ofC-S-connector will syn-
chronize the roless.provide andc.request, just as we would
expect from the attachment and instance declarations.

5 The Naive Specification
As noted earlier, the simple model of the AEGIS system

uses a client-server model; a client initiates a data request
from a server, which fills the requests of each of its clients as
they arrive. But this simple, informal, description brushes
a lot of important information under the rug, and leaves
us without enough details even to begin a more detailed
design. The abstraction doesn’t resolve issues such as what
protocols are used to make the data request and reply, how
termination is signalled, and whether servers must handle
multiple requests simultaneously. By characterizing this
“naive” architectural description in WRIGHT, we will see
how these issues come to the fore.

In WRIGHT we begin an architectural description by
characterizing the architectural “style” from which the sys-
tem is developed. We will develop each of the elements of
the architecture as a type, either of port or role, component,
or connector. Each of the type definitions will provide a
building block from which the particular system instance
can be developed.

The smallest building block in a system is a protocol
fragment, used to describe either the interface of a com-
ponent or the constraints on a participant in an interaction
protocol (connector). These protocol fragment patterns are
introduced asProcesstypes.

4

ProcessClientPullT = open !Operate u x
where Operate = request!result?x!Operate

u Close
Close = close!x

ProcessServerPushT = open !Operate x
where Operate = request!result!x!Operate

Close
Close = close!x

The ClientPullT is the basic type used for the ports of
a client component (and for the role in a connector which
will be played by such a component). As we will see in
the component and connector declarations, theClientPullT
process indicates that a client will begin by establishing the
connection with theopen event. After opening the con-
nection, an operational phase is begun, in which the client
repeatedly chooses torequest data. The client expects to
receive exactly oneresult for each request. At any time, the
client may choose toclose the connection, after which the
interaction ceases (as indicated by thex process).

The ServerPushT process is the complement of the
ClientPullT. The server expects another party toopen the
connection (itobserves this event, as indicated by the ab-
sence of an overbar). Then, it will repeatedly provide
responses to requests until it recognizes aclose event, after
which it is free to terminate.

In combination (or even singly), these processes would
seem to be adequate to define the client-server interac-
tion; each initiated event in one process corresponds to an
observed event in the other. TheClientServer connector
specification confirms this relation between events; each
line of theGlue specification indicates the correspondence
between a pair of events – when the client initiates an open,
the server will observe an open, and so on. This is a very
common case in architectural connectors, and many de-
scriptive notations specialize their connector descriptions
to it (e.g., [L+95, YS94]). As we will see later, however,
there are other cases where there may be more complex re-
lationships, involving partial visibilityof events or run-time
mechanisms (that are not part of the abstract computation)
that require a more complexGlue. WRIGHT requires that
even the “trivial” glue be spelled out in full, although it
could easily be generated automatically.

Connector ClientServer =
RoleClient = ClientPullT
RoleServer = ServerPushT
Glue = Client.open !Server.open!Glue

Client.close!Server.close!Glue
Client.request!Server.request!Glue
Server.result?x!Client.result!x!Glue
x

In a client-server system such as AEGIS, there are three
kinds of components: those that act as clients, those that
act as servers, and those that combine the two functions.
Components of each of these kinds can have different num-
bers of interfaces (client or server interfaces), and so we
represent them by parameterized types.

ComponentClient(numServers : 1..) =
Port Service1::numServers = ClientPullT
Computation = (8 x :1::numServers ;

Servicex .open) ; UseOrExit
where UseOrExit = UseService u Exit

UseService = 8 x :1::numServers
u Servicex .request
!Servicex .result?y
!UseOrExit

Exit = (8 x : 1::numServers ; Servicex .close) ;
x

The Client component type is straightforward. It has
complete control over its actions at any time, as long as
it obeys theClientPullT protocol on each of its ports. For
simplicity, we assume that it begins by opening each of its
connections, and finishes by closing each of them. Dur-
ing the middle phase, the processUseService selects from
among its connections to request a new data item. The
choice is entirely up to the client, as indicated by the use of
non-deterministic choice.

The picture for a server is considerably more compli-
cated (see figure 4). AServer component provides data
services to one or more clients. With each client, the server
uses theServerPushT protocol. At any point in the pro-
tocol, each client is in one of three states: “Open” (repre-
sented by the setO), “Closed” (represented by the setC),
or “not yet Open” (all others).

TheComputation specification shows many of the dif-
ficult issues that arise in specifying this architectural style.
What mechanisms are available for the server to locate new
connections that should be opened? To receive a client’s
request? When can a newly closed client connection be rec-
ognized, and what action should be taken? As a component
type, theServer specification provides a generic answer to
these questions.

TheComputation shown in figure 4 describes a server
that can handle at most one client request at a time. This
is indicated by the non-deterministic (or internal) choice
among versions of the processReadFromClient. The server
may also choose to wait for anopen request from any of a
set of clients. This interaction pattern, of selecting a single
client for a request or a set of clients for an open, is charac-
teristic of the Unix socket mechanism, which was selected
as an implementation base. We can see the consequences of
this choice, while abstracting other implementation details,
in its effects on the server component type.

Because of the blockingopen andrequest protocol, as
well as the requirement that the server eventually handle
all requests, the server must keep track of the statuses of
the different clients. Some have not yet opened, and the
server can wait for them to open; some have opened but
not closed, and server can expect either arequest or aclose
from them; and some have closed, and the server must not
expect any further action from them. The open and the
closed clients are represented by the state variablesO and
C respectively (those that have never opened are members
of the set(1::numClients) n (O [C)). Given these
different statuses, there are four distinctcases for the server,
requiring different choices of action: The least constrained
case is when there are both open and unopened clients; in
this case, the server is free to make any choice of action.
If every client has already opened, the server must not wait

5

ComponentServer(numClients : 1..) =
Port Client1::numClients = ServerPushT
Computation = WaitForClientfg;fg

where WaitForClientO ;C = 8 x : ((1::numClients) n (O [C)) Clientx .open! DecideNextActionO[fxg;C

DecideNextActionO ;C = WaitForClientO ;C u 8 x : O u ReadFromClientx ;O ;C

O 6= fg ^ O [C 6= (1::numClients)
DecideNextActionO ;C = 8 x : O u ReadFromClientx ;O ;C

O 6= fg ^ O [C = (1::numClients)
DecideNextActionfg;C = WaitForClientfg;C

C 6= (1::numClients)
DecideNextActionfg;(1::NumClients) = x
ReadFromClientx ;O ;C = Clientx .request!Clientx .result!y!DecideNextActionO ;C

Clientx .close!DecideNextActionOnfxg;C[fxg

Figure 4:ComponentServer

for a client to open. If no client is open, then the server does
not have the option of waiting for a request. Once every
client has closed, the only possible action by the server is
to terminate.

These various cases are handled by the use of conditional
process definitions:

PV = Q
p(V)

defines a processP over variablesV only when the boolean
expressionp(V) is true.

The component typeMixedComp (figure 5) combines
the properties of aClient and aServer. It must deal with
open, close, and request events from its clients, but it also
has the option of requesting a service from one of its servers
at any time.

Now that we have described the basic vocabulary of the
naive AEGIS style, we can show the configuration of the
testbed system:2

Configuration Testbed
StyleAegis
Instances

ExperimentControl : Server(3)
DoctrineAuthoring : MixedComp(1,3)
DoctrineValidation : Client(3)
TrackServer : MixedComp(1,3)
GeoServer : MixedComp(2,1)
DoctrineReasoning : Client(3)
CS1::10 : ClientServer

Attachments
ExperimentControl.Client asCS1.Server
DoctrineAuthoring.Service asCS1.Client
ExperimentControl.Client asCS2.Server
DoctrineValidation.Service asCS2.Client
ExperimentControl.Client asCS3.Server
TrackServer.Service asCS3.Client
DoctrineAuthoring.Client asCS4.Server
DoctrineValidation.Service asCS4.Client

2For reasons that will become clearer later this initial description
excludes the DisplayServer. In the next section we include it in the
specification.

TrackServer.Client asCS5.Server
DoctrineValidation.Service asCS5.Client
DoctrineAuthoring.Client asCS6.Server
DoctrineReasoning.Service asCS6.Client
DoctineAuthoring.Client asCS7.Server
GeoServer.Service asCS7.Client
TrackServer.Client asCS8.Server
DoctrineReasoning.Service asCS9.Client
TrackServer.Client asCS9.Server
GeoServer.Service asCS9.Client
GeoServer.Client asCS10.Server
DoctrineReasoning.Service asCS10.Client

end Testbed.

6 Analyzing and Changing the Specification
The WRIGHT specification described in the previous sec-

tion is a reasonable and useful description of the architec-
ture of the AEGIS system as it was initially envisioned.
The protocol described in theClientServer connector and
the computation patterns covered by the connectorsClient,
Server, andMixedComp describe the high level design of
the system, exposing the computation model and the re-
quirements on the run-time infrastructure for the proposed
system.

The specification also exposes a number of shortcomings
of the initial design, shortcomings which led to a major
reworking of the system and that seriously complicated the
final product. The system as it was eventually constructed
bore little resemblance to the simple client-server system
described above. In this section, we look at some of the
issues that arose in the AEGIS design, show how they are
exposed by the preceding WRIGHT description, and further
show how the solutions found by the AEGIS team can be
expressed in WRIGHT, thus ensuring that the architectural
description matches the system as built.

6.1 Issue: Direction of Data Flow
One of the issues that is exposed by the formal descrip-

tion of the AEGIS system is that of dataflow. The AEGIS
system contains a server, the Display Server that does not
supply data, but instead receives it. The protocols described
above for theClientServer connector, which simply encode
the default interpretation of client-server interaction, does

6

ComponentMixedComp(numServers : 1..;numClients : 1..) =
Port Service1::numServers = ClientPullT
Port Client1::numClients = ServerPushT
Computation = OpenServices ;WaitForClientfg;fg

where WaitForClientO ;C = 8 x : ((1::numClients) n (O [C)) Clientx .open! DecideNextActionO[fxg;C

DecideNextActionO ;C = WaitForClientO ;C u 8 x : O u ReadFromClientx ;O ;Cu (UseService ; DecideNextActionO ;C)
O 6= fg ^ O [C 6= (1::numClients)

DecideNextActionO ;C = 8 x : O u ReadFromClientx ;O ;C u (UseService ; DecideNextActionO ;C)
O 6= fg ^ O [C = (1::numClients)

DecideNextActionfg;C = WaitForClientfg;C u (UseService ; DecideNextActionfg;C)
C 6= (1::numClients)

DecideNextActionfg;(1::NumClients) = (UseService ; DecideNextActionfg;(1::numClients)) u Exit
ReadFromClientx ;O ;C = Clientx .request!(OptionalUseService ;Clientx .result!y!DecideNextActionO ;C)

Clientx .close!DecideNextActionOnfxg;C[fxg

UseService = 8 x : (1::numServers) u Servicex .request!Servicex .result?y!x
OptionalUseService = (UseService ; OptionalUseService)u x
OpenServices = 8 x : (1::numServers) ; Servicex .open!x
Exit = 8 x : (1::numServers) ; Servicex .close!x

Figure 5:ComponentMixedComp

not handle this situation. Thus, interactions with the Dis-
play Server require a second connector,ClientServerPush,
along with corresponding new port/role declarations. (The
term Push is used to indicate that the clientpushes data
toward the server, rather than pulling it from the server.)

ProcessClientPushT = open !Operate u x
where Operate = request!x!result!Operate

u Close
Close = close!x

ProcessServerPullT = Open !Operate x
where Operate = request?x!result!Operate

Close
Close = close!x

Connector ClientServerPush =
RoleClient = ClientPushT
RoleServer = ServerPullT
Glue = Client.open !Server.open!Glue

Client.close!Server.close!Glue
Client.request?x!Server.request!x!Glue
Server.result!Client.result!Glue
x

6.2 Issue: Potential for Deadlock in Servers
A more serious issue is the potential for deadlock in a

system that uses theServer component as described above.
Deadlock can arise because the server must, in effect,guess
which of the clients will be the next one to make a request.
A server does not deadlock on its own: If the clients are
able to fulfill their obligation to either request or close,
then no problems occur. Deadlock can be a problem,
however, when more than one client and server are in-
volved. Consider a simplified system topology with two
servers,S1 andS2, and two clientsC1 andC2, in which

both clients interact with both servers. (One such pattern
occurs in the system with componentsDoctrineAuthoring,
TrackServer, GeoServer, andDoctrineReasoning.) What
happens if clientC1 plans to make a request first toS1 and
thenS2, while clientC2 makes a request first toS2 and then
S1? If S1 andS2 both guess wrong about which compo-
nent will make the first request (i.e. S1 guessesC2 andS2
guessesC1), then the system will deadlock. Neither service
can proceed before the other, since each is waiting for the
other client, which is itself waiting for the other server. The
problem of guessing which client will be next is exposed
in the specification as a non-deterministic choice over the
set ofrequest events in theServer (andMixedComp) spec-
ification. This indicates that the servers are free to handle
any of their clients, excluding the other clients while doing
so.

6.2.1 Using Dynamic Connections

The AEGIS designers took three approaches to solving
this problem. The first takes advantage of the fact that it
is possible to make a deterministic choice over the set of
open events. The protocols are changed so that anopen
event precedesevery client request:3

ProcessDynamicClientPullT = open !request
!result?x!close
!DynamicClientPullT

u x
ProcessDynamicServerPushT = open !request

!result!x!close
!DynamicServerPushT

x
3Similar definitions for DynamicClientPushT and

DynamicServerPullT, not shown. Also, connectorsDClientServer
andDClientServerPush are straightforward but omitted for brevity.

7

These protocols can be used to make aDynamicServer
that waits foropen events rather thanrequest events:

ComponentDynamicServer (numClients : 1..) =
Port Client1::numClients = DServerPushT
Computation = WaitForClient x
where WaitForClient = 8 i :1::numClients

Clienti .open
!Clienti .request
!Clienti .result!x
!Clienti .close!Computation

This problem can also arise with the service request
portion of aMixedComp, and this is solved byserverizing a
mixed computation. That is, instead of using aClientPullT
to wait for data, the component uses aServerPullT port to
receive notification when data is available.

ComponentDynamicServerized (numServers : 0..;
numClients : 0..) =

Port Service1::numServers = DServerPullT
Port Client1::numClients = DServerPushT
Computation = WaitForService WaitForClient x
where WaitForService =

8 i :1::numServers
Servicei .open!Servicei .request?x
!Servicei .result!Servicei .close
!Computation

WaitForClient =
8 i : 1::numClients Clienti .open

!Clienti .request
!Clienti .result!x
!Clienti .close
!Computation

6.2.2 Avoiding Unnecessary Synchronizations

A second approach to avoiding a server blocking on a
request is to permit the server to provide the data asyn-
chronously, in anticipation of a request. This is achieved
through the use of anOpenLoopBufferconnection (figure 6),
which guarantees that the source of data will never block
waiting for the target to become ready. The buffer stores
data until the target requests it, or blocks the target until
the source makes new data available. (Such a connection
is essentially a pipe.)

Notice how the WRIGHT Glue mechanism permits
this interaction to be describedwithout modifying the
component interfaces. This connector can replace a
ClientServer connector without modifying the data target,
or a ClientServerPush connector without modifying the
data source.

6.2.3 Multi-threading Components

The third and final approach to avoiding server deadlocks is
perhaps the most flexible: to alter the server’s implementa-
tion mechanism so that it can handle multiple connections
at once. If we use a multi-threaded implementation (easily

represented in CSP using thek operator), a single compo-
nent type can use each of the possible interface protocols
(see figure 7).4

This solution is used for two of the components,
TrackServer and ExperimentControl. The instance decla-
rations for these are as follows:

TrackServer : ThreadedMixedComp (3,0,1,0,1,0,0,0)
ExperimentControl : ThreadedMixedComp (1,0,0,0,0,0,0,2)

TrackServer has three static push server ports, one dy-
namic push server port, and one static pull client port.
ExperimentControl has one static push server port and two
dynamic push client ports.
6.3 Issue: Instrumenting Communication

Another issue that is not dealt with in the initial specifi-
cation is that the AEGIS testbed is an experimental system.
As such, there is a requirement that the interactions of the
system be monitored. This monitoring must not, of course,
alter the components as designed, or the data collected
would be invalid. This results in the need for instrumented
connectors. WRIGHT can represent these easily by adding
a newListener role to each connector specification, and
altering theGlue to copy data to the new participant. For
example, an instrumentedClientServer connector could be
described as follows:

Connector InstrumentedClientServer =
RoleClient = ClientPullT
RoleServer = ServerPushT
RoleListener = data?x !Listener x
Glue = Client.open !Server.open!Glue

Client.close!Server.close!Glue
Client.request!Server.request!Glue
Server.result?x!Client.result!x
!Listener.data!x!Glue
x

The same Listener can also
be added to any of the other connectors. For example,
InstrumentedDClientServerPush:

Connector InstrumentedDClientServerPush =
RoleClient = DClientPushT
RoleServer = DServerPullT
RoleListener = data?x!Listener x
Glue = Client.open !Server.open !Glue

Client.request?x !Server.request!x
!Listener.data!x !Glue
Server.result !Client.result !Glue
Client.close !Server.close !Glue
x

7 The Updated AEGIS System
We can now give the full, new configuration:

Configuration Testbed2
StyleAegis

4While CSP makesthis look like the simplest solution of all, depending
on the implementation base it may require a complex implementation.

8

Connector OpenLoopBuffer =
RoleSource = ClientPushT
RoleTarget = ClientPullT
Glue = OpenPhase ; Operatehi

where OpenPhase = Source.open !Target.open!x Target.open!Source.open!x
Operatehi = Source.request?x!Source.result!Operatehx i

Target.request!WaitForData
OperateS+hx i = Source.request?y!Source.result!Operatehyi+S+hx i

Target.request!Target.result!x!OperateS
WaitForData = Source.request?x!Target.result!x !Source.result!Operatehi

Figure 6: An Open Loop Buffer

ComponentThreadedMixedComp (numPushServers :0..;numPullServers : 0 .. ;
numDPushServers :0..;numDPullServers :0..;
numPullClients : 0..;numPushClients : 0..;
numDPullClients : 0..;numDPushClients : 0..;
) =

Port PushServer1::numPushServers = ServerPushT
Port PullServer1::numPullServers = ServerPullT
Port DPushServer1::numDPushServers = DServerPushT
Port DPullServer1::numDPullServers = DServerPullT
Port PushClient1::numPushClients = ClientPushT
Port PullClient1::numPullClients = ClientPullT
Port DPushClient1::numDPushClients = DClientPushT
Port DPullClient1::numDPullClients = DClientPullT
Computation = 8 i : 1::numPushServers k PushServeri :ServerPushT

k 8 i : 1::numPullServers k PullServeri :ServerPullT
k 8 i : 1::numDPushServers k DPushServeri :DServerPushT
k 8 i : 1::numDPullServers k DPullServeri :DServerPullT
k 8 i : 1::numPushClients k PushClienti :ClientPushT
k 8 i : 1::numPullClients k PullClienti :ClientPullT
k 8 i : 1::numDPushClients k DPushClienti :DClientPushT
k 8 i : 1::numDPullClients k DPullClienti :DClientPullT

Figure 7: A Multi-threaded Solution

Instances
ExperimentControl : ThreadedMixedComp (1,0,0,0,0,0,0,2)
DoctrineAuthoring : DynamicServerized(1,3)
DoctrineValidation : DoctrineValidationT
TrackServer : ThreadedMixedComp (3,0,1,0,1,0,0,0)
GeoServer : GeoServerT
DoctrineReasoning : DoctrineReasoningT
DisplayServer : DisplayServerT
CS1::4 : ClientServer
DCS1::5 : DClientServer
DCSPush1::4 : DClientServerPush
OpenLoop : OpenLoopBuffer

Attachments
ExperimentControl.DClientPush asDCSPush1.Client
DoctrineAuthoring.Service asDCSPush1.Server
ExperimentControl.DClientPush asDCSPush2.Client
DoctrineValidation.ExCtrl asDCSPush2.Server
ExperimentControl.ServerPush asCS1.Server
TrackServer.ClientPull asCS1.Client

DoctrineAuthoring.Client asDCS1.Server
DoctrineValidation.DoctAuth asDCS1.Client
TrackServer.ServerPush asDCS2.Server
DoctrineValidation.TrSrv asDCS2.Client
DoctrineAuthoring.Client asDCS3.Server
DoctrineReasoning.DoctAuth asDCS3.Client
DoctineAuthoring.Client asDCS4.Server
GeoServer.DoctAuth asDCS4.Client
TrackServer.ServerPush asCS2.Server
DoctrineReasoning.TrSrv asCS2.Client
TrackServer.ServerPush asCS3.Server
GeoServer.TrSrv asCS3.Client
GeoServer.DoctReas asOpenLoop.Source
DoctrineReasoning.GeoSrv asOpenLoop.Target
DoctrineAuthoring.Client asDCS5.Server
DisplayServer.DoctAuth asDCS5.Client
TrackServer.ServerPush asCS4.Server
DisplayServer.TrSrv asCS4.Client
DisplayServer.DoctVal asDCSPush3.Server

9

DoctriveValidation.DispSrv asDCSPush3.Client
DisplayServer.DoctReas asDCSPush4.Server
DoctrineReasoning.DispSrv asDCSPush4.Client

end Testbed2.

8 Evaluation
We have seen that WRIGHT can be used to provide a for-

mal specification of the style used by the AEGIS prototype
implementors. As we have illustrated, this specification il-
luminates many of the issues left unresolved in a less formal
treatment.

The primary benefit of this specification has been its
precision and its attention to detail. We note, however, that
although we have been quite specific about the protocols
of interaction, the specification has abstracted considerably
from the actual functional behavior of the components in
the system.

A secondary benefit of the treatment that we have given
is the ability to reason about the architectural style within
which AEGIS was developed. Although space did not
permit it here, arguments about absence of deadlock and
about substitutability of one connector type for another
can be made in a rigorous fashion. These results become
general rules that can be applied to all instances of the
style. Hence the architectural level specification becomes
cost effective through amortization of its results across a
wide variety of systems.

Althoughthe specifications shown in this paper are com-
plex, they provide a basis for precise reasoning about the
system and may be used, in other instances of this same
style, as a basis for more concise descriptions of function-
ing systems. In effect, they act to give meaning to the infor-
mal descriptions such as shown in figure 1, and as building
blocks for a family of precise architectural specifications.

On the negative side, this specification highlights some
of the weaknesses of WRIGHT. The most glaring is the fact
that the process structure of a WRIGHT description is (like
CSP) static: new components and connections cannot be
created on the fly. We were able to circumvent the problems
in the case of the dynamic connectors, by simulating the
opening and closing of a connection, and also by the use
of parameterized components. But for an architecture with
more dynamic behavior – e.g., new components are created
while the system is running – this kind of model would
not suffice. However, in exchange for this limitation, we
get all of the benefits of CSP: its algebraic rules, its simple
treatment of refinement, and its capability for reasoning
about deadlock.

WRIGHT is not, however, intended to stand alone as
the only architectural representation of a fully functioning
system. Other formalisms will be more appropriate for
the exploration of issues such as run-time performance,
user- and machine-interfaces, allocation to hardware, and
configuration maintenance. The software architect must
confront many issues in developing the system, and so we
would expect many tools to be deployed.

In addition, the structuring of WRIGHT is not uniquely
tied to the CSP mechanisms described in this paper. We
are exploring, in a different case study, ways that we can
use WRIGHT-like descriptions with Z as the semantic base
to provide a data-oriented view of a system’s architecture.

In the broader scheme of things, it will be interesting to
compare our specification with others of the same system.

Through such comparisons we can begin to understand
what are the tradeoffs in expressiveness and reasoning ca-
pability of alternative formal models.

References
[AAG93] G. Abowd, R. Allen, and D. Garlan. Using style to

understand descriptions of software architecture. In
Proc. of SIGSOFT’93: Foundations of Software Eng.,
Software Eng. Notes 18(5). ACM Press, Dec 1993.

[AG92] R. Allen andD. Garlan. A formal approach to software
architectures. In Jan van Leeuwen, editor,Proc. of
IFIP’92. Elsevier Science Publishers B.V., Sept 1992.

[AG94a] R. Allen and D. Garlan. Formal connectors. Technical
Report CMU-CS-94-115, Carnegie Mellon University,
Mar 1994.

[AG94b] R. Allen and D. Garlan. Formalizing architectural
connection. InProc. of the 16th International Conf on
Software Eng., May 1994.

[BB92] G. Berry and G. Boudol. The chemical abstract ma-
chine.Theoretical Computer Science, (96), 1992.

[GN91] D. Garlan and D. Notkin. Formalizing design spaces:
Implicit invocation mechanisms. InVDM’91: For-
mal Software Development Methods. Springer-Verlag,
LNCS 551, Oct 1991.

[GPT95] David Garlan, Frances Newberry Paulisch, and Wal-
ter F. Tichy, editors.Summary of the Dagstuhl Work-
shop on Software Architecture, Feb 1995. Reprinted
in ACM Software Eng. Notes, July 1995.

[Hoa85] C.A.R. Hoare.Communicating Sequential Processes.
Prentice Hall, 1985.

[IW95] P. Inverardi and A. Wolf. Formal specification and
analysis of software architectures using the chemical,
abstract machine model.IEEE Trans. on Software
Eng., 21(4), Apr 1995.

[L+95] D. Luckhamet al. Specificationand analysisof system
architecture using Rapide.IEEE Trans. on Software
Eng., 21(4), Apr 1995.

[MK95] J. Magee and J. Kramer. Modelling distributed soft-
ware architectures. InProc. of the 1st Interna-
tional Workshop on Architectures for Software Sys-
tems. Carnegie Mellon University Technical Report
CMU-CS-95-151, Apr 1995.

[MQR95] M. Moriconi, X. Qian, and R. Riemenschneider. Cor-
rect architecture refinement.IEEE Trans. on Software
Eng., 21(4), Apr 1995.

[S+94] M. Shaw et al. Candidate model problems in software
architecture. Draft Publication, 1994.

[YS94] D. M. Yellin and R. E. Strom. Interfaces,protocols, and
the semi-automatic construction of software adaptors.
Proc. of OOPSLA’94, Oct 1994.

10

