
The InterMezzo File System

Peter J. Braam, braam@cs.cmu.edu
Carnegie Mellon University & Stelias Computing

Michael Callahan, mjc@rodagroup.com
The Roda Group

Phil Schwan, pschwan@inter-mezzo.org
Stelias Computing

Abstract

Is it possible to implement a distributed file
system, retaining some of the advanced
protocol features of systems like Coda, while
getting an implementation that is an order of
magnitude simpler? We claim the answer is
“yes”, and InterMezzo is well on its way
towards being a prototype of such a system.
The key design decisions were to exploit local
file systems as server storage and as a client
cache and make the kernel file system driver a
wrapper around a local file system. We use a
rich, high level language and work with
asynchronous completion instead of threads.
Finally, we rely on existing infrastructure, such
as TCP. This is in contrast with systems like
Coda and AFS, which implement their entire
infrastructure from the ground up, in C. This
paper will describe the design and
implementation decisions used in our
prototype.

Introduction

Designing and implementing distributed file
systems poses a major intellectual challenge.
Many excellent ideas have come out of
research projects, and some systems offer
many advanced features.

The basic question we wanted to answer is the
feasibility of building an interesting distributed
file system with an order of magnitude less
code than a system like Coda [coda] has, yet
retaining some of the advanced features. We
claim the answer is “yes”. In this paper we
will describe some of the design and
implementation decisions for the InterMezzo
file system.

To keep our project modest, we are first
targeting the project of online directory
replication on a system area network, allowing
for network and system failures. This exposes
many of the subsystems needed, but leaves
some others aside. However, our paper
describes the broader design issues, parts of
which will be implemented and likely modified
in the process of bringing InterMezzo forward.

The code for InterMezzo will soon be available
at http://www.inter-mezzo.org.

Acknowledgements: The authors thank the
other members of the Coda project for fruitful
discussions. This research was supported by
the Air Force Materiel Command (AFMC) under
DARPA contract number F19628-96-C-0061.
IBM and Novell provided additional support.
The views and conclusions contained in here
are those of the authors and should not be
interpreted as necessarily representing the
official policies or endorsements, either
express or implied, of AFMC, DARPA, IBM,
Novell, Carnegie Mellon University, Stelias
Computing Inc., The Roda Group LLC or the
U.S. Government.

Designing Distributed File
Systems

There are several components to distributed
file systems. First, network file systems have
clients, which can fetch data from servers and
send modifications to servers. This requires
network request processing including bulk
transfer. The fact that the client gains file
system access to the files requires a kernel
level file system driver. Without adding bells
and whistles here we already have a list of
complicated components.

Delicate protocols and versioning information
is needed to give good semantics of sharing.
For example, a server may have to notify
clients that cached versions of the files or
directories are out of date. This requires the
client to both make requests to servers, on
behalf of client processes accessing and/or
modifying file system objects, as well as to
answer requests from the server to maintain
cache validity.

Performance is another important
consideration, which usually becomes
pervasive in a design. One must minimize the
number of network interactions, and also make
these interactions as efficient as possible.
Security, management and backup add
another dimension to a file system project.

Given this picture, it should not come as a
surprise that not all the advanced file system
projects have delivered systems that gained
widespread use. Fortunately many features
and ideas have been explored and thoroughly
evaluated during the last 15 years. A central
question that has not been answered
appropriately is how to implement file systems
reliably, with a reasonable amount of code.

Here something can be learned from other
distributed systems. Ericsson was facing the
daunting task of implementing control systems
for telephone exchanges. The Erlang language
[erlang] was developed as a result of extensive
studies how to construct reliable distributed
systems. The Teapot [teapot] project at the
University of Wisconsin explored domain
specific languages enabling construction and
verification of distributed shared memory
software. This toolkit was subsequently used
by the Berkeley XFS project [xfs]. The ACE
toolkit [ace], developed at George Washington
University, provides extensive C++
frameworks for building distributed systems.

Interestingly all of these projects have reached
conclusions bearing considerable similarity: a
state machine with asynchronous event
notifications is exploited, which gives a better
overview of the distributed state than the
classical “multi-threaded” server models.

Another key contributor to difficulties with file
systems lies in the kernel code. Linux
development has shown that even to get a
correct implementation of a relatively simple
file system such as NFS, numerous subtle
issues have to be addressed, resulting in a
long arduous development path. UCLA’s Ficus
[ficus] project made an important contribution
in this field, namely to use stackable file
systems [stackable], also available for Linux
[zadok]. These are file system layers that
leverage and extend the functions of other file
systems. We use this approach in InterMezzo
and avoid the difficulties associated with a full
file system implementation.

InterMezzo is at present a prototype, and the
first target for the system is to do reliable
directory replication between two nodes, on a
secure system area network. Its protocols are
suitable for extensions, and a fully featured
distributed file system can be constructed from
this starting point.

Overview of InterMezzo

Faced with a multitude of design choices, we
drew up the following list of requirements.

1. The server file storage must reside in a
native file system.

2. InterMezzo’s client kernel level file system
should exploit existing file systems, and
have a persistent cache.

3. File system objects should have meta-data
suitable for disconnected operation.

4. Scalability and recovery of the distributed
state should leverage scalability and
recovery of the local file systems.

5. The system should perform kernel level
write back caching.

6. The system should use TCP and be
designed to exploit existing advanced
protocols such as rsync for synchronization
and ssl/ssh for security.

7. Management of the client cache and
server file systems should differ in policy,
but use the same mechanisms.

Many issues remain open. For example, we
have not yet decided if we should identify
InterMezzo file objects (i.e. files & directories)
through file identifiers, path names or

server/device/inode triples. Our system is
designed to enable us to switch from one
model to another with a relatively small effort.

Security and management are important. AFS
and Coda set good examples for management
of server space, by working with file sets,
a.k.a. volumes. File sets are groups of files
that form a sub-tree of the InterMezzo name
space, and which are typically much bigger
than a single directory and much smaller than
an entire disk partition. Coda and AFS, as well
as DCE/DFS and Microsoft dfs, have a single
name space. This means that all client systems
see one large file tree containing all the file
sets exported by InterMezzo servers in a
cluster.

Often it is desirable to work with a small
collection of file sets separately, so we left
room to manipulate the InterMezzo exported
file sets more explicitly than in those systems.

File sets, mount points, servers
and clients

Each file tree made available by a cluster of
InterMezzo servers is built up of file sets or
volumes, which are similar to Coda and AFS
volumes. Each file set has root directory and
can contain InterMezzo mount points of other
file sets. An InterMezzo mount point is a
concept similar to but distinct from a Unix
mount point. A client can have any file set as
the root of an InterMezzo file system.

A file set has a file set storage group
associated with it, describing the server
holding the file set. The file set location
database describes the mount points of file
sets, as well as their storage group. An
InterMezzo cluster is a group of servers
sharing a single file set location database
(FSLDB).

A client will be able to choose any file set as
the root for a mounted instance of an
InterMezzo file system. If the root file set is
not the default, then all ancestors of the
mount point of that file set are invisible, this
accommodates exporting sub-trees of the
entire cluster file tree. File sets contain files
and directories, and generally user level

software is not aware of the presence of file
sets.

The file set location database is implemented
as a sparse tree of directories, handled as a
special object in the file system. An update
record is associated with each modification of
the file set tree, and version numbers are
associated with each update. This allows the
file set database to be updated, without
downloading the latest version (which is also
kept).

InterMezzo makes a distinction between clients
and servers, but mostly as a matter of policy,
not mechanism. While the same mechanisms
are used, the server maintains the on-disk
structures as authoritative records of file state,
and also coordinates state coherence across
the InterMezzo clients. Each server will also
be an InterMezzo client, but the file system
layout on the server is slightly different from
that on other clients. A file set mount point on
a server is not necessarily a directory in the
InterMezzo file system as it is on a client. If
the server stores the file set, a symbolic link is
placed at the mount point, which targets a
directory on the server holding the data. This
target directory is the file set holding location
(FSHL).

Journaling updates and filtering
access

An InterMezzo cache is simply a local media
file system, which is mounted with an extra
filter layer wrapped around this local file
system. The filter layer is called “Presto” for
Linux and “Vivace” for Windows platforms.
The purpose of the filter is twofold:
• Filter access, to validate currency of the

data held in the local file system
• Journal updates made to the file system

All requests emanating from Presto are
handled by Lento, the user level cache
manager on the system. Note that Lento acts
both as the file server and as the client cache
manager. Figure 1 graphically describes the
operation of the InterMezzo filter driver.

The code in Presto is quite straightforward.
When InterMezzo is mounted, Presto is

informed of the file system type that it is
wrapping. It remembers all VFS methods
associated with dentries, inodes and files of
the wrapped file system in the “bottom_ops”
structures. The “bottom_ops” are typically
those of the ext2 file system. Presto must
filter all access and journal all updates, but
must make an exception for the process
managing the cache, which is named Lento
and will be discussed later. Lento’s
modifications of the cache should be immune
from filtering or journaling.

As an example let us describe the open call for
directory inodes. When an object is accessed
and it is not present in the cache, the object is
fetched. Files are presently fetched in their
entirety. Directory fetching is implemented by
creating the name, and creating sparse files
and empty subdirectories for each of their
entries. While this introduces significant
latency in the access to directories,
compensation comes from the fact that the
subsequent acquisition of attributes of the
entries is entirely local.

In pseudo code, the kernel open method has
the following structure:

int dir_open(inode *inode, file *file)
{

if (!HAVE_DATA(inode) && !ISLENTO)
{

upcall(inode, “get_data”);
}
return bottom->dir_open(inode, file);

}

Updates to objects are made as follows. First
a Permit is acquired to execute concurrency
control. On clients, the updates are made in
the cache and journaled in a client
modification log for reintegration to servers.
The server holding the file set repeats the
modifications made to the volume and will
forward the modification log to clients
registered for replication. We call the process
of forwarding modification logs to the clients
update notification. The processes of
reintegration and update notification are
almost identical.

The modification logs details modifications
made to directories and file attributes, as well
as all close operations on files. Such files,
which have been closed after a modification,
are then “back-fetched” by the server. If a
server detects that it does not have a directory
created by the client, it recursively back-
fetches the contents of that directory from the
client.

VFS

Lento:
Cache Manager &
Server

Filter: data fresh?

Local file system

Kernel Update Journal

mkdir...
create...
rmdir...
unlink...
link….

Ship when full

Pr
es

to

no

Other lento’s

Figure 1: Basic operation of the InterMezzo system.

The mkdir method in Presto is roughly
implemented as follows:

int mkdir(inode *inode, char *name)
{

if (!HAVE_PERMIT(inode) && !ISLENTO)
{

lento_getpermit(inode);
}
rc = bottom->mkdir(inode, name);
if (! rc && ! ISLENTO)
{

journal(“mkdir”, inode, name);
}
return rc;

}

A client can place a replication request for a file
set with the server holding the file set – the
server will then propagate all updates it receives
to this client.

If a file set is modified on the server, an almost
identical process takes place. The updates are
journaled but now only propagated to clients
registered for replication. Other clients will
invalidate their caches when they learn of the
updates, and re-fetch the data. In order to
accomplish this, the holding location of a file set
is itself mounted as an InterMezzo file system to
enable journaling of updates.

We see a high degree of symmetry in the
operation of clients and servers, and Lento
running on clients and servers must be capable
of:
• File Service: fetching (on clients) and back-

fetching (on servers) of files and directories
• Reintegration service: receiving modification

logs (on servers) and update notifications
(on clients) for reintegration

We see that both servers and clients should be
capable of making modifications and serving
data.

A key distinction is that a server implements
security while a client can trust an authenticated
server and implement changes without checking
permissions on an object basis. Secondly a client
may make changes to its cache solely for freeing
up space. Such modifications are, of course, not
propagated to servers.

In a trusted environment, an optimization can
take place, which simply changes the holder of
the file set to the system modifying the file set.
This system then is responsible for updating all
replicators of the volume.

Protocols

The Coda, AFS and DCE/DFS protocols (see
[dfs-protocols] have many attractive features,
and our intention was to preserve many aspects
of these.

Each cached object (i.e. directory or file) has
attributes HAS_DATA, HAS_ATTR to indicate if
its data/attributes are valid in the cache.
Before accessing an object, the client will verify
that it is current, and re-fetch it if necessary.
The protocol has a FetchDir and FetchFile call
for fetching and a Validate call for assessing
currency. The presence of a HAS_DATA or
HAS_ATTR flag is called a call-back and enables
the client to reuse the object without contacting
a server.

The server will notify clients holding callbacks on
objects before storing modified objects.
InterMezzo’s design could also allow breaking
these callbacks before the modification is
initiated. In either case, a server-initiated
request BreakCallback is issued. The
BreakCallback request is handled as a multi RPC,
as in Coda. This means that the BreakCallback
request is sent out to all clients and only then
replies are gathered -- this avoids multiple
timeouts. When data is to be modified, a client
will get a permit to do so. There is a GetPermit
request to do this. A successful permit
acquisition is indicated with a HAS_PERMIT flag
in the status field.

Every object will be identified by an identifier
and a version stamp. Our protocols will
guarantee that two objects with the same
identifier and version-stamp are identical. In
addition to object version stamps, volumes have
stamps too, and allow for rapid revalidation of
entire volumes, in the common case where no
objects in the volume have changed.

InterMezzo can validate cached objects with
Validate requests. As in Coda, these can be

issued at the volume and file system object
level.

The propagation of updates is done through the
Reintegrate request. This request uses the
modification log, in a way that is similar to
Coda’s reintegration. The client modification log
(CML) is shipped to the server. The server
proceeds to incorporate the changes to the
directory tree and then fetches the files from the
client, for which close operations were in the
CML.

Coda avoids many race conditions by including
the version with the RPC for the file affected by
the update. For example, the creation of a new
directory would include the version of the parent
directory present on the client. This allows the
server to make sure that the server version
being modified is that of the client. If the
versions are unequal, the reintegration of this
modification causes a conflict, which needs
special handling. InterMezzo will do this as well.

So at present InterMezzo’s protocol is very
simple.

Lento – cache manager and file
server

Lento is responsible for handling file service
requests from the network or the kernel.
Traditional servers and cache managers are
implemented using a thread pool model. The
requests come in and are placed on a queue.
Worker threads pick up and process the
requests, and block while doing I/O, during
which other worker threads can continue.

We chose to do start with a single threaded
event driven implementation based on
asynchronous I/O. In Lento, requests come in
and a session is instantiated to handle them. A
session is not a thread, but a data structure that
contains state and event handlers. I/O is done
asynchronously and a kernel signals the
completion of I/O, through dispatch of events.
The kernel activates all event handlers and is
also responsible for garbage collecting sessions
when no events can reach them. Sessions have
process style relationships.

For prototyping we used the POE (Perl Object
Environment) toolkit, see [poe]. POE
implements a session framework as described
above and has Wheels that consist of Drivers to
do the I/O and Filters to pre-process the data
received.

We added two wheels to POE. The PacketWheel
is there to send and receive network requests,
which the filter unpacks and then gives to the
connection. The connection determines the
destination session for the request, which can
be an existing session or the request dispatcher,
in case a new or specially chosen session must
handle the request. Our UpcallWheel unpacks
requests originating in the kernel, which reach
Lento through a character device /dev/presto.

These wheels have been combined with an
AcceptorWheel that creates accepted TCP
connections.

The processing of net and kernel requests is
graphically indicated in figures 2 and 3.

As an example we will give the pseudo code for
the upcall session servicing an “FetchFile”
request from the kernel. The notation below
describes a session as a hash of event handlers.

Fetchfile = new session (
{ init => {

if (!have_attr)
req_attr(attr_arrived);

else
post(fetch_data);

},
attr_arrived => {

if (status == success)
post(fetch_data)

else { destruct_session(error);
},

new_filefetch => {
 queue_event(this) ;
 },
complete => {

reply_to_upcall;
handle_queue;
destruct_session;
}, …...

});

Each of the event handlers may engage in a
blocking I/O operation, for example to fetch the

attributes. In doing so it indicates what event
will complete the asynchronous operation.
Ultimately, when the data is all on the client, the
request completes to the kernel by replying to

the upcall. A queue associated with the session
allows further requests to fetch the data for the
same object to be handled by the session that is
already in the process of fetching.

SocketFactoryPacketWheel

Connection
connector(host, port)
- list of client sessions
- peer, port, etc.

Server object:
 - connector session
 - volumes hosted there

new

_start

get_connectionreply
data
endreq
enddata

req

_start

got_connection
got_error

got_wheel
got_error

upcall sessions

UpcallWheel ReqDispatcher
got_upcall

_start

Figure 2: Upcall Handling

Socke tFacto ryPacke tW heel

Connection
accepto r(port)
- lis t o f c lien t sessions
- peer, po rt, etc .

g o t_e rro r
re q

g o t_ erro rrep ly
d ata
en d req
en d d ata
req

_sta rt

g o t_w he el

request sessions

reqd ispa tcher

Figure 3: Network Request handling

Lento also needs a variety of daemon sessions,
which are not garbage collected but perform
simple periodic or persistent tasks. For

example, we have the ReqDispatcher, which
sets up new request handling sessions. For the
management of client initiated connections, we

use Connector daemons, which create a TCP
socket connect to a server, and manage the
sessions using the connection.

Network packets contain Asynchronous
Completion Tokens (ACT’s, see [ace]) which
encapsulate the source and destination sessions
for request handling. There are 6 types of

packet: requests, messages, replies, data, end-
of-data and end-of-request packets.

Lento also uses various tables: tables exist for
servers, volumes, and file system objects, each
with their own attributes. When Lento starts a
number of data structures are set up, as
depicted in figure 4.

Bootstrap
Session

_start

Parse A rgum ents

Set up ServerDB: $::serverdb

Set up Vo lum eDB: $::v ldb

Add server and root vo lum e

Set up Fsdb: $::fsdb

S tart: Acceptor sess ion

Set up ServerSem antics

Set up Psdev: $::psdev

S tart: ReqD ispatcher

M ethod ca lls

O bject in stan tiation

Session startup

Figure 4: Lento startup

Some of the set-up processes are quite involved.
For example, setting up the file system database
(Fsdb) may involve recovery. (Currently this
consists simply of wiping the cache.) The server
semantics supplement the Fsdb database with
callback and permit tracking, as these are
released and acquired by clients.

Recovery and cache validation in
more depth

On Linux, InterMezzo can use the ext2 file
system to hold server and cached data. We
envisage having a fast and sophisticated file
system database (Fsdb) for extra meta-data
required by InterMezzo. This would be
managed by Lento, and would hold the version
information for cached objects, as well as inode-
to-filename or inode-to file identifier translation
information. If a client crashes some of the
data will be held in buffers, other data will be on
the disk and it is necessary to think through
precisely what is needed for clean recovery.

The simplest recovery process is to simply wipe
the cache, which for large caches is clearly very
undesirable. The basic attribute for establishing
currency of a cached object is the version

stamp. If the version stamps of the objects are
equal the objects should be equal, and version
changes originating from a single client should
be ordered.

Consider the situation of a crash while fetching
data into the cache. The situation to avoid is to
believe that the cache is up to date, while in fact
the data was not fully fetched. To achieve this,
the version stamp should not be written to
persistent storage until it is certain that the
fetched data has made it to the disk. On Linux
this can be achieved by simply waiting 30
seconds before flushing the Fsdb database
buffers. Upon reconnection to a server, all
objects having an out of date version stamp
should be flushed from the cache. If recovery is
followed by disconnected operation, one could
allow the possibly incompletely fetched objects
to be used, for maximum availability. Such
objects can be identified as those having a ctime
less than 30 seconds since the last Fsdb flush.
If such objects are modified and reintegrate,
they be regarded as “suspect” and be handled
as though they were conflicts.

If a client is modifying existing data when
crashing, then the reverse risk exists: the client,

when recovering, may see an old version stamp
in the database, and possibly also an old mtime
in the inode. If the object has just been fetched,
the version stamp may even be older than that
on the server. Yet the data on the client disk
may be newer than that on the server. There
are several approaches here, the simplest being
“laissez faire” and accepting the fact that a few
seconds of data modifications might be lost. This
is not very desirable, since everything should be
done not to lose the latest version of data.

Alternatively, the inode under modification could
be updated with a new mtime and synced to
disk. Provided modifications do not happen
within the granularity of mtime units this allows
the recovery mechanism to identify this file as
suspect. The collection of suspect files is
defined as those having an mtime later than the
last sync time of the Fsdb. Such suspect files
could be made subject to rsync style
reintegration.

Yet another solution is to write the Fsdb
database record to disk, before starting the
modification, indicating that the inode has now
changed. The latter involves a context switch to
Lento, but since disk traffic is involved anyway,
this is probably not a significant overhead, see
[bottlenecks].

This detailed and slow initiation of modification
procedure would not affect newly created
objects.

InterMezzo aims to be usable for daemon
controlled situations, for example to provide
replication for WWW data. In such cases
handling conflicting updates should not involve
user interaction and we will introduce policies to
handle conflicts automatically, for example by
giving preference to the server copy and
notifying an administrator of a conflict.

InterMezzo on Windows 9x,
Windows 2000 and other Unix
systems

We believe that the InterMezzo system can fairly
easily be ported to Windows 9x and Windows
NT/2000, building on the experience we gained
when doing this for Coda [coda-win].

Both systems have the capability to do
sophisticated filtering of file system requests and
combine them with up-calls. Simple examples
of such filter drivers are found in the FileMon
utility [filemon]. For Windows 9x an additional
difficulty arises from the non-reentrancy of the
operating system. Lento will have to be a 32-bit
DOS application, just like Coda’s cache manager
Venus. Fortunately, the Coda project provides
the tools to make a port possible, and somewhat
amazingly the Coda DOS cache manager works
very well.

Porting InterMezzo to other Unix systems should
be possible, but might require knowledge only
obtainable through kernel source.

Conclusion

With 2,500 lines of C kernel code and 6,000
lines of Perl code (don’t worry, no one liners
here) we have managed to implement the basic
functionality of the InterMezzo file system.

This is very encouraging and we hope to
continue towards a fully functional robust file
system.

References

[ace]
http://siesta.cs.wustl.edu/~schmidt/ACE.html

[bottlenecks]
Removing Bottlenecks in Distributed
Filesystems: Coda and Intermezzo as examples,
Peter J. Braam & Philip Nelson, Linux Expo 99.

[coda]
http://www.coda.cs.cmu.edu

[coda-win]
http://www.usenix.org/events/usenix99/braam.h
tml

[dfs-protocols]
Distributed File Systems for Clusters: a Protocol
Perspective, Peter J. Braam, Usenix Technical
Conference, Extreme Linux Track, 1999.

See also:
http://www.extremelinux.org/activities/usenix99
/docs

http://siesta.cs.wustl.edu/~schmidt/ACE.html
http://www.coda.cs.cmu.edu/
http://www.usenix.org/events/usenix99/braam.htm
http://www.usenix.org/events/usenix99/braam.htm
http://www.extremelinux.org/activities/usenix99/docs
http://www.extremelinux.org/activities/usenix99/docs

[erlang]
http://www.erlang.org/

[ficus]
See: http://ficus-www.cs.ucla.edu/travler/

[filemon]
See: http://www.sysinternals.com

[poe]
See: http://www.netrus.net/users/troc/perl.html

[stackable]
John Shelby Heidemann. Stackable Design of
File Systems. Technical Report CSD-950032,
University of California, Los Angeles, September,
1995.

See also:
http://www.cs.columbia.edu/~ezk/research

[teapot]
Satish Chandra, Brad Richards, and James R.
Larus. Teapot: Language Support for Writing
Memory Coherence Protocols. In Proceedings of
the SIGPLAN '96 Conference on Programming
Language Design and Implementation (PLDI),
May 1996.

[xfs]
See: http://now.cs.berkeley.edu/

http://www.erlang.org/
http://ficus-www.cs.ucla.edu/travler/
http://www.sysinternals.com/
http://www.netrus.net/users/troc/perl.html
http://www.cs.columbia.edu/~ezk/research
http://now.cs.berkeley.edu/

	The InterMezzo File System
	
	
	Carnegie Mellon University & Stelias Computing

	The Roda Group
	Stelias Computing

	Introduction
	Designing Distributed File Systems
	Overview of InterMezzo
	File sets, mount points, servers and clients
	Journaling updates and filtering access
	Protocols
	Lento – cache manager and file server
	Recovery and cache validation in more depth
	InterMezzo on Windows 9x, Windows 2000 and other Unix systems
	Conclusion
	References

