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Abstract

A critical issue for complex component-based systems design is the modeling and analysis of
architecture. One of the complicating factors in developing architectural models is accounting
for systems whose architecture changes dynamically (during run time). This is because dynamic
changes to architectural structure may interact in subtle ways with on-going computations of
the system.

In this paper we argue that it is possible and valuable to provide a modeling approach
that accounts for the interactions between architectural reconfiguration and non-reconfiguration
system functionality, while maintaining a separation of concerns between these two aspects of
a system. The key to the approach 1s to use a uniform notation and semantic base for both
reconfiguration and steady-state behavior, while at the same time providing syntactic separation
between the two. As we will show, this permits us to view the architecture in terms of a set
possible architectural snapshots, each with its own steady-state behavior. Transitions between
these snapshots are accounted for by special reconfiguration-triggering events.
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1 Introduction

Recently, there has been considerable progress on the development of architecture description lan-
guages (ADLs [Med97]) to support software architecture design and analysis. These languages
capture the key design properties of a system by exposing the architectural structure as a compo-
sition of components interacting via connectors. Examples include Wright [All97] [AG97], UniCon
[SDK*95], Rapide [LAKT95], Darwin [MK96] and ACME [GMW].

There are many aspects of a software system that can be addressed in an architectural description,
including functional behavior, allocation of resources, performance, fault-tolerance, flexibility in the
face of altered requirements, and so on. Each ADL tend to focus on one or more of these aspects.

In this position paper we address the problem of capturing dynamic architectures. By “dynamic”
we mean systems for which composition of interacting components changes during the course of a
single computation. We distinguish this aspect of dynamic behavior from the steady-state behavior,
by which we mean the computation performed by a system without reconfiguration.

We argue that it is both possible and valuable to separate the dynamic re-configuration behavior of
an architecture from its non-reconfiguration functionality. While there exist ADLs, such as Darwin,
that capture reconfiguration behavior, and facilities such as object-oriented languages that permit
the combined description of both dynamic aspects and steady-state behavior, we believe that, at the
architectural level, it is important to provide a notation that supports both aspects of design while
maintaining a separation of concerns. In the remainder of this paper we illustrate a new technique
by which these two aspects can be described in a single formalism while keeping them as separate
“views”. This facilitates the understanding of each aspect in isolation while still supporting analysis
of the combined interaction between the two.

By providing a notation that provides a precise interpretation of each of these aspects, we permit
the description to be analyzed for consistency and completeness, as well as for whether the system
has application specific properties desired by the architect. For example, we would like to guaran-
tee that reconfigurations occur only at points in the computation permitted by the participating
components and connectors. Also, whenever a new connection is established, it must be shown
that the participating components exist at the moment of attachment. By considering interactions
between the two forms of description, we can consider whether changing the participants at run
time will result in inconsistencies among participants’ states.

In the remainder of this short paper we will sketch the basic idea using the Wright ADL as our
notational basis. We first illustrate the problem. Then we show how a language originally designed
for steady-state architectures, such as Wright, can be extended to handle dynamic aspects of
architecture modeling and analysis. Next, we illustrate the kinds of analysis that such a formalism
supports. Then we briefly sketch the semantic model on which the approach is based.

2 Motivating Example

Consider the simple client-server system shown in Figure 1. It consists of one client and one server
interacting via a “link” connector. Such a system is easy to describe in a steady-state ADL such as
Wright. A description would capture the structure of the architecture, describing the topology of
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Figure 1: Static Topology: Simple Client-Server

the system and its composition, as well as the behavior of the system as a whole. Each component
description provides a high-level specification of its functionality and interfaces, while the connector
specification indicates how the “link” pattern of interaction combines the behaviors of a client and
a server. In this case, the client makes a request, which is received by the server, and the server
provides a response, which is communicated by the client. This sequence of actions can be repeated
many times.

The Wright specification shown in Figure 2 shows this interaction pattern, and further provides
important details about the rules of the interaction. As detailed elsewhere [All97] [AG97], Wright
uses a variant of CSP [Hoa85] to characterize architectural behavior. The essential idea is to treat
both components and connectors as processes, which synchronize over suitably renamed alphabets.
For example, the use of internal choice (M) in the client specification indicates that it is the client
that decides whether it will make a request. The use of external choice (O) in the server specification
indicates that the server is expected to respond to any number of requests, and may not terminate
prematurely. Successful termination is indicated by §. We have described in [All97] [AG97] how
these formal descriptions can be used to check the consistency and completeness of architectural
descriptions.

Note, however, that the server role will never terminate until the client is ready. But, what of
a more realistic situation, where the server is running on an unreliable processor over a network,
and may crash unexpectedly? In this case, the architect must consider two aspects of a robust
architectural design. First is the simple view of the functionality, in which the client makes a
request of the server, and receives a response. Second is the architect’s solution to the problem
of server crashes (i.e., the way in which a server is restarted or replaced so that there is always a
service available for the client).

3 Simulating Dynamism

Consider one possible solution, in which there are two servers, one a “primary” server, which is
more desirable to use, but which may go down unexpectedly, and a “secondary” server, which, while
reliable, provides a lesser form of the service. One way to use these is to alter the architecture such
that both servers are present, and when the primary server goes down, the client uses the secondary
server until such time as the primary server returns to service. The topology of the system is shown
in Figure 3, while a Wright description of a possible client is shown in Figure 4. In this description
the server communicates with “serverDown” and “serverUp” when it is about to go down or come
up (resp). (In practise, such events might be supplied by a time-out service.)

While this accomplishes what we set out to do, the description of the new architecture has several



Component Client
Port p = request — reply — pm§
Computation = internalCompute — p.request — p.reply — Computation M §

Component Server
Port p = request — reply —» pQd §
Computation = p.request — internalCompute — p.reply — Computation O §

Connector Link
Role ¢ = request — reply — pn§
Role s = request — reply —» pQd §
Glue = c.request — s.request — Glue
4 s.reply — coreply — Glue
SR

Configuration Client-Server
Instances
C : Client ; L : Link ; S : Server
Attachments
CpasL.c;SpaslLs

End Configuration

Figure 2: Static Wright Specification: Simple Client-Server
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Figure 3: Static Topology: Fault Tolerant Client-Server




Component Client
Port Primary = UseConnect 1§
where
UseConnect = request — reply — Primary
O server Down — (serverUp — Primary O §)
Port Secondary = (request — reply — Secondary) O §
Computation = UsePrimary
where
UsePrimary = internalCompute — (TryPrimary O §)
TryPromary = primary.request — primary.reply — UsePrimary
4 primary.server Down — TrySecondary

UseSecondary = internalCompute — (TrySecondary O §)
TrySecondary = secondary.request — secondary.reply — UseSecondary
a premary.serverUp — TryPrimary

Figure 4: Static Wright Specification: Client Component (Fault Tolerant Client-Server)

disadvantages:

1. The simple client-server functional pattern has been lost. In particular, its specification is
now muddied by the need to consider the effects reconfiguration at almost each step.

2. It has been necessary to significantly alter the client in order to accommodate a change that
should occur on the server’s side. Ideally, the client should be able to continue to operate as
before, but have the system handle rerouting of requests to the new server.

3. Changes to this system (e.g., adding a third backup, or permitting only the primary to go
down once before abandoning it) require extensive changes to all parts of the system, thus
reducing the reusability of the constituent elements.

Instead of rigid encoding of the dynamism in the steady state behavior of the components, what
we would like is to provide constructs to describe the dynamics of the system explicitly. In this
case, rather than using a fized topology of two servers and hiding the changes inside the client
components “choice” about which server to use, we could describe the server’s failures as triggers
that change the topology during computation. In effect, instead of the single configuration shown
in Figure 3, we would have two configurations, shown in Figure 5. These configurations, each simple
in itself, alternate as the primary server goes down and comes back up.

In order to achieve this effect, we must introduce notations for characterizing changes in the archi-
tecture during a computation. Such a characterization includes: (a) what events in the computation
trigger a re-configuration, and (b) what re-configuration is triggered by each event.
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Figure 5: Dynamic Topology: Alternating Configurations of a Fault Tolerant Client-Server System
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Figure 6: Dynamic Topology: Alternating Configurations of a Fault Tolerant Client-Server System

4 Our Approach

Our solution consists of introducing special “control” events, into a component’s alphabet, and
permitting them to be used in port descriptions. In this way, the interface of a component is
extended to describe when reconfigurations are permitted in each protocol in which it participates.
These control events are then used in a separate view of the architecture, the configuration program,
which describes how these events trigger reconfigurations.

To illustrate, the configurations pictured in Figure 5 are triggered (as before) by the “serverDown”
and “serverUp” events, now explicitly marked as “control” rather than “communication” events.
The changes to the architectural topology are achieved using sequences of “new”, “del”, “attach”,
and “detach” actions, as defined by the reconfiguration program, “Configuror”, as illustrated in

Figure 6 and Figure 7.

This reconfiguration program is responsible for describing change of the architecture in terms of
the architecture types (e.g., “Client”, “FlakyServer”, “SlowServer”) declared in the usual way. In
this example, the “Client” component type is as in Figure 2. The primary server (a component
of type “FlakyServer”, not shown here) indicates the states in which it may go down, and the
link and secondary server indicate the states in which they can be reconfigured. For example,
Figure 8 shows how a “FaultTolerantLink” might indicate its possible reconfigurations. In this
description, the control event “ChangeOK” indicates the states at which the link is prepared to
accept reconfiguration.



Configuror Simple
new.C' : Client
— new.Primary : FlakyServer
— new.Secondary : SlowServer
— new.L : FaultTolerant Link
— attach.C.p.to.L.c
— attach.Priomary.p.to.L.s = Wait For Down
where
Wait For Down = Primary.control.server Down — detach.Primary.p. from.L.s
— attach.Secondary.p.to.L.s - WaiwtForUp
o8
Wait ForUp = Primary.control.serverUp — detach.Secondary.p. from.L.s

— attach.Priomary.p.to.L.s = Wait For Down
Of

Figure 7: Dynamic Wright Specification: Configuror (Fault Tolerant Client-Server System)

Connector FaultTolerantLink
Role ¢ = request — reply — ¢ 0§
Role s = (request — reply — s O control.ChangeOK — s) O §
Glue = c.request — s.request — Glue
4 s.reply — coreply — Glue
o8
ad control.ChangeOK — Glue

Figure 8: Dynamic Wright Specification: Link Connector




Glue = c.request — (s.request — Glue O control.ChangeOK — GlueRequestToSend)
O s.reply — c.reply — Glue
eF
ad control.ChangeOK — Glue
where
GlueRequestToSend = (s.request — Glue) O control.ChangeOK — GlueRequestToSend

Figure 9: Dynamic Wright Specification: Deadlock Free Link Connector

5 Analysis

Having specified the system, we would now like to analyze it. Although there are many things that
might in principle be checked, one particularly important property is whether the link connector
that we defined above is consistent. By “consistent” we mean whether it describes a protocol that
is deadlock-free in the presence of reconfigurations carried out by the “Configuror”.

We can check this property directly using Wright’s tools for consistency checking. When we do
this we discover that the connector is, in fact, not deadlock-free. Indeed, if a reconfiguration
(“control. ChangeOK”) occurs after the client has sent a request (“c.request”), but before it has
been transmitted to the server (“s.request”), the connector will deadlock. On the other hand, we
do not have to worry about reconfiguration when the Link is transmitting a reply back to the client.
In this case we can postpone its treatment until the end of the transaction.

These results have an intuitive explanation. In a concrete implementation, if the active server goes
down in the middle of a request transmission (between “c.request” and “s.request”), the reconfig-
uration must be taken into account or the connector will try to send the request to the wrong
server. But, if the active server goes down in the middle of a reply transmission (between “s.reply”
and “c.reply”), the Link connector can still send the reply to the client, before reconfiguring its
attachments with the servers.

This specification and its analysis can help the programmer modify the original Link definition
to achieve a fault tolerant one. In practice, the code dealing with reconfiguration (e.g., switching
the communication channel) should not be simply inserted in the original Link definition as a new
fourth case, but it must also be interleaved with the transmission of a request. A correct version
of Link’s Glue is detailed in Figure 9.

Finally, this example reveals a point about fault-tolerance: this kind of system requires a buffer to
handle transient states. In our case, the request is stored in the connector until a stable configuration
with a working server is reached.

6 Semantics

Thus far we have relied on the reader’s good faith that the notation outlined above actually makes
sense, and that the analytic techniques are sound. In this section we sketch the formal basis for



this.

The basic idea is to translate the notation into pure CSP [Hoa85]. In attempting to provide such a
semantics, the key difficulties are to account for the dynamic creation and deletion of processes, and
to arrange things so that the alphabets of the evolving topology leads to the intended interactions.
The problem, of course, is that CSP can only describe a static configuration of processes. (That is,
one can’t create new processes and communication channels “on the fly”). How then can one give
meaning to such actions as “new”, “delete”, etc.?

Our approach is based on two key ideas. First we restrict systems to those for which there are a
finite (albeit potentially large) set of possible configurations. Second in the translation we “tag”
events with the configuration in which that event occurs. The effect of a reconfiguration action, is
to cause the tags to change so that the interactions occur as defined by the new configuration. Thus
an event, e, in one configuration might end up synchronizing with one process in one configuration,
but with another in a different configuration.

More formally, each event p.e of the component Cp is relabelled as Cp.p.e.Cn.r when the port p of
Cp is attached to the role r of the connector Cn. For example, when the Link connector interacts
with the Primary server, the reply case of L is defined as:

L.s.reply. Primary.p — L.c.oreply.C.p — Glue

Our transformation also introduces the “plumbing” that allows selection of the proper version: each
version of a transformed component begins with a C'p.go.p1.Cny.ry .. .r,.Cn,.ry, event selecting the
version of C'p, where its port p; is attached to the role r; of C'ny,...and its port p,, attached to the
role r, of C'n,. For example, the connector L is compiled to:

L = (L.go.c.C.p.s.Primary.p — Gluey) O (L.go.c.C.p.s.Secondary.p — Gluez)
Glue; = L.crequest.C.p — (L.s.request. Primary.p —Glue; O . ..
Gluey = L.crequest.C.p — (L.s.request.Secondary.p — Glue; O . ..

Finally, the configuror definition is transformed into a CSP process too, where the “new”, “del’,
“attach” and “detach” actions are compiled into the previous Cp.go. .. events that select the proper
configuration of the components at each reconfiguration step. For example, the following config-
uror portion: new.L — Attach.C.p.to.L.c — Attach.Primary.p.to.L.s — ... is transformed to
L.go.c.C.p.s.Primary.p— ...

The formal semantics based on CSP allows us to adapt or extend the consistency and completeness
analysis provided by Wright.

Most of the Wright checks can be directly adapted to the dynamic context. For example, the
deadlock checks for connectors remain the same, but the terminating success events \/ must be
replaced by a control event triggering a connector deletion.

The port-role consistency test of Wright must be redefined in our dynamic context. Indeed, because
of reconfiguration, it isn’t a port which is attached to a role in a dynamic system, but a sequence
of ports. For example, our previous FaultTolerantLink connector is alternatively attached to a
FlakyServer and a SlowServer. A “virtual” port defined by the sequence of ports attached to a
connector role can easily be constructed with the help of the configuror.



Dynamic systems provide new opportunities for checking. For example, consistent configurors
should guarantee that when the event new.( occurs, €' must not already belong to the current
configuration. As the configuror is defined in CSP, the test of this property can be formally
expressed as CSP refinement checks:

(prop = new.C' — (del.C'— prop O §)) C con figuror
Similar properties dealing with attachments can be expressed and checked in the same way.

The previous analysis ensures that the complete system is consistent. Another application of our
semantics is to prove that a dynamic system (or sub-system) is equivalent to a steady-state one.
For example, we could show that the two alternating servers can be merged in a bigger component
with only one port, or that an extra port could be added to the client component to make the
attachments static as in section 3.

Finally, we can examine the code reusability. For example, our definitions of the client component
are the same in the first Client-Server steady-state system (Section 2.) and in the FaultTolerant
Client-Server dynamic system (Section 4.). We did not have to introduce control events in the client
definition. So, in a real implementation the same client code could be used in both steady-state
and dynamic systems.

7 Summary and Discussion

We have described an approach to architectural specification that permits the representation and
analysis of dynamic architectures. The approach is based on four ideas:

1. Localization of reconfiguration behavior, so that it is possible to understand and analyze
statically what kinds of dynamic (topological) architectural changes can occur in a running
system.

2. Uniform representation of reconfiguration behavior and steady state behavior, so that interac-
tions between the two can be analyzed.

3. Clearly delimited interactions between the two kinds of behavior through the use of control
events, so that one can explicitly identify the points in the steady state behavior at which
reconfigurations are permitted.

4. Semantic foundations based on CSP, so that we can exploit traditional tools and analytic
techniques based on process algebras.

We illustrated the approach with a simple example, to show how specification and analysis could
help us detect and then fix a bug in the description. We argued briefly that such a bug is one that
might well occur in a naive implementation of such a system.

The approach we have taken differs in several fundamental ways from those taken by other re-
searchers. The most obvious, and perhaps most contentious, is the use of CSP as the underlying
semantic model. In choosing CSP we have made an important trade-off: we are willing to reduce
the class of dynamic systems that we can describe, in exchange for a formalism that is amenable to
deep static analysis. In particular, the class of system excludes systems that inherently create an
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infinite number of configurations during run time. (This rules out, for example, algorithms such as
the Prime Sieve in which a new filtering process is created for each prime number).

On the other hand, we are able to account for the large (and we would argue, central) class of system
where the collection of possible topologies is effectively bounded and known at system definition.
This includes a broad class of client-server systems and many fault tolerant architectures (such as

Simplex [RD95]).

We believe that this trade-off is worth making, and that we have identified an important place in
the design space of architectural formalization. However, at present this is largely a conjecture.
On-going research will hopefully shed further light on the strengths and weakness of the approach
that we are advocating.

In addition to gaining further experience with the approach, there are a number of technical ex-
tensions that are worth exploring. First, we think the relationship between Wright specifications
and the concrete implementations should be studied (e.g. automatic code skeleton generation, or
conversely reverse ingineering extracting a Wright specification). Second, fault tolerance introduces
notions (e.g. timeout, preemption) along with idiomatic encoding (replace the absence of event by
a timeout event, set an interruptible interpretative cycle). Wright could be specialized, so that
libraries of style with specialized transformations and analysis provide these idioms. Finally, all
interesting properties can’t be expressed in CSP. Our framework could be reused by replacing CSP
by another formalism (e.g. temporal logic).
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