
Using Model Data
ow Graphs to Reduce the Storage

Requirements of Constraints

BRADLEY T. VANDER ZANDEN and RICHARD HALTERMAN

University of Tennessee

Data
ow constraints allow programmers to easily specify relationships among application objects

in a natural, declarative manner. Most constraint solvers represent these data
ow relationships

as directed edges in a data
ow graph. Unfortunately, data
ow graphs require a great deal of

storage. Consequently, an application with a large number of constraints can get pushed into

virtual memory, and performance degrades in interactive applications. Our solution is based on

the observation that objects derived from the same class use the same constraints and thus have

the same data
ow graphs. We represent the common data
ow patterns in a model data
ow graph

that is stored with the class. Instance objects may derive explicit dependencies from this graph

when the dependencies are needed. Model dependencies provide a useful new mechanism for

improving the storage eÆciency of data
ow constraint systems, especially when a large number

of constrained objects must be managed.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Tech-

niques|User interfaces; D.2.6 [Software Engineering]: Programming Environments|Graphi-

cal environments, Interactive environments; D.3.2 [Programming Languages]: Language Clas-

si�cations|Data-
ow languages; D.3.3 [Programming Languages]: Language Constructs and

Features|Constraints; I.1.2 [Computing Methodologies]: Algorithms|Nonalgebraic algo-

rithms; I.1.2 [Computing Methodologies]: Languages and Systems|Evaluation strategies

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Language design and implementation, Programming envi-

ronments, Data
ow constraints, Prototype-instance model, Class-instance model, Storage opti-

mization, Graphical interfaces

This research was supported in part by the National Science Foundation under grants CCR-

9633624 and CCR-9970958.

Name: Brad Vander Zanden

AÆliation: Computer Science Department, University of Tennessee

Address: Knoxville, TN 37996-3450; email: bvz@cs.utk.edu

Name: Richard Halterman

AÆliation: School of Computing, Southern Adventist University

Address: P.O. Box 370, Collegedale, TN 37315; email: haltermn@cs.southern.edu

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for pro�t or direct commercial

advantage and that copies show this notice on the �rst page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must

be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, to redistribute to lists, or to use any component of this work in other works, requires prior

speci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACM

Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � B. Vander Zanden and R. Halterman

1. INTRODUCTION

Constraints can reduce the complexity of developing highly interactive, graphi-

cal applications by allowing a programmer to declaratively express a relationship

among objects and then having a constraint solver automatically maintain the re-

lationship. For example, a programmer might center a label within a textbox using

the constraint:

label:left = textbox:left+ textbox:width=2� label:width=2

Whenever any of the variables textbox.left, textbox.width, or label.width

change, the constraint will be automatically re-evaluated and the new result as-

signed to label.left. Hence if the textbox is moved or resized, or the label is

edited, the label will remain centered within the textbox.

The most commonly used constraints in user interface toolkits are one-way,

data
ow constraints, of the type shown above. A data
ow constraint (also called a

one-way or a spreadsheet-style constraint) is an equation of the form v = f(p1; : : : ; pn),
where f is an arbitrary function, p1 through pn are the parameters to this function,

and v is the variable to which the function's result is assigned. The function is

re-evaluated each time one of its arguments changes, and the result is assigned to

v.
Such constraints are called data
ow constraints because data
ows from the

variables on the right side of the equation to the variable on the left side of the

equation. The constraints are called one-way because it is not permissable to invert

the equation and solve for one of the right side variables. If v is changed by the

user or by the application, the constraint is left temporarily unsatis�ed until one

of the pi's is changed.
The reason for the popularity of one-way, data
ow constraints is severalfold:

(1) They are simple for programmers to learn and use.

(2) Their results are predictable (more complicated constraint systems may have

multiple admissable solutions and if the constraint solver chooses one that the

user is not expecting, then the user may be confused), and

(3) They support both numeric and non-numeric constraints. One study showed

that 36% of the constraints de�ned in a set of graphical applications were non-

numeric, indicating that non-numeric relationships are an integral part of many

such applications [Vander Zanden et al.].

Because of their appeal, one-way constraints have been integrated into a variety

of drawing packages and interface development toolkits [Myers et al. 1990; Myers

et al. 1997; Hudson ; Hill 1993; Hudson and Smith 1996; Barth 1986; Alpert

1993; Hudson 1994; Hudson and Mohamed 1990]. Unfortunately, studies of at least

two of these toolkits, Garnet and Amulet, have shown that constraints can exact a

signi�cant storage toll on programs [Vander Zanden and Venckus 1996]. Ultimately

the execution times of programs managing a large number of constrained objects

may su�er since virtual memory must be accessed to meet their storage demands.

One reason data
ow constraints require so much storage is that constraint solvers

explicitly represent the relationships among variables and constraints by maintain-

ing a data
ow graph (see Section 2). As shown by Table 1, the edges in these graphs

Reducing Storage With Model Data
ow Graphs � 3

Table 1. Number of bytes required by a dependency in a variety of constraint systems.

System Bytes Per Dependency

Garnet [Myers et al. 1990] 16

Amulet [Myers et al. 1997] 24

Eval/vite [Hudson] 24

Rendezvous [Hill 1993] 16

Fig. 1. An application that uses many labeled boxes.

can consume a considerable amount of storage. One study has shown that data
ow

graphs account for up to 50% of the storage required by constraint systems [Vander

Zanden and Venckus 1996]. Reducing the storage cost of these data
ow graphs is

therefore an important goal for constraint researchers.

In this paper we present a solution to the data
ow graph problem that is based on

the observation that objects that use the same constraints have the same data
ow

graph. Consequently, one can store a pattern of a data
ow graph, a model data
ow

graph, in a common place and then use the pattern to derive explicit dependencies

on demand. Since thousands of objects may be created from the same prototypical

object, the storage savings can be considerable. For example, Figure 1 shows a

visual arithmetic editor that uses labeled box objects for operands and labeled circle

objects for operators. All the operand objects can share the same model data
ow

graph. Similarly the operator objects can all share the same model data
ow graph.

Thus a considerable storage savings can be realized in a large application that

manipulates thousands of these objects.

Our solution is inspired by the Reps et. al. idea of using supertree-subtree graphs

to implicitly represent a data
ow graph [Reps et al. 1983]. However, Reps dealt

with attribute grammars which give rise to restricted types of data
ow graphs and

4 � B. Vander Zanden and R. Halterman

restricted types of edits to these data
ow graphs. In contrast, our problem deals

with graphical interfaces which give rise to arbitrary data
ow graphs and arbitrary

edits. One of the important �ndings of this paper is that a simple model dependency

scheme of the type presented by Reps does not work well with arbitrary data
ow

graphs. Our initial implementation was only able to model 20% of the explicit

dependencies using a scheme based on his ideas. When we performed an in-depth

analysis of constraints in actual graphical applications, we were able to identify a

number of common situations that, when integrated into the model dependency

scheme, greatly increased the number of explicit dependencies that could be elim-

inated. Our experiments show that over 75% of the explicit dependencies in most

applications can be eliminated with this more sophisticated scheme. Consequently,

while our solution incorporates the Reps, et. al. idea of supertree-subtree graphs

to reduce the number of explicit dependencies, we have signi�cantly extended it to

work in the environment of graphical interfaces.

2. BACKGROUND

This section describes the key components used in this paper, including the object

model, composite objects, and data
ow graphs. These three components are all

typically present in a toolkit that provides one-way constraints.

2.1 Object Model

The approach described in this paper can be used with either the class-instance or

prototype-instance object models. Consequently, we will present a generic object

model.

Our object model assumes that there is a template object (a class in the class-

instance model and a prototype in the prototype-instance model) from which in-

stance objects can be created. An object's properties, such as its position, size, and

color, are speci�ed by slot/value pairs (a slot would be called an instance variable in

a class-instance model). All slots associated with the template object are inherited

by the new instance unless the slot's value is overridden in the instance.

Constraints are inherited just like slots. For example, if the template's color

slot is computed by a constraint, then the color slot of an instance will also be

computed by a constraint, unless the programmer provides an alternative value.

2.2 Composite Objects

A composite object is an object made up of parts consisting of other objects [Gamma

et al. 1995]. For example, Figure 2 illustrates a simple composite object, a labeled

box consisting of a text string enclosed within a rectangle.

The labeled box has named pointers to its children (frame and label) and the

children have named pointers to their parent (parent). (See Figure 2b.) These

pointers allow the labeled box to access slots in its parts and the parts to access

slots in their parent and in their siblings. The notion of inheritance can be extended

to composite objects in the sense that when an instance of a composite object is

created, instances of all its parts are created as well. This type of inheritance is

called structural inheritance [Myers et al. 1990].

Reducing Storage With Model Data
ow Graphs � 5

Knoxville

(a) A labeled box (b) The labeled box composition diagram

Labeled_Box

frame label

TextRectangle

parent parent

Fig. 2. A labeled box object (a) and its structural components (b)

C1

C2

C3

width

font

C2

C1

C3

label:

--Width depends on the label’s text string and the display font

--Label is centered horizontally within its owner

frame:

--Frame is slightly wider than the label it encloses

self.width = self.compute_width(self.text,
 self.font)

 + self.parent.width/2
 - self.width/2

self.left = self.parent.left

self.width = self.parent.label.width + 10

frame

label

left
parent

text

width

parent

(b) Constraint graph(a) Constraint equations

Labeled_Box

width

left

label

Fig. 3. Constraints that lay out the elements of the labeled box in Figure 2 (a) and the data
ow

graph that they generate (b). The constraints make the frame slightly larger than the text label,

and center the label within the frame.

6 � B. Vander Zanden and R. Halterman

2.3 Data
ow Graphs

A one-way constraint solver typically uses a bipartite, data
ow graph to keep track

of dependencies among variables and constraints (Figure 3). Variables and con-

straints comprise the two sets of vertices for the graph. There is a directed edge

from a variable to a constraint if the constraint uses that variable as a parameter.

There is a directed edge from a constraint to a variable if the constraint assigns a

value to that variable. Formally, the data
ow graph can be represented as G = fV,
C, Eg, where V represents the set of variables, C represents the set of constraints,

and E represents the set of edges. The edges are often called dependency edges

because they show how variables and constraints depend on one another. For each

edge from an input variable to a constraint many systems also maintain a backward

edge that points from the constraint to the variable. These backward edges allow

the dependency edges to be removed if a constraint is deleted or allow the data
ow

graph to be traversed in the reverse direction.

A constraint solver uses the data
ow graph to locate the constraints that must

be resatis�ed when a variable is changed by either the user or the application. The

algorithms the constraint solver uses for resatisfying constraints are described in

Section 2.5.

The data
ow graph can be automatically generated as constraints are being

evaluated using the following technique. Before a constraint is evaluated it pushes

itself onto a global constraint stack and after it is evaluated it pops itself o� the

stack. Pushing and popping the constraint in this manner ensures that if the

constraint requests any slots, then the constraint will be the top constraint on

the stack [Vander Zanden et al. 1991; Hoover 1992; Vander Zanden et al. 1994].

Whenever a slot's value is requested, the stack is checked to see if it is non-empty.

If the stack is non-empty, then an explicit dependency from the slot to the stack's

topmost constraint is generated by adding the constraint to the slot's dependencies

list.

2.4 Basic Data Types

The previous three sections have described the features of a typical constraint sys-

tem. This section describes the object and constraint data structures that can be

used to implement such a constraint system. These data structures provide the

basis for the implementation of the model dependency scheme described in this

paper. The data structures are presented as a set of classes and the algorithms

are presented as a set of methods, although Algol-like pseudocode, rather than a

conventional language like C++, is used to enhance readability.

Four primary classes are used to implement the object and constraint model:

(1) Object. This class implements the objects used by application program-

mers. Table 2 describes the Object �elds and methods.

(2) Slot. This class implements the slots used by objects. It contains a value

�eld and �elds that support constraint satisfaction. A Slot's �elds and meth-

ods are described in Table 3.

(3) Formula. This class stores a formula de�ned by the application program-

mer. It includes a pointer to a function that computes the formula's value,

and, if the formula creates model dependencies, a pointer to a parameter list.

Reducing Storage With Model Data
ow Graphs � 7

Table 2. De�nition of Object �elds and methods used by the algorithms in Section 4. The bold-

face items provide support for model dependencies. Part names and slot names are implemented

as named integer constants.

Object Fields and Methods

Field Meaning

parts The set of objects that are children of this composite object; a

part named p can be accessed via the notation parts[p].

slots The set of slots for this object; a slot named s can be accessed

via the notation slots[s].

parent A pointer to the object's parent.

part name The name of this object, if it is a part. For example, the

part name for the rectangle in Figure 2.b would be frame.

model subtree A pointer to the model data
ow graph storing this object's SELF

and CHILD model dependency edges.

model supertree A pointer to the set of model supertree graphs for each of the

object's parts. A part's model supertree can be accessed via the

notation model supertree[part name].

common model supertree A pointer to a set of model dependency edges shared by all

children (see Section 5.2).

Method Meaning

create model data
ow -

graph()

Creates a model data
ow graph for the object (see Figure 12).

inherit constraints() Inherits constraints from the object's template (see Figure 14).

Table 3. De�nition of Slot �elds and methods used by the algorithms in Section 4. The boldface

items provide support for model dependencies.

Slot Fields and Methods

Field Meaning

value The value of the slot.

object The object to which this slot belongs.

name The slot's name.

valid True, if the slot's value is up to date; otherwise, false.

explicit dependencies A set of pointers to constraints that depend on this slot; these

pointers constitute the slot's explicit dependencies.

constraints The set of constraints that can be used to compute the value of

this slot.

Method Meaning

get() Returns the slot's value; if necessary, get will �rst bring the slot's

value up-to-date by evaluating any out-of-date constraints.

set() Sets the slot's value and invalidates all constraints and slots that

depend either directly or indirectly on the slot.

invalidate() Marks the slot invalid and each dependent constraint invalid

(see Figure 15).

get model dependencies() Returns the slot's model dependencies (used by the algorithm

in Figure 15).

8 � B. Vander Zanden and R. Halterman

Table 4. De�nition of Formula �elds used by the algorithms in Section 4. The model parameters

list provides support for model dependencies.

Formula Fields and Methods

Field Meaning

function A pointer to the function that computes this formula's value.

model parameters The formula's set of model parameters.

Table 5. De�nition of Constraint �elds and methods used by the algorithms in Section 4. The

boldface items provide support for model dependencies.

Constraint Fields and Methods

Field Meaning

valid True, if the constraint is up to date; otherwise, false. A slot may

have multiple constraints so even if a slot is marked invalid, it

is still necessary for each constraint to have a valid �eld so the

appropriate invalid constraint can be found and re-evaluated.

slot A pointer to the slot computed by this constraint.

modeled True, if the constraint was created from a formula with a non-

empty set of model parameters; otherwise, false.

generate dependencies True, if the constraint should create explicit dependencies, even

if it is modeled; otherwise, false (the initial, default value is

true).

needs parent True, if one or more of the constraint's model parameters de�nes

a path through the parent; otherwise, false.

formula A pointer to the formula object that computes this constraints's

value.

Method Meaning

invalidate() Marks the constraint invalid and the slot that the constraint

computes invalid (see Figure 15).

create copy() Makes a copy of the constraint.

evaluate() Calls the constraint's formula function.

A Formula's �elds and methods are described in Table 4.

(4) Constraint. This class stores the constraint that gets created when a for-

mula is assigned to a slot. A constraint object records whether the constraint's

value is up-to-date and to which slot the constraint is attached. Constraint ob-

jects share formula information by pointing to the same formula object. Table 5

describes the relevant �elds and methods associated with Constraint objects.

Figure 4 provides a concrete example illustrating the relationships among Objects,

Slots, Formulas, and Constraints. This �gure shows an abbreviated picture of

the implementation of the labeled box from Figure 2.

2.5 A Constraint Satisfaction Algorithm

The model dependency scheme described in this paper works with the two most

commonly used constraint satisfaction schemes|mark-sweep and topological order-

ing. It would be confusing however to try to present the model dependency scheme

Reducing Storage With Model Data
ow Graphs � 9

parts

slots

parts

slots

parts

slots ...

...

...

valid
slot
formula

. . .
. . .

Other constraints
using this formula

left (slot object)

width (slot object)

C 2

valid
slot
formula

null

C 3 . . .

null

null

label frame

width

Labeled Box
(application object)

null

(application object) (application object)

left
(slot object)

(slot object)

null

Constraint object

. . .

Formula object

model parameters
formula function

{(SELF, text), (SELF, font)}

Constraint object

value
object

constraints
valid

value
object

constraints
valid

. . .explicit_dependencies

explicit_dependencies

Fig. 4. The runtime data structures implementing a portion of the labeled box object. The

composite object for the labeled box is drawn at the upper left corner of the diagram. It has two

children in its parts list, a label and a frame. Neither the label nor the frame have any children of

their own. The label's width slot shows that its value is determined by exactly one constraint, C2,

and that its value is used by constraint C3 (one of the constraints in its explicit dependencies

list).

and simultaneously show how it works with both types of algorithms. We have

therefore chosen to illustrate how it works with a mark-sweep algorithm. We have

chosen a mark-sweep algorithm over a topological ordering algorithm because 1)

it is the most widely used algorithm in user interface toolkits [Hill 1993; Myers

et al. 1990; Myers et al. 1997; Hudson ; Hudson and Smith 1996; Hudson and King

1988], 2) it is the easier algorithm to implement, and 3) it is the most eÆcient,

at least within the context of graphical interfaces [Hudson 1991; Vander Zanden

et al.]. Although it will not be shown, the depth-�rst search that is presented in

this paper's mark algorithms can be easily adapted to handle the depth-�rst search

that a topological-ordering scheme uses to assign order numbers to constraints (an

order number represents a constraint's position in topological order).

A mark-sweep algorithm has two phases:

(1) mark phase: This phase uses a depth-�rst traversal of the data
ow graph to

�nd all the constraints that are reachable from a changed slot and marks them

invalid. Figure 5 formalizes the mark procedure.

(2) sweep phase: This phase brings invalid constraints up-to-date by evaluating

their formulas [Demers et al. 1981; Reps et al. 1983; Hudson 1991; Vander

Zanden et al. 1994]. The sweep phase can use either eager evaluation or lazy

10 � B. Vander Zanden and R. Halterman

Method Slot.set(Value new value)

1 self.value new value

2 self.invalidate()

|self.invalidate sets the valid �eld to false so set it back to true

3 self.valid true

Method Constraint.invalidate()

1 if self.valid = true :

2 self.valid false

3 self.slot.invalidate()

Method Slot.invalidate()

1 if self.valid = true :

2 self.valid false

3 for each constraint cn 2 self.explicit dependencies :

4 cn.invalidate()

Fig. 5. Methods used to implement the mark portion of the mark-sweep algorithm. The keyword

self is a pointer to the object on which the method is invoked.

Method Slot.get(Boolean create dependency) returns Value

|If a dependency should be established or the top constraint on the constraint

|stack is
agged to generate a dependency, then establish a dependency

|to the top formula since it has requested this slot's value

1 if not constraint stack.empty() :

2 top cn = constraint stack.top()

3 if create dependency = true or top cn.generate dependencies = true :

4 self.explicit dependencies self.explicit dependencies [top cn

|update the slot's value if any of its constraints are out-of-date. In this

|algorithm the last invalid constraint on the constraint list determines

|the slot's value. Other rules can be used just as easily.

5 if self.valid = false :

6 self.valid true

7 for each constraint cn 2 self.constraints :

8 if cn.valid = false :

9 cn.valid = true

10 self.value cn.evaluate(self.object)

11 return self.value

Method Constraint.evaluate(Object obj) returns Value

|Push this constraint on to the constraint stack so that a slot accessed by this

|constraint's formula function will know that this constraint requested its value

1 constraint stack.push(self)

|obj is the object which owns the slot to which the constraint is attached.

2 result self.formula.function(obj)

|Remove this constraint from the stack

3 constraint stack.pop()

4 return result

Fig. 6. Methods used to implement the sweep portion of the mark-sweep algorithm.

Reducing Storage With Model Data
ow Graphs � 11

evaluation. The eager strategy re-evaluates constraints as soon as the mark

phase is completed. The lazy strategy defers a constraint's re-evaluation until

its value is requested. Figure 6 shows a lazy version of the sweep algorithm.

The algorithm has two items of interest:

(a) The algorithm allows multiple constraints to be attached to a slot. Some

systems, such as Rendezvous [Hill 1993] and Amulet [Myers et al. 1997],

support this feature.

(b) The algorithm gracefully handles cycles in the data
ow graph. In partic-

ular, the algorithm uses a technique called once-around evaluation. Once-

around evaluation means that a constraint in a cycle is evaluated at most

once. If the constraint is asked to evaluate itself a second time it simply

returns its original value.

To illustrate the lazy version of the mark-sweep algorithm, consider the constraint

formulas and graph of Figure 3. Suppose the user edits a label in one of the boxes.

This edit changes label.text and initiates the mark phase. The mark phase

performs a depth-�rst traversal that invalidates 1) constraint C1 and label.width

(the label's width will be changed), 2) constraint C3 and frame.width (the frame's

width will be changed) and 3) constraint C2 and label.left (the label will be

re-centered).

Now assume the value of frame.width is requested. This request initiates the

sweep phase. frame.width is invalid so C3's formula is called. C3's formula requests

the value of label.width, which is out of date. Hence, label.width's formula, C1's

is called, bringing label.width up to date. label.width returns its value to C3

which �nishes executing. Its updated value is assigned to frame.width, which

returns this new value to the application. Note that label.left remains out of

date because its value was not requested.

3. THE MODEL DEPENDENCY PARADIGM

This section provides an overview of the basic model dependency scheme. It begins

by describing the types of dependencies supported by the basic scheme and how

an algorithm can use these model dependencies to perform a depth-�rst search. It

then describes how a formula generates model dependencies and how the scheme

handles slots with multiple constraints. Finally it concludes with a discussion of

how explicit and model dependencies can co-exist.

3.1 Types of Model Dependencies

The basic scheme allows four relationships to be expressed with model dependen-

cies: SELF, CHILD, PARENT, and SIBLING. These four relationships were chosen

after a survey of applications written in the Amulet user interface development

toolkit [Myers et al. 1997] showed that over 50% of all constraint formulas use

these four relationships exclusively. Figure 7 shows how these relationships are

de�ned.

A model dependency consists of either a two-tuple or a three-tuple that represents

a path in the composition hierarchy from a given slot to its dependent slot. Given

a slot, an object, and a model dependency edge, a dependent slot can be located as

shown in Figure 7. For example, if the model dependency (SIBLING, C, y) is stored

12 � B. Vander Zanden and R. Halterman

C

A

CHILD

SIBLING

PARENT

SELF

B x

v

y

w

Composite object A has variables v and w and parts B and C.
Object B has variable x, and object C has variable y.

(PARENT, w)

(SELF, w)

(CHILD, C, y)

(SIBLING, C, y)

An edge to a slot named w
in the same object

An edge to a slot named w
in the parent

An edge to a slot named y
in a part named C

in a sibling part named C
An edge to a slot named y

Fig. 7. Model edge relationships

box

frame label

parentparent

leftwidth width
(1)

(2)
(3)

Fig. 8. Illustration of how the mark phase can use model dependencies to perform a depth �rst

search. Suppose that the label.width slot is changed in a labeled box. label.width has the

model dependency edges f(SELF, left), (SIBLING, frame, width)g, which are derived from the

formulas de�ned for constraints C2 and C3. The (SELF, left) edge tells the mark algorithm to

look in the same object for the left slot (1). The (SIBLING, frame, width) edge tells the mark

algorithm to locate the width slot by following the parent pointer (2) to the parent, and then the

frame pointer to the sibling (3). The mark algorithm invalidates the constraints that are found

at the label's left slot and the sibling's width slot, which are C2 and C3 respectively.

with the slot B.x, then the dependency de�nes an edge from B.x to C.y. Figure 8

illustrates how a depth-�rst search would use model dependencies to locate and

invalidate constraints.

3.2 Model Parameters

In order for the model dependency scheme to work, it needs to know how to gener-

ate model dependencies for each modeled formula. The programmer provides this

information by providing a list of model parameters for each formula. Each pa-

rameter speci�es a path to one of the slots accessed by the formula. Like a model

dependency, a parameter path consists of either a two-tuple or three-tuple and can

specify a SELF, PARENT, CHILD, or SIBLING slot. For example, the list of parame-

ters for constraint C2's formula in Figure 3 is f(PARENT, left), (PARENT, width),

(SELF, width)g.
A parameter edge can be automatically inverted to create a model dependency

edge. For example, a (SELF, width) parameter can be inverted to create a (SELF,

Reducing Storage With Model Data
ow Graphs � 13

Table 6. Model dependency edge installation for the four fundamental edges. Formula slot is the

slot to which the formula is attached. Parameters are the parameter variables accessed by the

parameter edge. Dependency edges (the dashed lines) are the model dependency edges generated

from the parameter edge. Each dependency edge is associated with the parameter variable on

the same line. For example, the dependency edge (SELF, v) would be attached to the parameter

variable A.w.

Formula

slot

Parameter edge Parameters Dependency edges

A.v (SELF, w) A.w (SELF, v) A v w

B.v (PARENT, w) A.w

B.parent

(CHILD, B, v)

(SELF, v)

B

A

v

w

parent

A.v (CHILD, B, w) B.w

A.B

(PARENT, v)

(SELF, v)

B

A v B

w
C.v (SIBLING, B, w) B.w

C.parent

A.B

(SIBLING, C, v)

(SELF, v)

(CHILD, C, v)

A

CB w v parent

B

left) model dependency edge. Similarly, the (PARENT, left) parameter for con-

straint C2 would be inverted to create a (CHILD, label, left)model dependency

edge and a (SELF, parent) model dependency edge. Both dependencies are nec-

essary because the label's left slot must be noti�ed if 1) the left slot in its parent

changes, or 2) if the parent is replaced (that is, the label is removed and placed

in another composite object). In the latter case, the change of parents may mean

that the new parent's slot has a di�erent value and so C2 must be re-evaluated.

Table 6 formalizes how each parameter is inverted to create one or more model

dependency edges.

3.3 Formula Signature

The traversal process for model dependencies described in Section 3.1 assumes there

is only one constraint per slot. If a slot can have multiple constraints, then a model

edge must store a pointer to a formula so that the proper constraint can be located.

This pointer is called a formula signature. The mark phase compares the edge's

formula pointer with the formula pointer in each of the slot's constraints. The

constraint with the matching formula pointer is invalidated.

14 � B. Vander Zanden and R. Halterman

3.4 Mixed Dependencies

The model dependencies described thus far cannot model every relationship that

might be desired by a programmer. For example, suppose a programmer used the

following constraint to center the x-coordinate of an arrow's tail within another

object:

arrow:tail x = self:from node:left+ (self:from node:width)=2

In this example, each arrow contains a from node slot that points to the object

from which its tail originates (it also has a corresponding to node that guides

its tip). The from node slot references an object that is not part of an arrow's

composition hierarchy. Consequently, model dependencies cannot be used to model

this relationship and an explicit dependency must be used.

Our scheme accommodates the need for explicit dependencies by requiring each

slot reference within a formula to indicate if the constraint system should establish

an explicit dependency. In our implementation, the programmer passes a
ag to a

slot's get method that indicates whether or not an explicit dependency should be

generated. The implementation makes use of C++'s default parameter mechanism,

and by default an explicit dependency is generated. Hence the programmer only

passes a
ag if a model dependency should be generated. As discussed in Section 8.1,

we eventually hope to be able to infer model dependencies, in which case the use

of this
ag could be eliminated.

4. IMPLEMENTATION

This section describes the implementation of the basic model dependency scheme,

and the next section describes some extensions that were made to the basic scheme.

It begins by describing the model edge data structure. It then discusses the creation

of model data
ow graphs and describes algorithms for traversing model data
ow

graphs. Finally it ends by discussing how model data
ow graphs can accommodate

edits to an object after the object has been created.

4.1 The Model Edge Type

Model dependency edges and model parameters were informally described in Sec-

tions 3.1-3.3. The two types are similar enough that they can both be implemented

using a Model Edge class. The class hierarchy for model edges is shown in Figure 9.

Model Edge is an abstract superclass that de�nes the interface to which all model

edges must conform. Any Model Edge object must be able to:

|take a slot, invert itself to generate an appropriate set of model dependency

edges to that slot, and add the edges to the appropriate model data
ow graph

(install(){Section 4.2.2),

|take a slot, follow a path through a composition hierarchy and produce the con-

straint that depends on that slot (traverse(){Section 4.4), and

|take a path and create a new Model Edge (create()).

The subclasses Self Model Edge, Child Model Edge, Parent Model Edge, and

Sibling Model Edge, are used to specify model parameters.

The subclass Model Dependency Edge speci�es a model dependency edge. A

model dependency edge is like a model parameter edge in that it speci�es a path

Reducing Storage With Model Data
ow Graphs � 15

Model_Edge

install()

resolve()

create()

slot_name

Self_Model_Edge

slot_name

Parent_Model_Edge

child_name

Child_Model_Edge

slot_name

sibling_name

Sibling_Model_Edge

slot_name

slot_name

To_All_Children_Model_Edge From_All_Children_Model_Edge

slot_name

edge

Model_Dependency_Edge

formula_signature

object

Global_Model_Edge

slot_name

Fig. 9. The class hierarchy for model edges. Model Edge is an abstract base class that de�nes the

Model Edge method interface. The slot name �eld indicates the parameter slot for a parameter

edge or dependent slot for a dependency edge. The child name and sibling name provide the

required additional path information for CHILD and SIBLING edges. The object �eld for a GLOBAL

edge provides the required pointer to an object.

to a slot. However, since a model dependency edge also requires a formula signa-

ture, it is necessary to de�ne an additional subclass for model dependency edges.

The Model Dependency Edge class has two �elds, an edge �eld that points to the

appropriate model edge, and a formula signature �eld that points to the for-

mula signature. The traverse() message is delegated to the model edge. The

install()message is de�ned to do nothing because the install()method is only

meant to be used with model parameter edges.

4.2 Creation of Model Data
ow Graphs

A model data
ow graph for a template object is created by examining each of its

constraints, and, if the constraint has a list of model parameters, inverting each of

the parameters to create a set of model dependencies.

4.2.1 Division of Responsibility. A model data
ow graph must be divided into

two parts, which are called the model subtree graph and the model supertree

graph respectively. The reason is that the four basic dependency types fall into two

distinct groups. SELF and CHILD dependency edges can be installed and traversed

independently of a parent. These edges represent parent-independent edges. In con-

trast, both PARENT and SIBLING dependency edges can be installed and traversed

correctly only if a parent object is present. These edges represent parent-dependent

edges. As Figure 10 illustrates, parent-independent edges denote subtree relation-

ships, and parent-dependent edges denote supertree relationships. The model sub-

tree graph represents an object's SELF and CHILD model dependencies while the

model supertree graph represents an object's SIBLING and PARENT dependencies.

An object maintains a direct pointer to its subtree graph but relies on its parent

to provide a pointer to its supertree graph. For example, Figure 11 shows how the

16 � B. Vander Zanden and R. Halterman

v

Model supertreeModel subtree

v

Fig. 10. Subtree versus supertree relationships. SELF and CHILD relationships refer to slots in

object v itself or its children and hence are called subtree relationships. PARENT and SIBLING

relationships refer to slots in object v's parent or siblings and hence are called supertree rela-

tionships. The path for a subtree edge does not pass through the parent while the path for a

supertree edge does.

division of responsibility would be handled for the labeled box object. Note that

the labeled box stores a collection of model supertree graphs, one for each part.

The reason that a parent stores its parts' supertree graphs is that the PARENT and

SIBLING dependency edges are intrinsic not to the part but rather to the composite

object to which they belong. For example, consider the PARENT edge from C.y to

A.w in Figure 7 that would be created by a constraint like A.w = C.y. If part C

is removed from the composite object and replaced with another part named C,

then A.w will depend on the new part's y slot. Hence, the new part will assume the

PARENT edge. Similarly, consider the SIBLING edge from B.x to C.y in Figure 7 that

is created by a constraint like C.y = C.parent.B.x. Again, if part B is removed

from the composite object and replaced with another part named B, C.y will now

depend on the new part's x slot. Hence, the new part will assume the SIBLING

edge. Consequently, the PARENT and SIBLING edges are not intrinsic to part B but

rather to the composite object to which they belong.

This distributed responsibility for model dependency maintenance allows parts

to be dynamically added to or removed from composite objects. If a composite

object is created with one or more missing parts, it is still possible to create a

model supertree for the missing parts. In Figure 7 for example, even if part B is

missing, the model supertree for B can be created and the edge denoting the sibling

relationship between B.x and C.y can be stored in the graph. When the missing

part B is later added to A, it will assume all the PARENT and SIBLING dependencies

associated with that part. Similarly, when a part is removed from a composite

object, it automatically jettisons its model supertree graph but it is still possible

for it to make use of its model subtree graph.

4.2.2 Model Dependency Creation. The fact that some model dependencies re-

quire a parent means not every constraint which is capable of generating model

dependencies should be included in the model data
ow graph. In other words, it is

sometimes necessary to force a constraint to generate explicit dependencies. This

Reducing Storage With Model Data
ow Graphs � 17

sibling.frame.width
3

C

2
C

3
C

model subtree

width

left

label.leftC

in labeled box prototype
Model constraint graphs

label

model supertree for label part

frame.width

width

2

2
C

2
C

left

font

text

width

model subtree

1

1

C

C

Model constraint graph
in label prototype

parent

3
C

parent width

model subtree

Model constraint graph
in frame prototype

Fig. 11. The labeled box's model data
ow graphs. Ci refers to the constraint that creates

the dependency. Note that the model dependencies for a formula can be distributed across two

di�erent graphs, as is the case for label's C2 constraint. C2 has two references to its parent

(parent.left and parent.width) and one reference to itself (self.width). The parent references

generate CHILD edges that are placed in the parent's model subtree and a SELF edge (parent !

left) that is placed in the label's model subtree. The self reference generates a SELF edge (width

! left) that is placed in the label's model subtree.

situation arises if the constraint uses at least one PARENT or SIBLING model param-

eter and its object does not have a parent. Such a constraint must generate explicit

dependencies since a parent would be required to store the resulting CHILD and

SIBLING dependencies. For example, in Figure 7, if part B is created independently

of the composite object A and added at a later time, then part B has no place to

put any CHILD or SIBLING edges when it is created1.

The method that creates a model data
ow graph handles this situation by check-

ing whether a constraint has a parameter that requires a parent, and if so, checking

whether the object has a parent. The constraint generates model dependencies

only if the parent exists or if none of its parameters require a parent. If the con-

straint generates model dependencies, its generate dependencies
ag is set to

false. Figure 12 formalizes the procedure used to create a model data
ow graph.

The procedure examines each model constraint in the object and its parts. If

the constraint passes the parent test (only constraints in the top-level object will

not pass this test), each parameter in the constraint's parameter list is asked to

generate an appropriate set of model dependencies. This is done by calling a pa-

rameter's install method. Table 6 in Section 3.2 shows the set of model de-

pendency edges that each type of parameter should generate. Figure 13 shows the

install()method for two subclasses, Self Model Edge and Sibling Model Edge.

The install() methods for the other two subclasses, Child Model Edge and Par-

1Even when B is later added to A, it should not add its CHILD and SIBLING edges to B's model

supertree, because other instances of A might have a di�erent type of part for B. For example, a

labeled box might use either a text part or a bitmap part as its label. Since the text part and the

bitmap part might use di�erent constraints, they should not be allowed to add their CHILD and

SIBLING edges to the labeled box's model dependency graphs.

18 � B. Vander Zanden and R. Halterman

Method Object.create model dataflow graph()

1 for each slot s 2 self.slots :

2 for each constraint cn 2 s.constraints :

|Some model parameters, such as a PARENT or SIBLING model

|parameter, require a parent in order to be inverted so

|check to see whether a parent is needed, and if so,

|check whether the parent exists

3 if cn.modeled = true and (cn.needs parent = false or self.parent 6= null)

4 cn.generate dependencies = false

5 for each parameter param 2 cn.formula.model parameters :

6 param.install(self, s, cn.formula)

7 for each child pt 2 self.parts :

8 pt.create model dataflow graph()

Fig. 12. Model data
ow graph creation algorithm. Observe that the pointer to the constraint's

formula serves as the formula signature.

ent Model Edge, are similar.

4.3 Constraint Inheritance

In order to use a model data
ow graph, an instance must copy pointers to the model

subtree and supertree graphs from its template, and then inherit the constraints.

Figure 14 formalizes the algorithm for handling constraint inheritance when an

object is created.

4.4 Traversing the Data
ow Graph

Once the model data
ow graph has been created, the constraint solver can use it

to �nd and invalidate slots and constraints. When a slot is changed, the constraint

solver locates the slot's model dependencies and uses these dependencies to traverse

the composition hierarchy and �nd the dependent slots. Formula signatures are used

to locate the proper constraint. The invalidation procedure for model dependencies

was illustrated in Section 3.1. Figure 15 formalizes the invalidation process.

4.5 Edits After an Instance has been Created

In most constraint-based object systems an instance can be edited after it has been

created. The model dependency scheme must therefore be resilient in the face of

editing operations. The following edit operations are supported by constraint-based

object systems and must be handled correctly:

(1) a constraint is assigned to a slot,

(2) a constraint is removed from a slot,

(3) a part is added to a composite object, and

(4) a part is removed from a composite object.

In a prototype-instance system, it is also possible to edit the prototype. In this

case, the prototype's model data
ow graph may also have to be adjusted to re
ect

the edit. For example, when a part is added to a prototype, the prototype's model

data
ow graph should be augmented to re
ect any model dependencies the new

part may require.

Reducing Storage With Model Data
ow Graphs � 19

|The self install method creates a SELF model dependency edge from the

|parameter slot to to slot and places it in the to obj's model

|subtree. The name of the parameter slot can be retrieved from

|Self Model Edge's slot name �eld.

Method Self Model Edge.install(Object to obj, Slot to slot, Signature sig)

1 graph to obj.model subtree

2 new edge Self Model Edge.create(to slot)

3 new dependency Model Dependency Edge.create(new edge, sig)

4 graph[self.slot name].insert edge(new dependency)

|The sibling install method creates model dependency edges from a SIBLING

|parameter (see Table 6). The method takes as arguments the object and the

|slot whose constraint is requesting the parameter. For example, assume

|that the parameter edge is (SIBLING, B, w) and that C.v is requesting

|B.w (as in Table 6). C and v will be passed in as the to obj and the

|to slot respectively. The install method will create three model

|dependency edges: 1) a SIBLING edge from B.w to C.v, a CHILD edge

|2) from A.B to C.v, and 3) a SELF edge from C.parent to C.v.

Method Sibling Model Edge.install(Object to obj, Slot to slot, Signature sig)

1 parent to obj.parent

|Add the SIBLING edge from B.w to C.v by placing the edge in B's model

|supertree. self points to the parameter edge. Hence

|self.sibling name refers to B and self.slot name refers to w.

2 graph parent.model supertree[self.sibling name]

3 new edge Sibling Model Edge.create(to obj.part name, to slot)

4 new dependency Model Dependency Edge.create(new edge, sig)

5 graph[self.slot name].insert edge(new dependency)

|Add the CHILD edge from A.B to C.v by placing the edge in A's model subtree.

6 graph parent.model subtree

7 new edge Child Model Edge.create(to obj.part name, to slot)

8 new dependency Model Dependency Edge.create(new edge, sig)

9 graph[self.sibling name].insert edge(new dependency)

|Add the SELF edge from C.parent to C.v by placing the edge in

|C's model subtree.

10 graph to obj.model subtree

11 new edge Self Model Edge.create(to slot)

12 new dependency Model Dependency Edge.create(new edge, sig)

13 graph[parent].insert edge(new dependency)

Fig. 13. Installation method for the Self and Sibling model parameters. The insert edge()

method adds a new model dependency edge to the designated graph.

20 � B. Vander Zanden and R. Halterman

Method Object.inherit constraints(Object template)

|Make the object point to its model subtree and its childrens' supertree graphs

1 self.model subtree template.model subtree

2 self.model supertree template.model supertree

|Inherit the constraints

3 for each slot s 2 self.slots :

4 s.constraints ;

5 for each constraint cn 2 template.slots[s].constraints :

6 inherited cn cn.create copy()

7 s.constraints s.constraints [finherited cng

8 if cn.needs parent and self.parent = null :

9 inherited cn.generate dependencies true

10 for each part pt 2 self.parts :

11 pt.inherit constraints(template.parts[pt])

Fig. 14. The constraint inheritance algorithm which is called when an object is created. The

conditional on lines 8-9 ensures that a constraint which needs a parent in order to use model

dependencies (i.e., it has SIBLING or PARENT parameters) has such a parent. Otherwise the

constraint is forced to generate explicit dependencies.

Method Slot.invalidate()

1 if self.valid = true :

2 self.valid false

3 for each constraint cn 2 self.explicit dependencies :

4 cn.invalidate()

5 model dependencies self.get model dependencies()

6 for each model dependency dep 2 model dependencies :

7 cn dep.traverse(self, null)

8 if cn 6= null :

9 cn.invalidate()

|Retrieve the SELF and CHILD model dependencies from the model subtree

|and the PARENT and SIBLING model dependencies from the model supertree.

Method Slot.get model dependencies() returns Set of Model Dependency Edges

1 return self.object.model subtree[self.name]

[self.object.parent.model supertree[self.object.part name][self.name]

Fig. 15. Slot invalidation algorithm for a constraint solver that incorporates model dependencies.

The invalidation procedure for constraints is the same as the one found in Figure 5. traverse() is a

custom method associated with each model dependency that uses the traversal procedure described

in Section 4.4 to return the appropriate constraint. The second parameter to traverse() is a for-

mula signature that allows traverse() to locate the appropriate constraint. Here null is passed as

the formula signature since the model dependency edge will substitute its own formula signature

attribute when it delegates the call to its edge attribute. Figure 16 shows the traverse method

for a Self Model Edge and a Sibling Model Edge.

Reducing Storage With Model Data
ow Graphs � 21

Method Model Dependency Edge.traverse(Slot slt, Signature unused)

returns Constraint

|The second parameter is ignored. Observe that slot.invalidate() in Figure 15

|passes null as the second parameter.

1 return self.edge.traverse(slt, self.formula signature)

Method Self Model Edge.traverse(Slot slt, Signature sig) returns Constraint

1 obj slt.object

|Locate the dependent slot based on the path stored in this edge

2 dependent slot obj.slots[self.slot name]

3 for each constraint cn 2 dependent slot.constraints :

4 if cn.formula = sig :

5 return cn

6 return null

Method Sibling Model Edge.traverse(Slot slt, Signature sig) returns Constraint

1 obj slt.object

|Locate the dependent slot by going to the parent and then to the appropriate sibling

2 parent obj.parent

3 sibling parent.parts[self.sibling name]

4 dependent slot sibling.slots[self.slot name]

5 for each constraint cn 2 dependent slot.constraints :

6 if cn.formula = sig :

7 return cn

8 return null

Fig. 16. Traversal methods for the Model Dependency Edge type. This �gure shows the traverse

methods for the SELF and SIBLING edges. The traverse methods for PARENT and CHILD edges

are similar. The Model Dependency Edge delegates the call to the appropriate model edge and

inserts the appropriate formula signature. These algorithms assume that the parent, sibling,

and dependent slot objects exist. The actual implemented algorithms check to see whether they

get non-null objects before proceeding (Line 2 in Self Model Edge.traverse() and Lines 2{4 in

Sibling Model Edge.traverse()). If they get a null object, they return null.

Adding and removing constraints from slots are common operations which are

discussed in this section. Adding and removing parts from objects and editing a

prototype are less commonly supported operations and are described in the elec-

tronic appendix that accompanies this paper.

4.5.1 Constraint Assigned To A Slot. When a formula is assigned to an object

after it has been created, the formula will not be represented in the template's

model data
ow graph. Consequently it needs to generate explicit dependencies.

This can be done by setting the constraint's generate dependencies
ag to true.

4.5.2 Constraint Removed From A Slot. A constraint can be removed from a slot

in two ways: 1) the constraint is replaced by an ordinary value, or 2) the constraint is

replaced with a di�erent constraint. The second case is simply constraint removal

followed by constraint assignment, so only the �rst case needs to be considered.

Constraint removal does not pose a problem to the model dependency traversal

process since a dependent constraint is found by matching a formula signature

stored with the model dependency edge. Although one or more model dependency

edges will still point to the slot from which the constraint was removed, their

formula signatures will no longer match the formula signatures of any of the slot's

22 � B. Vander Zanden and R. Halterman

constraints. When these edges are followed during constraint invalidation, the edge

traversal methods will return no constraint (that is, null) as shown in Figure 16.

The invalidation procedure will then ignore this edge (in Figure 15, line 8 of the

Slot.invalidate() method checks if the edge traversal returns a null constraint

and does nothing if a null constraint is returned).

As an example, consider what happens if the formula computing frame.width,

C3, is removed from an instance of a labeled box. Now when label.width changes,

the invalidation procedure will ask the model dependency edge SIBLING, frame,

width to produce a constraint. The traversal method for this edge will follow

the path to frame.width but will not �nd the proper formula signature for C3 in

frame.width's list of constraints. The traversal method will therefore return null,

and no action will be taken.

5. ADDITIONAL TYPES OF MODEL DEPENDENCIES

The basic model dependency scheme described in the previous section is not suf-

�cient to eliminate many of the dependencies in an application (see Section 6.1

for details). This section describes a number of other common model dependency

edges that were found in our analysis of Amulet applications

5.1 To All Children Edge

The To All Children edge indicates that all the children of an object depend on

some slot in that object. For example, consider what happens in a map object,

which is a special type of composite object that lays out all of its children in some

type of arrangement, such as a list or table. A map object is typically given a list

or array of values, which allows each of the children to be customized. For example,

a map that lays out a list of labeled boxes might be given an array of labels. Each

child is given an index value and formulas can use this index value to retrieve the

appropriate information from the map. For example, a labeled box might use the

following formula to retrieve its label from the parent:

box:text = self:parent:label array[self:index]

Note that the text slot of every labeled box will depend on its parent's label array

slot. Normally a PARENTmodel parameter could be used to specify this relationship

and a CHILD dependency would be generated for each part. However, a PARENT

model parameter requires a named part and the parts in a map are typically not

named.

The TO ALL CHILDREN edge solves this problem. It is similar to a CHILD depen-

dency. However, no named part is required since the dependency is to all children.

Hence the edge is represented as a 2-tuple (TO ALL CHILDREN, slot). Figure 17.a

illustrates the TO ALL CHILDREN dependency.

The TO ALL CHILDREN dependency can be generated in multiple ways. First, a

new model parameter (e.g., an ALL PARENT parameter) can be de�ned that generates

a TO ALL CHILDREN dependency. Alternatively, a toolkit-speci�c way might provide

a better approach. For example, the Amulet toolkit [Myers et al. 1997] that we

used for our test implementation provides map objects that have template objects

for each type of element that can be included in the map. We modi�ed Amulet to

create a TO ALL CHILDREN edge when a PARENT model parameter is speci�ed for a

Reducing Storage With Model Data
ow Graphs � 23

P P P P

A

2 31 n

v

x x x x. . . P P P P

A

2 31 n

v

x x x x. . .
(TO ALL CHILDREN) (FROM ALL CHILDREN)

Fig. 17. The TO ALL CHILDREN and FROM ALL CHILDREN relationships. In the TO ALL CHILDREN

relationship, the x slot slot in each of A's parts P1 : : :Pn depends on A's v slot. In the

FROM ALL CHILDREN relationship, the dependencies are reversed and A's v slot depends on the

x slot in each of its parts.

Method Constraint Set.invalidate()

1 for each constraint cn 2 self.set :

2 cn.invalidate()

Method To All Children Model Edge.traverse(Slot slt, Signature sig) returns Constraint

| 1) slt is the slot that changed

| 2) constraint set is of type Constraint Set, a subclass of Constraint

1 constraint set ;

2 obj slt.object

3 for each part p 2 obj.parts :

|The slot name stored in this dependency edge determines the target

|dependent slot

4 dep slot p.slots[self.slot name]

5 for each constraint cn 2 dep slot.constraints :

6 if cn.signature = sig :

7 constraint set constraint set [fcng

8 return constraint set

Fig. 18. The To All Children Model Edge traverse method. The traverse() methods of all

Model Edge subclasses must return a single constraint, but the To All Children Model Edge must

return a collection of constraints. To accommodate this requirement, a Constraint Set class is

created that can store a set of constraints. The Constraint Set is a subclass of Constraint;

therefore, it responds to the same messages that the Constraint class does. The Constraint -

Set invalidate() method simply delegates the invalidation message to each of the constraints it

stores. Also note that the traverse method gracefully handles children that do not depend on

the slot. For these children no constraint gets added to the constraint set.

formula in a map template object. Hence the programmer did not have to learn a

new type of model parameter.

Implementation. TO ALL CHILDREN edges are represented by the To All -

Children Model Edge class. These TO ALL CHILDREN edges are stored in the model

subtree along with the SELF and CHILD model edges. The To All Children -

Model Edge.traverse()method returns a list of constraints to invalidate. It builds

this list by iterating over all the children of an object and �nding eligible constraints

for each child in a manner similar to the basic Child Model Edge.traverse()

method. Figure 18 formalizes the To All Children.traverse() method.

24 � B. Vander Zanden and R. Halterman

5.2 From All Children Model Parameter

The From All Children parameter indicates that a slot in a parent object depends

on the same slot in each of the children objects. For example, a composite object

often contains formulas that compute its width and height based on the width and

height of its children. The width formula might be written as:

width = {

p = self.first_part

left = p.left

right = p.left + p.width

for each part p in self.parts:

if p.left < left:

left = p.left

if p.left + p.width > right:

right = p.left + p.width

return (right - left)

}

The width of an object is therefore determined by the left and width slots of all

its children. Note that the number of children referenced by this formula is not

�xed and that the names of the children are not used. Consequently, this formula

cannot use a �xed size parameter list to specify model dependencies to each of

its children. What is needed is a model parameter that represents a dependency

from a given slot in every child to a slot in their parent. The FROM ALL CHILDREN

model parameter addresses this need. It is a 2-tuple (FROM ALL CHILDREN, slot) and

generates one PARENT edge for each child. Figure 17.b illustrates the edges that are

generated.

The FROM ALL CHILDREN parameter is represented by the From All Children -

Model Edge class. When it is installed, a From All Children Model Edge produces

a Parent Model Edge, but this PARENT edge is placed in a distinct subgraph of

the model data
ow graph called the common model supertree. A common model

supertree stores the PARENT dependencies that are shared by all children. The

motivation for this new subgraph is that it is not suÆcient to place a PARENT

dependency edge in each of the existing model supertrees since model supertrees

are associated only with named children. However, unnamed children also need to

support this edge.

The From All Children Model Edge.install() method, shown in Figure 19,

adds the appropriate PARENT edge, to the common model supertree.

The get model dependencies() method in Figure 15 also needs to be modi�ed

so that model dependencies are retrieved from the common model supertree.

5.3 Global Model Edge

Some explicit dependencies result from access to a global resource such as a graph-

ical device context object. For example, a formula that computes the width of a

text string may need information about the font size and a formula that computes

the size of a dialog box might need information about the screen resolution. As

another example, the color of the objects in an application might be determined by

a global, user-settable property. In all of these cases, dependencies will be estab-

Reducing Storage With Model Data
ow Graphs � 25

Method From All Children Model Edge.install(Object obj, Slot dependent slot,

Signature sig)

1 graph obj.common model supertree

2 new edge Parent Model Edge.create(dependent slot)

3 new dependency Model Dependency Edge.create(new edge, sig)

|self.slot name is the name of the parameter slot requested by the constraint.

|Hence, the new dependency edge is stored with this slot name in the

|common model supertree.

4 graph.insert edge(self.slot name, new dependency)

Fig. 19. The From All Children install method

lished from these global properties to many graphical objects in the application. If

a large number of objects reference these global properties and if they are changed

infrequently, then when they do change we may be willing to examine all the objects

in the interface in order to discover which slots should be invalidated.

A Global Model Edge captures this notion of a dependency from a global prop-

erty to graphical objects in the application. The GLOBAL relationship is expressed

in a model parameter by specifying the triple (GLOBAL, object, slot), where

object is the global object accessed in the formula, and slot is the particular

slot within that object that is accessed. A Global Model Edge dependency edge is

created from this model parameter and stored in the global object's model subtree.

When the designated slot is changed, all the slots of all the objects in the appli-

cation will be examined. If the implementor of the constraint system is concerned

that this examination will be too expensive, it is possible to store the speci�c slot

in a graphical object that depends on the global slot. For example, only color slots

might be examined if the global color property is changed. In our implementation

we found that examining all the slots in each graphical object was acceptable.

Implementation. The install() and traverse() methods for a Global -

Model Edge are shown in Figure 20.

5.4 Additional Extensions

It is important to note that other toolkits might require di�erent types of extensions.

However, it seems that the situations requiring these extensions are likely to arise in

other toolkits as well. subArctic, another constraint-based toolkit, provides support

for formulas that depend on all the children or in which all the children depend

on the parent [Hudson and Smith 1996]. Global variables are commonly used in

programs and there is every reason to assume that formulas in many toolkits would

want to access global variables.

The model dependency scheme also can be easily extended to support other

types of dependencies that might arise in a toolkit's applications. For example, an

application may make frequent use of a formula with GRANDPARENT parameters. A

toolkit developer could handle this case by de�ning GRANDPARENT and GRANDCHILD

subclasses that extend the Model Edge class and writing traverse and install

methods for these two edges.

Finally, in a prototype-instance model, the model dependency scheme can be

extended so that a prototype itself uses its own model data
ow graph. In the scheme

26 � B. Vander Zanden and R. Halterman

Method Global Model Edge.install(Object obj, Slot slt, Signature sig)

|obj is the global object accessed by the formula

1 graph obj.model subtree

|A singleton GLOBAL model edge object can be used for the whole

|application because no explicit path information needs to be stored.

|The global model edge object passed to the Model Dependency Edge.Create()

|method is this singleton GLOBAL edge object.

2 dependency Model Dependency Edge.create(global model edge, sig)

|self.slot name is the name of the parameter slot requested by the constraint.

|Hence, the new dependency edge is added to the slot's list of model dependencies.

3 graph.insert edge(self.slot name, dependency)

Method Global Model Edge.traverse(Slot slt) returns Constraint Set

1 constraint set ;

|The variable interface is meant to convey the notion that every object in the

|interface must be examined. The exact mechanism by which this set of objects is

|determined is toolkit-dependent.

2 for each object obj 2 interface :

3 obj.collect global dependencies(constraint set, slt)

4 return constraint set

Method Object.collect global dependencies(Constraint Set cn set,

Slot parameter slot)

1 for each slot s 2 obj.slots :

2 for each constraint cn 2 s.constraints :

3 for each parameter param 2 cn.formula.model parameters :

4 if param.type = Global Model Edge

and param.slot name = parameter slot.name :

5 cn set cn set [fcng

6 for each child p 2 obj.parts :

7 p.collect global dependencies(cn set, parameter slot)

Fig. 20. Algorithms to install and traverse Global Model Edge dependencies. The install

method adds a Global Model Edge to the model subtree of the speci�ed global object. The

traverse method �nds all the constraints that depend on the speci�ed slot in the global ob-

ject. The traverse method examines every constraint in every object in the graphical interface

If the constraint has a global model parameter whose slotname matches the invalidated slot, then

the constraint is added to the set of a�ected constraints (the Constraint Set object to which

these constraints are added is described in Figure 18). The traverse method assumes that all the

a�ected objects can be found by examining an object's parts list, but it could easily be modi�ed

to �nd objects in another manner, for example, by scanning a list of windows and then scanning

the display lists of each of the windows.

Reducing Storage With Model Data
ow Graphs � 27

Table 7. Applications used for evaluating model dependencies.

Application/

benchmark

Description Source

Checkers The traditional board game Amulet distribution

Circuit Designer Used to build digital logic networks Amulet distribution

Gilt A graphical interface builder

Labeled Box A benchmark that creates 500 labeled boxes

similar to the one described in Section 1

One of the authors

MathNet Represents arithmetic expressions with a

data
ow graph

One of the authors

Network Simulator Simulates message passing in various net-

work con�gurations

Graduate student

Dense Dependen-

cies

A benchmark that creates 75 objects. Each

object has 26 slots, 25 of which are deter-

mined by formulas. The 25 formulas estab-

lish 325 dependencies for each object.

One of the authors

Testwidgets Test of menus, dialog boxes, scroll bars, etc. Amulet distribution

Tree Editor Graphically represents binary trees for vi-

sual program debugging

Graduate student

Empty An application that does nothing but ini-

tialize the base Amulet system. This appli-

cation indicates the \baseline" dependency

requirements for any Amulet application.

One of the authors

described thus far, only a template object's instances use this model data
ow graph.

This extension is described in the electronic appendix that accompanies this paper.

6. PERFORMANCE RESULTS

This section looks at the performance of the model dependency scheme from a

number of di�erent angles. First it looks at its success in eliminating explicit de-

pendencies in example applications. Next it looks at the theortical time complexity

of the scheme. Finally it looks at how the scheme empirically a�ects an application's

storage and interactive performance.

6.1 Eliminating Explicit Dependencies

The model dependency scheme was evaluated by implementing it in Amulet, a

graphical interface toolkit available for free from Carnegie Mellon University [Myers

et al. 1997]. Amulet supports a prototype-instance object model and a constraint

model similar to the ones described in Section 2. Amulet's constraint system was

modi�ed to incorporate model dependencies. Once the implementation was com-

pleted the code was instrumented so the number of model and explicit dependencies

could be counted.

Henceforth, the term Model Amulet will refer to the modi�ed version that sup-

ports the model dependency scheme; Original Amulet will refer to the original ver-

sion. Model Amulet was tested on a number of existing Amulet applications and

on three specialized benchmark programs. The applications included the samples

found in the Original Amulet distribution and several other contributed programs.

Table 7 describes the applications and benchmarks. Pictures of the graphical ap-

plications are shown in Figure 21. As indicated in Table 7, some of the applications

28 � B. Vander Zanden and R. Halterman

Checkers Testwidgets

Gilt Network Simulator

Circuit Designer Tree Editor

Fig. 21. Application snapshots. MathNet can be seen on Page 3. The Labeled Box and Dense

Dependencies benchmarks are non-graphical. The Empty benchmark creates the underlying base

Amulet graphical objects necessary for any graphical application, but it does not create a window.

Reducing Storage With Model Data
ow Graphs � 29

Checkers Circuit Gilt Labeled
Box

MathNet Network
Simu-
lator

Dense
Depen-
dencies

Test-
widgets

Tree
Editor

Empty Average
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 E

xp
lic

it
 D

ep
en

de
nc

ie
s

R
em

ov
ed

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 E

xp
lic

it
 D

ep
en

de
nc

ie
s

R
em

ov
ed

Global dependencies from graphical device context

FROM_ALL_CHILDREN model edges

TO_ALL_CHILDREN model edges

Prototype uses its own model dependency graph

Mixed dependency formulas

Basic model dependencies

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 E

xp
lic

it
 D

ep
en

de
nc

ie
s

R
em

ov
ed

Fig. 22. The percentage of explicit dependencies removed by the various facets of the model

dependency scheme. Basic model dependencies refers to a scheme in which explicit dependencies

can be eliminated only if a formula exclusively references slots in a SELF, CHILD, PARENT, or SIBLING

object. Mixed dependencies refers to a scheme in which the exclusivity provision is relaxed so that a

formula can reference additional slots by generating explicit dependencies. The remaining schemes

show the additional explicit dependencies that are eliminated when formulas can use global model

dependencies, from all children parameters, and to all children dependencies and when prototypes

can use their own model data
ow graphs. Average represents the average reduction for actual

applications (excluding the Labeled Box, Dense Dependencies, and Empty applications).

were crafted by the designers of Amulet itself, some were written by graduate stu-

dents as class projects, and some were created by the authors. They thus represent

a range of application programmer expertise, from those expert at using constraints

to those just learning how to use constraints. Existing applications can be compiled

and run under Model Amulet without any alteration. However, the point of Model

Amulet is to save storage by using model dependency formulas, so the formulas in

these test programs were modi�ed to declare model parameters.

The numbers of explicit dependencies generated by both the standard version

and modeled version were then compared. Figure 22 summarizes the results of

the experiments. As Figure 22 reveals, the results with a scheme that uses only

the basic model dependency model were not encouraging (the basic scheme does

not allow a formula to have both explicit and model dependencies). While over

50% of all formulas exclusively use the four model relationships, on average these

formulas only generate approximately 20% of the dependencies in an application.

This poorer-than-expected result prompted the extensions described in Sections 3.4

and 5.

Collectively the extensions increased the average number of modelable dependen-

cies from 20% to 77.9% in the benchmark Amulet applications (excluding the special

benchmarks). Mixed dependencies and children handling dependencies eliminated

30 � B. Vander Zanden and R. Halterman

the most explicit dependencies. Global dependencies and having a prototype use

its own model data
ow graph eliminated modest numbers of explicit dependencies.

Overall, the results show that the model dependency scheme performs quite well.

6.2 Time Complexity of Model Dependency Traversal

This section examines the time required to traverse a model dependency and inval-

idate the constraint to which it points. Constraints pointed to by explicit depen-

dencies can be invalidated in O(1) time because the mark phase follows a pointer

directly to the constraint. As the following analysis shows, a constraint pointed to

by a typical model dependency edge can also be invalidated in O(1) time.
The time complexity for model dependencies has two components:

(1) locating the model dependencies in the model data
ow graphs, and

(2) traversing each model dependency to locate the constraint to be invalidated.

Locating Model Dependencies. A slot's model dependencies can be found

in three di�erent model graphs: 1) the model subtree, 2) the model supertree,

and 3) the common model supertree. In each model graph, the slot and its list of

model dependencies must be located. Typically the graphs would be implemented

as hashtables keyed on a slot name, so �nding the slot and its model dependencies

should require on average O(1) time.
Model Dependency Traversal. Traversing a model dependency and invalidat-

ing the constraint to which it points involves three steps: 1) locating the dependent

part by traversing the composite object's part hierarchy, 2) locating the dependent

slot, and 3) locating the constraint on the dependent slot's constraint list.

The length of the traversal is determined by the types of model dependency

edges. The four neighborhood edges and the FROM ALL CHILDREN edge require at

most two hops in the object hierarchy. For example, a SIBLING edge goes to the

parent and then an appropriate child. Hence these edges require O(1) time to

locate the dependent part. The TO ALL CHILDREN edge visits each of an object's

children. However, if explicit dependencies were used instead, there would have to

be one explicit dependency for each child. In other words, if there are m children,

the TO ALL CHILDREN edge corresponds to m explicit dependencies. Therefore, a

TO ALL CHILDREN edge can locate a dependent child in O(1) amortized time (m
children/m explicit dependencies = 1). The time to locate the dependent children

for the GLOBAL model edges depends on the number of objects in the system. If

there are n objects in the system then O(n) objects must be searched. In the

worst case only one object will depend on the global object and so only one explicit

dependency will be eliminated. This worst case leads to O(n) complexity for a

GLOBAL model edge. However, in practice most objects typically have at least one

dependency on a global object so the average case running time is O(1).
Once the dependent part is located the dependent slot must be found. In almost

any toolkit the number of slots within an object is usually bounded by a fairly large

constant such as 30{40. Either a hashtable or linked list can be used to locate a

slot, so the time is O(1).
Finally, the time to locate a constraint on a slot's constraint list depends on the

number of constraints on the list. In most existing toolkits, including Garnet [Myers

et al. 1990], Amulet [Myers et al. 1997], Eval/vite [Hudson], subArctic [Hudson

Reducing Storage With Model Data
ow Graphs � 31

and Smith 1996], and Rendezvous [Hill 1993], the list's size is typically bounded

by a small constant (1 or 2 in most cases), so the time to locate a constraint is on

average O(1).
With the exception of the worst case for global model edges, each of the three

phases involved in model dependency traversal requires O(1) time, so the traversal
time for each dependency is O(1). Consequently the overall cost to invalidate one

model dependency is O(1), the same as the cost to invalidate an explicit dependency.
This time complexity means that while model dependencies will be more expen-

sive than explicit dependencies, the speed di�erence should be limited to a small

constant factor. As Section 6.3.2 indicates, this small speed penalty is quite ac-

ceptable for most applications.

6.3 Empirical Performance

Section 6.1 showed that the model dependency scheme can signi�cantly reduce the

number of explicit dependencies in an application. The �rst part of this section

shows how this reduction might bene�t storage and performance. The second part

addresses interactive performance issues when virtual memory is not an issue and

shows that while model dependencies may require more traversal time than ex-

plicit dependencies, the slower traversal time does not a�ect perceived interactive

performance.

6.3.1 Performance on the Dense Dependencies Benchmark. The Dense Depen-

dencies benchmark is a program that was devised to simulate an application whose

storage is dominated by constraints and their dependencies rather than by the ob-

ject system2. Each Dense Dependencies object consists of 26 slots, 25 of which are

determined by formulas. If the slots are named s0; s1; : : : ; s25, then a formula Fi

in slot si calculates the sum si =
P

i�1

j=0
sj (slot s0 does not contain a formula).

Hence the 25 formulas generate a total of 1 + 2 + : : : + 25 = 325 dependencies.

The formulas all involve the SELF relationship; consequently, Model Amulet can

eliminate the explicit dependencies.

The benchmark performs the following activities:

(1) A speci�ed number of Dense Dependencies objects are created.

(2) In a loop executed 10,000 times, one object is chosen at random. Slot s0 is

modi�ed and all the formulas that depend on s0 are brought up-to-date. Since
s0 is referenced by every formula in the object, the modi�cation is guaranteed

to a�ect all the formulas in that object.

Memory. The amount of raw heap storage required by the benchmark was mea-

sured directly by examining the memory consumed from the heap (all the graphi-

cal objects used by Amulet applications are allocated dynamically from the heap).

Figure 23.a summarizes the benchmark's behavior under both Original and Model

2Amulet's objects are very heavyweight objects since Amulet supports a large number of features

beyond those provided by most constraint systems. The size of these objects makes it diÆcult to

measure the e�ect of explicit dependency reduction because the object size overwhelms the size

of the constraints and the dependencies. The Dense Dependencies benchmark neutralizes this

problem and thus provides an indication of the e�ect that model dependencies might have on the

space and time resources of a more streamlined toolkit.

32 � B. Vander Zanden and R. Halterman

0 2000 4000 6000 8000 10000 12000 14000 16000

Number of objects

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

H
ea

p
sp

ac
e

us
ed

 (
by

te
s)

Original
Modeled

0 2000 4000 6000 8000 10000 12000 14000 16000

Number of objects

0

50000

100000

150000

200000

250000

300000

350000

400000

O
bj

ec
t

m
an

ip
ul

at
io

n
ti

m
e

(m
ill

is
ec

on
ds

)

Original
Modeled

(a) (b)

Fig. 23. Memory requirements of objects (a) and cumulative manipulation times of objects (b)

for the Dense Dependencies benchmark. The original version of Amulet begins to use a signi�cant

amount of virtual memory at around 1,500 objects. The modeled version can manage about 5,500

objects before virtual memory is required. Once virtual memory is required, the performance

degrades at a slower rate than in the original version. (On the system tested, the virtual memory

limit for a process is 64 Mbytes.) All applications were tested on a lightly loaded 200 MHz

Pentium{based machine with 32 Mbytes of RAM and 512 Kbyte L2 cache running BSD/OS 3.0

and Amulet V3.0 with no debugging and -O3 optimization.

Amulet. The operating system used for testing restricts each running process to 64

Mbytes of virtual memory. Original Amulet is limited to about 4,500 objects before

virtual memory is exhausted. Model Amulet can handle about 15,500 objects; thus,

the modeled version can accommodate about 3.4 times more Dense Dependencies

objects.

In Amulet, each explicit dependency requires 32 bytes of storage. Analysis of

the heap space used by both toolkits reveals that the storage di�erence between

the two versions is exactly (32 bytes) � (the number of objects) � (the number of

dependencies per object). This computation can be generalized to give the expected

storage savings in any system:

s = c� d� �

where s is the expected storage savings, c is the storage cost of an explicit de-

pendency, d is the number of dependencies in the system, and � is the fraction of

dependencies that can be modeled. For typical Amulet applications, the results

from Section 22 indicate that � = :78 is a reasonable estimate.

Time. Figure 23.b compares the cumulative time it takes to perform the ex-

periment. The modeled version is consistently 1.42 times slower than the standard

version up to about 1,500 objects. Above 1,500 objects the standard version begins

using virtual memory, and performance drops o� dramatically. The modeled ver-

sion can manipulate up to 5,500 objects until virtual memory is accessed. Model

Amulet can therefore represent about 3.7 times more Dense Dependencies objects

in core memory than Original Amulet. After the point of virtual memory access

the performance degradation is more gradual in the modeled version. When both

versions are managing as many objects as virtual memory permits (4,500 for the

standard version versus 15,500 for the modeled version), the modeled version is

Reducing Storage With Model Data
ow Graphs � 33

about 1.3 times faster.

In sum, model dependencies achieve signi�cant space savings and performance

improvement in this benchmark, permitting a larger number of application objects

to be managed with better performance than with explicit dependencies.

6.3.2 Interactive Performance. None of the interactive applications that were

available for testing manipulate a large number of objects. One reason that ex-

isting applications do not manage a large number of constrained objects may be

because their designs are limited by the large storage requirements of each Amulet

graphical object in addition to the storage requirements of a large number of ex-

plicit dependencies. Since the number of objects was small, none of the interactive

applications required any virtual memory.

Fortunately, interactive applications are not signi�cantly a�ected by the extra

time required to resolve model dependencies. To the unaided eye, the versions using

model dependencies do not exhibit any perceptible loss of interactive performance

compared to their explicit dependency counterparts. The lack of any noticeable

performance di�erence between the modeled and unmodeled versions of Amulet is

not surprising when one considers the following two points:

(1) Previous studies have shown that redisplay time dominates the cost of all

other operations in a graphical application [Hill 1993; Vander Zanden 1994].

One study of a set of Amulet applications revealed that the time spent travers-

ing and invalidating dependencies constituted roughly 1% of the time consumed

by an application [Vander Zanden et al.]. Thus increasing this time by even

42% (the amount of extra time required by model dependencies in the Dense

Dependencies benchmark) has no noticeable a�ect on the application's perfor-

mance.

(2) In interactive applications, the total number of slots that depend on a

changed slot is generally small, and is typically less than 20 [Vander Zanden

and Venckus 1996].

The signi�cance of the second point is that the Dense Dependencies benchmark

represents a worst case scenario for many user interface interactions. Each manip-

ulation in the benchmark a�ects 325 dependencies and forces the recomputation

of 25 constraints (each of which uses an average of 12 individual arithmetic oper-

ations for its computation). This is more re-evaluation work than is required by

many interactions in a typical application.

A second experiment was performed in which a graphical (but still non-interactive)

version of the Labeled Box benchmark was manipulated by moving and resizing (by

changing the label text) a large number of labeled boxes in a window. This type

of interaction is representative of the interactions in a real interface and, unlike the

Dense Dependencies benchmark, it requires a portion of the display to be drawn.

In this experiment, the overall performance of the modeled application was slower

than the overall performance of the original version by a factor of only 1.002, and

the number of boxes was not so large as to require either version to use virtual

memory.

34 � B. Vander Zanden and R. Halterman

7. RELATED WORK

This section considers related work from a variety of di�erent angles. It �rst shows

how data
ow constraints �t within the �eld of constraint solving. It then describes

some of the past research that has been done on optimizing the storage costs of

data
ow constraints. Finally it discusses the related idea of lightweight glyphs. Sec-

tion 1 described how model data
ow graphs in syntax-directed editors also a�ected

the development of the model dependency scheme.

7.1 Data
ow Constraints in Context

Constraint solvers can typically be classi�ed as either domain-speci�c or domain-

independent. A domain-speci�c solver can only satisfy constraints that are speci�ed

over a restricted domain, such as real numbers, integers, or Booleans. A domain-

independent solver can satisfy constraints that are speci�ed over an arbitrary do-

main. A linear equation solver is an example of a domain-speci�c solver [Golub

and Van Loan 1989]. A data
ow constraint solver is an example of a domain-

independent solver. Domain speci�c solvers can satisfy a greater range of con-

straints within their domain because the constraint solver can use algorithms that

exploit information about that domain. For example, a linear equation solver can

use its knowledge of linear algebra to satisfy linear equality constraints. In contrast,

a domain-independent solver cannot satisfy these constraints because it lacks the

requisite domain-speci�c knowledge. Nonetheless, domain-independent constraints

have found greater use in graphical interfaces because of their versatility, their sim-

plicity, and their ability to express most of the relationships that arise in graphical

interfaces.

7.1.1 Multi-way Constraints. Multi-way data
ow constraint systems have also

been developed for graphical interfaces, including ThingLab [Borning 1981; Freeman-

Benson et al. 1990; Sannella et al. 1993], Kaleidoscope [Freeman-Benson 1990] and

MultiGarnet [Sannella and Borning 1992; Sannella 1994; Vander Zanden 1996].

Multi-way constraints are more powerful than one-way constraints. since they can

be solved for any variable in the constraint, either on the left side or the ride side.

This increased power, while valuable, also makes multi-way constraints less pre-

dictable than one-way constraints and harder to manage by the programmer. For

example, suppose there is a constraint right = left + width. What should the

constraint solver do if right is changed? Changing left will cause the object to

move and changing width will cause the object to change size. Both changes pro-

vide plausible interpretations for how the change to right should be handled. Stay

constraints have been introduced to allow programmers to specify which variables

should remain unchanged [Borning et al. 1987]. Stay constraints can be used in con-

cert with constraint hierarchies, which allow a programmer to prioritize constraints

so that if some constraints cannot be satis�ed, preference is given to satisfying the

higher priority constraints [Borning et al. 1987]. In the above example, the pro-

grammer could introduce stay constraints for all three variables, but give a higher

priority to satisfying the stay constraints for right and left. Hence when right

is changed, the constraint solver would resize the object by changing the object's

width. However, sometimes the user expects the object to move instead of being re-

sized so even stay constraints are not a complete solution to the problem. Rosener

Reducing Storage With Model Data
ow Graphs � 35

proposed a number of ways to make constraint hierarchies and stay constraints

more
exible [Rosener 1994] but the fact remains that multi-way constraints are

more diÆcult to manage and more unpredictable than one-way constraints, and

their perceived bene�ts are often not commensurate with these drawbacks.

7.1.2 Constraint Logic Programming. A �nal related area is constraint logic pro-

gramming [Ja�ar et al. 1992]. When applied to logic programming, constraints

provide a generalization of the resolution principle used in standard logic program-

ming languages such as Prolog [Roussel 1975]. One advantage of constraint logic

programming is that it can mix constraint solvers from di�erent domains, thus

achieving better coverage than a single domain-speci�c solver. Constraint logic

programming has never caught on in the graphical interfaces community because

it lacks a notion of state; thus, an incremental change in an application requires a

complete re-execution of the program as opposed to an incremental update of the

program's state.

7.2 Data
ow Constraint Optimization

Researchers have investigated various approaches to data
ow constraint storage op-

timization. These include constant propagation, constraint plans that save storage

by eliminating some constraints entirely, and �constraints which reduce the cost of

a constraint by encoding its dependencies in a compact manner.

7.2.1 Constant Propagation. Constant propagation allows constraints whose pa-

rameters are all constants to be evaluated once and replaced with the constant

result [Maloney et al. 1989; Myers et al. 1994]. Constant propagation works well in

a system where many slots have �xed values. Unfortunately one non-constant slot

in a formula will prevent it from being eliminated. Consequently, constant prop-

agation has little e�ect in a dynamic system where few slots have a �xed value.

For example, a study of Amulet applications suggest that constant propagation

can eliminate 15-25% of constraints [Vander Zanden and Venckus 1996]. This re-

duction is a good start, but other optimizations, such as the model dependency

optimizations described in this paper, must be used to obtain even more storage

savings.

7.2.2 Constraint Plans. Freeman-Benson eliminates entirely the storage required

for constraint objects and their dependencies by compiling a given constraint graph

or subgraph into a plan [Freeman-Benson 1989]. A plan is created by \unwrapping"

individual constraint methods and using the constraint graph to sequence the code

segments that make up these methods into one large procedure. The parameters to

the procedure are the slots in the original graph whose values may be modi�ed. The

constraint plan approach is ideal for data
ow graphs with a static structure. In sys-

tems like Amulet with pointer variables, dynamic edits, and arbitrary dependency

edges, the required analysis may not be possible and dynamic recompilation of the

modules will almost certainly be required even if the analysis can be performed.

7.2.3 �constraints. Hudson and Smith reduce the physical storage required for

dependencies in certain common graphical layout relationships using a concept they

call �constraints [Hudson and Smith 1996]. Each constraint consists of as little as

17 bits, which is enough to encode an operation code, a small set of prede�ned

36 � B. Vander Zanden and R. Halterman

dependencies to other objects, and a small set of prede�ned slots that can be

accessed in these objects, such as left or width. Actual dependency edges in the

constraint network are dynamically inferred as needed by consulting �constraint
encodings and the composite object's physical structure.

�constraints share two important concepts with the model dependency paradigm:

(1) Dependencies that can be encoded are restricted to the direct composite object

relations involving SELF, PARENT, CHILD, and SIBLING.

(2) A programmer may use standard heavyweight constraints for dependencies that

cannot be represented in this encoding scheme.

However, �constraints su�er from the same types of shortcomings that the original

model dependency scheme su�ered from, including an inability to mix model and

explicit dependencies in a constraint and an inability to deal with references to

global resources. �constraints are also more restricted than model dependencies

in that �constraints by design support only a few types of formulas while model

dependencies allow a formula to express arbitrary code.

A comparison of �constraints with model dependencies on the benchmark Amulet
applications revealed that �constraints could model 38% of the formulas but that

these formulas represented only 9% of the dependencies in an application [Vander

Zanden and Halterman 1999]. These �ndings are consistent with the basic model

dependency scheme, which was able to model 55% of the formulas but only about

20% of the dependencies. It is also probable that the �constraint scheme could be

improved with toolkit-tuning, just like the model dependency scheme.

7.2.4 Lightweight Glyphs. Calder and Linton used lightweight glyphs to imple-

ment structured graphical objects [Calder and Linton 1990; Linton et al. 1989]

(glyphs are often called
yweight objects [Gamma et al. 1995]). Glyphs do not

store all the information that speci�es their appearance but depend on graphical

context information passed into their drawing methods. In a similar manner model

dependencies refrain from storing all the dependency information needed by the

slots of an object, but instead require the object to access additional dependency

information from its template.

8. CONCLUSIONS

This section explores some directions for extending our research, followed by a �nal

assessment of the bene�ts of model dependencies.

8.1 Future Work

The research in this paper was primarily oriented toward developing the model

dependencies scheme. The resulting scheme is e�ective but it is not as application

programmer friendly as it might be. The programmer interface could be improved

in a couple of ways:

(1) Application programmer interface. Currently an applications programmer

must supply a list of model parameters to a formula that uses model depen-

dencies. While it is not uncommon for constraint systems to require program-

mers to supply the parameters or dependencies that are to become part of

Reducing Storage With Model Data
ow Graphs � 37

the data
ow graph, Amulet frees the programmer from this burden and au-

tomatically constructs the dependencies during the formula's execution. This

shortcoming could be overcome by removing the requirement for a parameter

list speci�cation and inferring model dependencies.

(2) Adding a CUSTOM model edge. New model edge relationships can be added

to the model dependency scheme by subclassing the Model Edge class (see Sec-

tion 4.1). However, some implementation knowledge of the model dependency

scheme is required to add these edges, so it is unlikely that anyone other than

a toolkit developer would add such edges. It would be nice if there was a sim-

pler mechanism that would allow an application programmer to specify custom

model edges in a formula. The diÆculty with specifying an arbitrary model

edge is that it is not always obvious to the constraint solver how to invert the

edge to create a dependency. One approach might allow a programmer to spec-

ify both the model parameter edge and the corresponding model dependency

edge. In essence, the programmer would supply the information needed by the

install() method. Since the syntax for specifying a model dependency edge

is the same as the syntax for specifying a model parameter edge (the formula

signature can be �lled in by the system), the programmer would not need to

learn any additional syntax.

8.2 Conclusions

This paper has introduced a model dependency scheme that can reduce the number

of explicit dependencies in a constraint graph signi�cantly. For example, a sample

implementation in the Amulet toolkit reduced the number of explicit dependencies

by almost 80%.

The signi�cance of the techniques developed in this paper is that they can reduce

the storage requirements of programs that manage a large number of constrained

objects. The reduction can allow applications to create more objects before being

forced into virtual memory. When an application is forced into virtual memory

its interactive performance typically degrades to unacceptable levels. Therefore,

making applications small enough to be stored in RAM memory is an important

goal.

The techniques developed in this paper accomplish their storage savings with-

out a signi�cant cost in performance. Although explicit dependency programs are

slightly faster when the number of constrained objects is small, model dependency

programs can be signi�cantly faster when the number of objects force non-modeled

applications to use virtual memory to provide the storage required by explicit de-

pendencies. Additionally, even when explicit dependency applications are faster

than model dependency applications, there is no perceptible di�erence in interac-

tive performance.

Model dependencies thus provide a useful new mechanism for improving the

storage eÆciency of one-way, data
ow constraint systems.

ACKNOWLEDGMENTS

The authors wish to thank Brad Myers and the anonymous referees for their helpful

comments.

38 � B. Vander Zanden and R. Halterman

REFERENCES

Alpert, S. R. 1993. Graceful interaction with graphical constraints. IEEE Computer Graphics

and Applications 13, 2 (March), 82{91.

Barth, P. 1986. An object-oriented approach to graphical interfaces. ACM Transactions on

Graphics 5, 2 (Apr.), 142{172.

Borning, A. 1981. The programming language aspects of ThingLab, a constraint-oriented

simulation laboratory. ACM Transactions on Programming Languages and Systems 3, 4

(Oct.), 353{387.

Borning, A., Duisberg, R., Freeman-Benson, B., Kramer, A., and Woolf, M. 1987. Con-

straint hierarchies. In OOPSLA'87 Conference Proceedings. 48{60.

Calder, P. R. and Linton, M. A. 1990. Glyphs: Flyweight objects for user interfaces. In

ACM SIGGRAPH Symposium on User Interface Software and Technology, Proceedings

UIST '90. Snowbird, Utah.

Demers, A., Reps, T., , and Teitelbaum, T. 1981. Incremental evaluation for attribute gram-

mars with application to syntax-directed editors. In Proceedings of the Principles of Pro-

gramming Languages Conference. Williamsburg, VA, 105{116.

Freeman-Benson, B. N. 1989. A module mechanism for constraints in Smalltalk. Sigplan No-

tices 24, 9 (Oct.). ACM Conference on Object-Oriented Programming; Systems Languages

and Applications; OOPSLA '89.

Freeman-Benson, B. N. 1990. Kaleidoscope: Mixing objects, constraints, and imperative

programming. In OOPSLA/ECOOP'90 Conference Proceedings. 77{88.

Freeman-Benson, B. N., Maloney, J., and Borning, A. 1990. An incremental constraint

solver. Communications of the ACM 33, 1 (Jan.).

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusetts.

Golub, G. H. and Van Loan, C. F. 1989. Matrix Computations, 2nd Ed. The Johns Hopkins

University Press, Baltimore, MD.

Hill, R. D. 1993. The RENDEZVOUS constraint maintenance system. In ACM SIGGRAPH

Symposium on User Interface Software and Technology, Proceedings UIST '93. Atlanta,

Georgia.

Hoover, R. 1992. Alphonse: Incremental computation as a programming abstraction. Sigplan

Notices 27, 7 (July), 261{272. ACM SIGPLAN'92 Conference on Programming Language

Design and Implementation.

Hudson, S. and King, R. 1988. Semantic feedback in the Higgens UIMS. IEEE Transactions

on Software Engineering 14, 8 (Aug), 1188{1206.

Hudson, S. E. Eval/vite user's guide (v1.0). Tech. rep., College of Computing Georgia Institute

of Technology, Atlanta, Georgia.

Hudson, S. E. 1991. Incremental attribute evaluation: A
exible algorithm for lazy update.

ACM Transactions on Programming Languages and Systems 13, 3 (July).

Hudson, S. E. 1994. User interface speci�cation using an enhanced spreadsheet model. ACM

Transaction on Graphics 13, 3 (July), 209{239.

Hudson, S. E. and Mohamed, S. P. 1990. Interactive speci�cation of
exible user interface

displays. ACM Transactions on Information Systems 8, 3 (July), 269{288.

Hudson, S. E. and Smith, I. 1996. Ultra-lightweight constraints. In ACM SIGGRAPH Sym-

posium on User Interface Software and Technology, Proceedings UIST '96. Seattle, Wash-

ington.

Jaffar, J., Michaylov, S., Stuckey, P. J., and Yap, R. H. C. 1992. The CLP(R) language

and system. ACM Transactions on Programming Languages and Systems 14, 3 (July).

Linton, M. A., Vlissides, J. M., and Calder, P. R. 1989. Composing user interfaces with

InterViews. IEEE Computer 22, 2 (Feb.).

Maloney, J., Borning, A., and Freeman-Benson, B. 1989. Constraint technology for user-

interface construction in ThingLabII. Sigplan Notices 24, 10 (Oct.). ACM Conference on

Object-Oriented Programming Systems Languages and Applications; OOPSLA '89.

Reducing Storage With Model Data
ow Graphs � 39

Myers, B. A., Giuse, D. A., Dannenberg, R. B., Vander Zanden, B., Kosbie, D. S., Pervin,

E., Mickish, A., and Marchal, P. 1990. Garnet: Comprehensive support for graphical

highly interactive user interfaces. IEEE Computer 23, 11 (Nov.).

Myers, B. A., Giuse, D. A., Mickish, A., and Kosbie, D. 1994. Making structured graphics

and constraints practical for large-scale applications. Tech. Rep. CMU-CS-94-150, School

of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania. May.

Myers, B. A., McDaniel, R. G., Miller, R. C., Ferrency, A., Faulring, A., Kyle, B. D.,

Mickish, A., Klimovitski, A., and Doane, P. 1997. The Amulet environment: New

models for e�ective user interface software development. IEEE Transactions on Software

Engineering 23, 6 (June).

Reps, T., Teitelbaum, T., and Demers, A. 1983. Incremental context-dependent analysis for

language-based editors. ACM Transactions on Programming Languages and Systems 5, 3

(July). Conference Record of the Ninth Annual ACM Symposium on Principles of Pro-

gramming Languages, January, 1982.

Rosener, W. J. 1994. Integrating multi-way and structural constraints into spreadsheet pro-

gramming. Ph.D. thesis, Department of Computer Science, University of Tennessee.

Roussel, P. 1975. PROLOG: Manuel de Reference et d'Utilisation. Group d'Intelligence Ar-

ti�cielle, Universit�e de Marseilles.

Sannella, M. 1994. Skyblue: A multi-way local propagation constraint solver for user interface

construction. In ACM SIGGRAPH Symposium on User Interface Software and Technology.

Proceedings UIST'94, Marina del Rey, CA, 137{146.

Sannella, M. and Borning, A. 1992. Multi-Garnet: Integrating multi-way constraints with

Garnet. Tech. Rep. 92-07-01, Department of Computer Science and Engineering, University

of Washington. Sept.

Sannella, M., Maloney, J., Freeman-Benson, B., and Borning, A. 1993. Multi-way versus

one-way constraints in user interfaces: Experiences with the DeltaBlue algorithm. Software

Practice and Experience 23, 5, 529{566.

Vander Zanden, B. 1996. An incremental algorithm for satisfying hierarchies of multi-way,

data
ow constraints. ACM Transactions on Programming Languages and Systems 18, 1

(January), 30{72.

Vander Zanden, B., Myers, B. A., Giuse, D., and Szekely, P. 1991. The importance of

pointer variables in constraint models. In ACM SIGGRAPH Symposium on User Interface

Software and Technology. Proceedings UIST'91, Hilton Head, SC, 155{164.

Vander Zanden, B., Myers, B. A., Giuse, D. A., and Szekely, P. 1994. Integrating pointer

variables into one-way constraint models. ACM Transactions on Computer Human Inter-

action 1, 2 (June), 161{213.

Vander Zanden, B. T. 1994. Optimizing toolkit-generated graphical interfaces. In ACM SIG-

GRAPH Symposium on User Interface Software and Technology. Proceedings UIST'94,

Marina del Rey, California, 157{166.

Vander Zanden, B. T. and Halterman, R. 1999. Reducing the storage requirements of con-

straint data
ow graphs. To appear in Proceedings of the 12th ACM SIGGRAPH Sympo-

sium on User Interface Software and Technology.

Vander Zanden, B. T., Myers, B. A., Szekely, P., Giuse, D. A., McDaniel, R., Miller,

R., Halterman, R., and Kosbie, D. Lessons learned about one-way, data
ow constraints

in the Garnet and Amulet graphical toolkits. Submitted for publication.

Vander Zanden, B. T. and Venckus, S. A. 1996. An empirical study of constraint usage in

graphical applications. In ACM SIGGRAPH Symposium on User Interface Software and

Technology, Proceedings UIST '96. Seattle, Washington.

Appendix

An appendix to this paper is available in electronic form (PostScriptTM). Any of

the following methods may be used to obtain it; or see the inside back cover of a

current issue for up-to-date instructions.

40 � B. Vander Zanden and R. Halterman

|By anonymous ftp from acm.org, �le [pubs.journals.tochi.append]p0001.ps

|Send electronic mail to mailserve@acm.org containing the line

send [anonymous.pubs.journals.tochi.append]p0001.ps

|By Gopher from acm.org

|By anonymous ftp from ftp.cs.princeton.edu, �le pub/tochi/append/p0001.ps

|Hardcopy from Article Express, for a fee: phone 800-238-3458, fax 201-216-8526,

or write P.O. Box 1801, Hoboken NJ 07030; and request acm-tochi-appendix-

0001.

Reducing Storage With Model Data
ow Graphs � A{1

APPENDIX

this document is the appendix to the following paper:

Using Model Data
ow Graphs to Reduce the Storage Requirements of Constraints

BRADLEY T. VANDER ZANDEN and RICHARD HALTERMAN

University of Tennessee

ACM Transactions on Computer-Human Interaction

A. STRUCTURAL EDITS TO COMPOSITE OBJECTS

This appendix describes how the following editing operations are handled by the

model dependency scheme:

(1) a part is added to a composite object, and

(2) a part is removed from a composite object.

A.1 Part Added To A Composite Object

When a part p is added to an object obj after obj has been created, there is no

guarantee that all the model dependencies needed by p's model constraints will be

present. Speci�cally, any of p's formulas with PARENT or SIBLINGmodel parameters

will probably not be represented in obj's model data
ow graph. For example,

suppose that the template for a labeled box object is only partially speci�ed. In

particular, assume that the frame component is present but the label component

is not (perhaps the programmer wants the
exibility of being able to use either a

text string or an icon as the label).

The CHILDmodel dependencies from the parent's left and width slots to label.-

left will not be present in the labeled box's model subtree since the model data
ow

graph creation method (Figure 12) will not examine the C2 constraint in the miss-

ing label. If the label part is subsequently added, the C2 constraint (which has two

PARENT parameters) computing label.left will not be invalidated by the labeled

box's left and width slots unless the constraint C2 establishes explicit dependen-

cies.

Fortunately, any model constraints that reference PARENT or SIBLING parame-

ters and that are in an object with no parent will already be marked as having

to generate explicit dependencies. The reason is that either the object was 1) cre-

ated without a parent, in which case the algorithm in Figure 14 has marked these

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for pro�t or direct commercial

advantage and that copies show this notice on the �rst page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must

be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, to redistribute to lists, or to use any component of this work in other works, requires prior

speci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACM

Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

c
2001 ACM

A{2 � B. Vander Zanden and R. Halterman

constraints, or 2) removed from another object, in which case the removal process

marked these constraints (part removal is discussed next). Consequently no special

action needs to be taken when a part is added to a composite object.

A couple of additional points need to be made about part addition. First, if the

new part is given the same part name as a previous part that was removed, then

there is a chance that one of the slots in the new part has the same formula as a

similarly named slot in the previous part (e.g., both width slots might be computed

by the same formula). In this unlikely event, duplicate dependencies, explicit and

model, will map from the same slot to the same constraint. This causes a small

duplication of e�ort since the duplicate edges will both invalidate the slot when

one is suÆcient to do the job. However, the behavior of the application will be

una�ected. This duplication rarely occurs in practice.

Second, although model dependencies from other parts to the added part are

missing, model dependencies from the added part to the pre-existing parts will be

present. For example, any model dependencies that point from the label part to

either the parent part or the frame part will be created and placed in the labeled

box's model supertree. The reason is that the responsibility for the creation of

the model dependency is that of the dependent object, not the missing part. For

example, the formula for frame.width has a model edge parameter (SIBLING,

label, width). This parameter generates a (SIBLING, frame, width) model

dependency edge and stores it in label's model supertree graph, which is managed

by frame's parent. When a label part is subsequently added to a labeled box

instance, the model dependency in label's model supertree is already present and

will properly invalidate frame.width whenever label's left changes.

A.2 Part Removed From A Composite Object

When a part is removed from a composite object, any model dependencies that

point from parent or sibling slots to slots within this removed part are now \dan-

gling." The constraint system removes any dangling explicit dependencies, but

dangling model dependencies cannot be removed since other instances use the same

model data
ow graph. These other instances may not have had their correspond-

ing part removed, so the model dependencies to this part must still be retained in

the template. As in the case with constraint removal, removing a part does not

break the model dependency traversal process because if a dependent slot cannot

be located by following the path stored in the model dependency edge, then no

dependent constraint is returned. Hence a small amount of unnecessary work is

performed to discover that the dependent slot no longer exists, but no behavioral

damage is done.

The constraints in the removed part that were pointed to by the model dependen-

cies must now be marked as generating explicit dependencies since they will need

to be re-evaluated if and when the part is added to another composite object (recall

that an added part expects these constraints to generate explicit dependencies). A

model constraint can be forced to generate explicit dependencies instead of model

dependencies as follows:

(1) Invalidate the model constraint and set the constraint's generate dependencies

ag to true.

Reducing Storage With Model Data
ow Graphs � A{3

(2) The next time the constraint is evaluated, it will notice that its
ag for generat-

ing explicit dependencies has been set and it will generate explicit dependencies,

just like a standard constraint.

The constraints that need to be marked are the ones which reference PARENT

or SIBLING parameters. These constraints will have their needs parent �eld set

to true, so the part removal algorithm simply checks this �eld in each constraint

and performs the above procedure on the constraint if the �eld is true.

B. HANDLING PROTOTYPES

This appendix describes additional considerations that must be taken into account

if a prototype-instance model is used with a model dependency scheme.

B.1 Edits to Prototypes

In a prototype-instance system, special actions must be taken if the prototype

itself, rather than one of its instances is edited. In this case, the prototype's model

data
ow graph may also have to be adjusted to re
ect the edit. For example, when

a part is added to a prototype, the prototype's model data
ow graph should be

augmented to re
ect any model dependencies the new part may require.

The adjustments that are made to the model data
ow graph when a prototype

in a prototype-instance object system is edited can be summarized as follows:

(1) A constraint is assigned to a slot: In this case, the data
ow graph can be

updated by calling the installmethod on each of the constraint's parameters.

However, recall that if one of the constraint's parameters references a parent,

then it needs the parent in order to invert itself and generate a model depen-

dency edge. Hence the constraint should not install itself in the model data
ow

graph if one of its parameters requires a parent and its parent is missing. Lines

3-6 in Figure 12 perform the necessary check and installation.

(2) A constraint is removed from a slot: In this case, the data
ow graph can be

updated by calling a remove method on each of the constraint's parameters.

However, as in the previous case, if one of the constraint's parameters references

a parent and the parent is missing, then the constraint's model dependencies

are not present in the model data
ow graph and the graph does not have to be

updated. Lines 3-6 in Figure 12 can perform the necessary check and removal

provided that the call to install is replaced with a call to remove. The remove

method is similar to the install method in that it inverts the parameter in

order to �nd the model dependency edges created by the parameter. It then

goes to the appropriate model data
ow graphs, locates the model dependency

edges, and removes them. A sample remove method for a Sibling parameter is

shown in Figure 24.

(3) A part is added to a prototype. The part should already have a model sub-

tree that contains model dependencies from constraints that have only SELF

and CHILD parameters. In this case only constraints referencing SIBLING

and PARENT parameters have to update the model data
ow graph (these con-

straints may also reference SELF and CHILD parameters). The part addition

method can accomplish this update by scanning through the part's constraints

A{4 � B. Vander Zanden and R. Halterman

|The remove method removes the model dependency edges generated by a SIBLING

|parameter (see Table 6). The method takes as arguments the object and the

|slot whose constraint requested the parameter. For example, assume

|that the parameter edge is (SIBLING, B, w) and that C.v requested

|the parameter (as in Table 6). C and v will be passed in as

|the template object and the to slot respectively. The remove method will remove

|three model dependency edges: 1) a (SIBLING, C, v) edge from B.w to C.v, 2) a

|(CHILD, C, v) edge from A.B to C.v, and 3) a (SELF, v) edge from C.parent to C.v.

Method Sibling Model Edge.remove(Object template, Slot to slot, Signature sig)

|Get C's parent, A

1 parent template.parent

|First, remove the (SIBLING, C, v) edge that goes from vertex B.w to vertex C.v.

|This edge is found in B's model supertree. self.sibling name

|and self.slot name refer to �elds in the sibling

|parameter edge, which contain the values B and w in this example.

2 graph parent.model supertree[self.sibling name]

3 graph[self.slot name].delete sibling edge(template.part name, to slot, sig)

|Next, delete the (CHILD, C, v) edge that goes from vertex A.B to vertex C.v.

|This edge is found in A's model subtree.

4 graph parent.model subtree

5 graph[self.sibling name].delete child edge(template.part name, to slot, sig)

|Finally, delete the edge (SELF, v) that goes from vertex C.parent to C.v.

|This edge is found in C's model subtree.

6 graph template.model subtree

7 graph[parent].delete self edge(to slot, sig)

Fig. 24. Removal method for the Sibling Model Edge type. The delete sibling edge, delete -

child edge, and delete self edge methods search for an edge of the speci�ed type and formula

signature and delete this edge if it is found.

and for each one whose needs parent �eld is set, calling each of the parameters'

install methods.

(4) A part is removed from a prototype. As noted earlier, when a part is re-

moved from a composite object, any model dependencies that point from par-

ent or sibling slots to slots within this removed part are now \dangling." If

the part is removed from a prototype, then the corresponding part will be re-

moved from all the instances as well. Hence these dangling dependencies are no

longer needed and should be removed from the parent's model supertree graphs.

Since these dependencies are created by PARENT or SIBLING parameters, the

part removal algorithm can simply scan the removed part's constraints and for

each constraint whose needs parent �eld is marked true, call each parameter's

removemethod. The part's model subtree graph is still valid so it does not have

to be modi�ed. For this reason the part removal algorithm ignores constraints

whose needs parent �eld is marked false.

B.2 Modeling a Prototype's Dependencies After it is Instanced

The prototype-instance model allows one additional, useful extension to the model

dependency scheme. This extension is based on the observation that once a pro-

totype P has been instanced and a model dependency graph for its instances has

been created, P no longer needs to use its prototype's model data
ow graph to

Reducing Storage With Model Data
ow Graphs � A{5

derive its own model dependency information; it can use the model data
ow graph

created for its instances.

Implementation. When an object obj is instanced for the �rst time, a model

dependency graph G for obj is created and two additional steps are performed:

(1) obj's model data
ow graph pointer is redirected from its template's model

data
ow graph to the newly created graph G, and

(2) all explicit dependencies pointing to model constraints within obj are removed,

since many of them are now modeled by G. The constraints are then invalidated
so they will be re-evaluated and will re-establish explicit dependencies where

necessary.

Note that this e�ort is expended at most once for each object, when that object is

instanced for the �rst time.

