
Overcoming the Network Bottleneck in Mobile Computing

Maria R. Ebling, Lily B. Mummert, David C. Steere
School of Computer Science
Carnegie Mellon University

1 Introduction

System designers have traditionally treated the net-
work as an inexhaustible resource, focusing their efforts on
optimizingCPU and storage usage. For instance, the popu-
lar NFS file system [8] supports diskless operation, thereby
avoiding use of local secondary storage at the expense of
increased networkusage. But in mobile computing, it is the
network, rather than CPU or storage, that will be the scarce
resource. The time has come when we must treat the net-
work as a first-class resource, expending the CPU and stor-
age resources necessary to use it intelligently. In this pa-
per we argue that prescient caching and smart scheduling
are key techniques for overcoming the network bottleneck.
We use the Coda file system [9] as a case study to substan-
tiate our position.

2 Why the network is the bottleneck

The essence of our argument is that mobile clients will
always encounter a much wider range of network perfor-
mance than their stationary counterparts. Users frequently
take their mobile computers to places where traditional
(wired) networks do not go: to the beach, on a plane, or
at home. Although global wireless connectivity is on the
horizon, much of this connectivity will be intermittent, of
high latency or of low bandwidth. While in the future giga-
bit connectivity may be available at work, home, or other
discrete locations, it will be limited to a few oases in a vast
desert of poor connectivity.

Moreover, the latency to access data across global dis-
tances is inherently high. With mobile computers, infor-

This research has been supported by the National Science Founda-
tion under Grant ECD-8907068, and the Air Force Materiel Command
(AFMC) and the Advanced Research Projects Agency (ARPA) under
Contract F19628-93-C-0193. Support also came from Digital Equip-
ment Corporation, IBM Corporation, and Xerox Corporation. The views
and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the NSF, AFMC, ARPA,
DEC, IBM, Xerox, or the U. S. Government.

Authors’ addresses: School of Computer Science, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, PA, 15213-3891. e-mail:
mre@cs.cmu.edu, lily@cs.cmu.edu, dcs@cs.cmu.edu.

mation that is normally nearby suddenly becomes distant!
Since it takes light 16 msec to cross the United States, ac-
cessing information on the other coast is at best equivalent
to a present-day local disk write, even assuming full net-
work connectivityand infinitely fast servers, protocols, and
disks. The only way to avoid this latency is to avoid com-
munication altogether or to predict the access far enough
in advance that the latency is hidden from the user.

Furthermore, just because global connectivity is on
the horizon does not mean it will be free. In the fu-
ture, charging for network communication services will
become widespread. As anyone who has used a modem
over long distance phone lines can attest, these charges ac-
cumulate rapidly. Users of mobile computers will demand
that their systems use networks no more than necessary
to support critical applications. Furthermore, these users
(and their employers) will insist on having ultimate control
over costs.

For these reasons, mobile clients must be able to cope
withpoor orexpensive networkconnectivitywhilepreserv-
ing the ability to aggressively use cheap, high-bandwidth
communication when available. Our approach to this chal-
lenge exploits locality extensively. Coda anticipates net-
work activity using prescient caching, and defers such ac-
tivity until convenient using smart scheduling. Even in the
absence of locality, smart scheduling can be used to hide
network latency from the user.

3 Avoiding the network by prescient caching

One way to avert the high cost (either performance
cost or dollar cost) of network communication is to avoid
use of the network when it is expensive by predicting future
accesses and fetching necessary data when the network is
cheap. True prescience, of course, requires knowledge of
the future. In practice, we approximate this knowledge in
Coda using the following three strategies.

Two of these techniques, LRU caching and hoard-
ing, are already present in the Coda cache manager and
have been described elsewhere [5, 4]. The first of these,
LRU caching, automatically keeps objects that have been
recently accessed in the cache. The second of these, hoard-



ing, allows the user to supply a prioritized list of files that
should be present in the cache in case of a disconnection.
Coda transparentlycombines these two techniques to antic-
ipate file references on the short- and long-term prediction
horizons.

While hoarding has certainly proven successful in an-
ticipating references on the long-term prediction horizon,
it does require user assistance. The third technique that
we are developing, Casper, extends the LRU prediction
horizon automatically. Using this technique, the cache
manager maintains a concise summary of file reference
history in the Casper Database. This database consists of
ghost entries, which keep track of files that have been in
the cache and allow the cache manager to assign a rank
to each entry based on its reference history. These ranks
are then used to augment object priorities, effectively in-
ferring a user’s future accesses based on his past activity.
Evidence suggests that LRU-only mechanisms are insuffi-
cient for predicting a user’s future file references, but also
suggest that users’ activities are reasonably limited [10, 6].
For these reasons, we believe that extended histories will
be successful in anticipating future file references and thus
avoiding future network use.

Coda expends CPU, storage and cheap network re-
sources in anticipation of disconnection. Since LRU-only
mechanisms are insufficient for all but the shortest failures,
Coda combines a concise, extended history with user as-
sistance in order to cope seamlessly with disconnection,
from the very short-term to the very long-term.

4 Smart scheduling to reduce network cost

Although correctly anticipating future accesses can
substantially reduce the need to communicate with servers,
it does not completely eliminate the desire to maintain open
communication channels with them. After all, the chief ad-
vantage of a distributed file system is that it allows users
to easily share information. Sharing does not work well
if updates are not propagated to and from mobile clients.
Furthermore, since the cache manager will never be 100%
successful in anticipating the user’s every access, the abil-
ity to fetch critical data from the servers is a necessity.
Thus, it is essential that mobile Coda clients communicate
efficiently and effectively with servers.

In examining client-server traffic, we found four types
of essential network activity: demand fetching, prefetch-
ing, update propagation and cache maintenance. To cope
with situations in which communication with the servers
is expensive, Coda minimizes and prioritizes client-server
communication.

A first step toward minimizing network traffic is to
reduce the amount of cache validation traffic. We have

succeeded in substantially reducing this traffic by raising
the granularity of callbacks from a single file to an en-
tire volume [7]. This technique allows large portions of
the cache to be validated with a single message, resulting
in substantial savings in practice, particularly in environ-
ments where communication is intermittent. Note that
other techniques such as differential write back [1] and
data compression [3] also attempt to minimize network
traffic; these techniques are orthogonal to this discussion
and could also be incorporated into our system to further
reduce network traffic.

Coda also prioritizes data transmission activity. In the
default prioritization, demand requests are given the high-
est prioritysince the user is presumably waiting for the data.
The remaining types of requests, namely prefetches and up-
dates, are relegated to the background. However, a user
may alter the prioritization explicitly if he so chooses. Be-
cause background prefetching and updating are performed
asynchronously, we refer to them as trickle charging and
trickle discharging the cache. We prioritize trickle charge
over trickle discharge because a prefetch request is likely
to become a demand request if postponed.

Trickle discharge, a form of write-back caching, logs
updates on disk and propagates them to the servers as net-
work bandwidth and cost allow. Although the desire to
make new data available at the server suggests that up-
dates be propagated eagerly, doing so would render in-
effective the log optimizations used to coalesce updates.
There is substantial evidence from our experience with
disconnected operation indicating that these optimizations
are highly effective [4]. To keep network communication
to a minimum, we monitor the compressibility of the re-
play log over time, and defer propagation of updates until
the log is quiescent.

Each of these techniques requires us to expend CPU
and disk resources in order to reduce network demands.
Minimizing data transmission is useful but not sufficient
to address the network bottleneck. Examining the sources
of communication, prioritizing them, and decoupling them
from computation to the extent possible is necessary to
properly utilize this precious resource.

5 Smart scheduling in the absence of locality

All of the above techniques implicitly rely on local-
ity of reference. Unfortunately, there are important ap-
plications, such as search, that do not exhibit locality of
reference. Given the increasing size and scale of today’s
distributed systems such as WWW[2] and AFS[11], search
will be an essential operation to tomorrow’s mobile users.
Fortunately, we can exploit the semantics of search to
schedule network resources intelligently, allowing us to



reorder requests and overlap fetches to hide latency.
Coda introduces a simple abstraction, called dynamic

sets, to better support search. Using this abstraction, a user
creates a dynamic set by specifying a query which Coda
expands into a set of file names. Coda then fetches these
named objects for the user, who iterates on them looking
for the desired object.

Dynamic sets offer several direct benefits to mobile
users. First, the strong hint of future access implicit in set
membership allows the system to exploit available band-
width for prefetching. Second, dynamic sets allow the
system to reorder requests, overlapping user think time or
computation time on quickly obtained elements with the
latency of fetching others. Finally, the system could ship
the query to the data, allowing it to reduce network uti-
lization by choosing a much smaller subset of objects to
transfer back to the mobile host.

Dynamic sets achieve these benefits by allowing
higher levels to cleanly provide hints to lower levels in
order to help them more intelligently schedule network
usage. Early experiments with this approach confirm that
substantial savings can be achieved without sacrificing per-
formance [12].

6 Conclusion

In order to effectively support mobile computers, sys-
tem designers must view the network as a first-class re-
source, expending CPU and disk resources to reduce the
use of network resources during periods of poor network
connectivity. Even today, in the time it takes to transfer
4 KB over a 64 Kb line, one can execute 12.5 million in-
structions, or write those same 4 KB to disk 12 times. As
processor technology advances, we expect these perfor-
mance differences to be even more pronounced. Thus, it is
our position that squandering a few processor cycles and
a bit of disk space in order to minimize network usage is,
and will remain, a sensible tradeoff. Our approach system-
atically substitutes local resources to minimize the effect
of the network bottleneck. At the same time, we aggres-
sively exploit cheap network resources when available. We
posit that such an adaptive approach to network usage is
essential for effective operation in a mobile environment.

References

[1] AirSoft AirAccess 2.0 Mobile Networking Software: Prod-
uct Overview and Reviewer’s Guide, June 1994.

[2] BERNERS-LEE, T., CAILLIAU, R., GROFF, J. F., AND POLLER-
MAN, B. World Wide Web: The Information Universe. Elec-
tronic Networking: Research, Applications, and Policy 1, 2
(Spring 1992).

[3] DOUGLIS, F. On the Role of Compression in Distributed
Systems. In Proceedings of the 5th ACM SIGOPS Work-
shop on Models and Paradigms for Distributed Systems
Structuring (September 1992).

[4] KISTLER, J. J. Disconnected Operation in a Distributed File
System. PhD thesis, Carnegie Mellon University, School of
Computer Science, 1993.

[5] KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected
Operation in the Coda File System. ACM Transactions on
Computer Systems 10, 1 (February 1992).

[6] KUENNING, G. H., POPEK, G. J., AND REIHER, P. L. An Anal-
ysis of Trace Data for Predictive File Caching in Mobile
Computing. In Proceedings of the Summer 1994 USENIX
Conference (Boston, MA, 1994).

[7] MUMMERT, L., AND SATYANARAYANAN, M. Large Granu-
larity Cache Coherence for Intermittent Connectivity. In
USENIX Summer Conference Proceedings (June 1994),
USENIX Association, pp. 279 – 289.

[8] SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D.,
AND LYON, B. Design and Implementation of the Sun Net-
work File System. In Summer Usenix Conference Proceed-
ings, Portland (1985).

[9] SATYANARAYANAN, M., KISTLER, J. J., KUMAR, P.,
OKASAKI, M. E., SIEGEL, E. H., AND STEERE, D. C. Coda:
A Highly Available File System for a Distributed Worksta-
tion Environment. IEEE Transactions on Computers 39, 4
(April 1990).

[10] SATYANARAYANAN, M., KISTLER, J. J., MUMMERT, L. B.,
EBLING, M. R., KUMAR, P., AND LU, Q. Experience with
Disconnected Operation in a Mobile Computing Environ-
ment. In Proceedings of the 1993 USENIX Symposium on
Mobile and Location-Independent Computing, Cambridge
(August 1993).

[11] SPASOJEVIC, M., AND SATYANARAYANAN, M. A Usage Pro-
file and Evaluation of a Wide-Area Distributed File System.
In Winter Usenix Conference Proceedings (San Francisco,
CA, 1994).

[12] STEERE, D., AND SATYANARAYANAN, M. A Case for Dy-
namic Sets in Operating Systems. Tech. Rep. CMU-CS-94-
216, School of Computer Science, Carnegie Mellon Uni-
versity, November 1994.


