
Isolation-Only Transactions for Mobile Computing

Qi Lu & M. Satyanaranyanan
School of Computer Science
Carnegie Mellon University

1. Motivation

The Unix File System(UFS) has historically offered a shared-memory consistency model. The lack of
concurrency control makes this model susceptible to read/write conflicts, i.e., unexpected read/write sharing
between two different processes. For example, the update of a header file by one user while another user is
performing a long-runningmake can cause inconsistencies in the compilation results. In practice, read/write
conflicts are rare for two reasons. First, the window of vulnerability is relatively small because read/write
conflicts only occur when the executions of two processes overlap. Second, they are often prevented via
explicit user-level coordination.

However, the advent of mobile computing makes read/write conflicts a realistic threat to data integrity.
Mobile computing is characterized by periods of disconnection and intermittent connectivity[11]. Such
communication disturbances greatly widen the window of vulnerability from the life span of a process
to the duration of a disconnection. They also significantly reduce the effectiveness of explicit user-level
coordination, especially when disconnections are made transparent to users.

How can we preserve upward compatibility with the large body of existing Unix software, while offering
improved consistency in a mobile computing environment? This position paper puts forth our solution, a
new transaction model called isolation only transaction (IOT).

2. Background: The Coda File System

Providing portable computers convenient access to shared data in distributedUnix file systems is an important
research topic in the fast growing field of mobile computing. The Coda file system addresses this issue
by hiding mobility from applications and users[10]. It provides continuous file access to mobile clients
even when they are disconnected from the servers. The key enabling technology is disconnected operation,
a special form of client disk caching which employs optimistic replica control[4]. When disconnected, a
Coda client services file access requests by relying solely on the contents of its local cache. Updates are
performed locally, logged and later reintegrated to servers upon reconnection.

Coda demonstrated optimistic replication as a viable foundation for mobile clients to access shared files in
the Unix workstation environment. However, data integrity in an optimistically replicated system becomes
a serious concern because arbitrary partitioned file accesses are permitted. Two kinds of partitioned data
sharing can result in inconsistency. The obvious problem is partitioned write/write sharing because it
causes replicas to diverge. Fortunately, empirical evidence has shown that partitioned write sharing is



very rare in a typical Unix workstation environment[4]. Furthermore, write/write conflicts can be efficiently
detected[9]. In many situations, diverging replicas can be automatically reconciled using application-specific
approaches[6, 5, 3]. The more subtle threat comes from partitioned read/write sharing.

Consider the following scenario of a partitioned read/write conflict. A programmer Joe caches relevant files
on his Coda laptop for a weekend trip. While disconnected, he edits some source files and builds a new
version of repair, a file resolution program. But one of the libraries libresolve.a that is linked in
was updated on the servers during Joe’s absence. Here the linking and the updating of libresolve.a
constitute a partitioned read/write conflict, which not only leaves repair in a possible inconsistent state
but also may cause cascading inconsistencies had Joe used this repair program to mutate other objects.
It would be helpful if Joe is at least notified about the possible inconsistency when he reconnects the laptop
to the servers.

Building upon well-known ideas in the database community, we are extending the Coda file system with an
explicit isolation-only transaction service. This enables the system to only admit those partitioned read/write
conflicts that satisfy certain serialization requirements. However, it is important to note that we are not
trying to overhaul the current UFS semantics and replace it with a transactional one. It is simply impractical
to re-write the numerous existing Unix applications. Instead, we regard upward Unix compatibility as one of
our key constraints. IOT will be provided as an optional file system facility that application writers can use
to selectively wrap-around applications for better consistency protection when used in mobile computing.
Existing Unix applications are guaranteed to behave the same if they do not use IOT.

3. What is an IOT?

An IOT is a flat sequence of file access operations bracketed by begin iot and end iot. The execution
of an IOT guarantees a set of properties that are specially tailored for optimistic replication and mobile
Unix workstation environment. An IOT provides strong consistency guarantees depending on the system
connectivity conditions. Unlike traditional transactions, it does not guarantee failure atomicity and only
conditionally guarantees permanence.

The IOT execution model is inspired by Kung and Robinson’s optimistic concurrency control model, with
a client’s local cache effectively serving as the private workspace for transaction1 processing[7]. When a
transaction T is invoked by a user, its entire execution is performed on the user’s client machine. Remote
files are accessed through the client’s local disk cache; and no partial result of the execution is visible on
the servers. When T’s execution is completed, it enters either the committed or the pending state depending
on the connectivity condition. If T’s execution does not contain any partitioned file access (i.e., the client
machine maintains a server connection for every file T has accessed), T is committed and its result is made
visible on the servers. Otherwise, T enters the pending state waiting to be validated later. T’s result is
temporarily held within the client’s local cache and is visible only to subsequent processes on the same
client. When the relevant partitions are healed, T is validated according to the consistency criteria to be
discussed in section 5. If the validation succeeds, T’s result will be immediately reintegrated and committed
to the servers. Otherwise, T enters the resolution state. When T is automatically or manually resolved,
it will commit the new result to the servers. Figure 1 shows the complete IOT execution model from the
user’s viewpoint.

1In the rest of this document we will use the term transaction to mean IOT when there is no ambiguity.



running

committed

resolutionpending

user
invocation

with partitioned
file accesses

without partitioned
file accesses

automatic 
or manual
resolution

validation fail

validation succeed
& reintegration

first class
transaction

second class transaction

Figure 1: A State Transition Diagram for IOT Execution

4. Why Isolation Only?

Lightweight operation and high efficiency are our key design goals. As a result, the IOT model does not
provide the failure atomicity and permanence guarantees present in the traditional transaction model.

Failure atomicity is not supported mainly because of high resource cost. A large amount of space is
needed for undoing the effect of a transaction because it can access large objects and its execution can last
long. Such cost is further magnified because space is a much more precious resource on mobile clients.
Devoting too much space to the possible task of backing out transactions may cause denial of other valuable
disconnected file services. Moreover, recent research has shown that the all-or-nothing property is not
always desirable[8].

The permanence guarantee of the traditional transaction model promises that once a transaction commits,
its result will stay unchanged and can survive various system failures. One of the key and often unnoticed
consequences of this property is that once a transaction makes its result visible to subsequent transactions,
the result must not change until it is modified by some other transactions. In the IOT model, the result of
a pending transaction is visible to subsequent transactions running on the same client. But this result is
subject to change upon future validation. Therefore we can only offer a conditional form of the permanence
guarantee. That is, the result of a transaction is permanent only when it does not contain partitioned file
access, or it is successfully reintegrated or resolved.

5. IOT Consistency Guarantees

In order to maintain data consistency, the traditional transaction model provides the isolation property to
make sure that transactions are executed as if they were isolated from each other. In serializability theory
terms, the isolation property guarantees that the results of the interleaved execution of a set of transactions
are equivalent to some serial execution of the same set of transactions[2].



The IOT model offers substantially stronger consistency guarantees than the traditional transaction model.
Transactions are classified into two categories: a first class transaction is one whose execution does not
contain any partitioned file accesses. Otherwise, it is a second class transaction (see Figure 1).

� Serializability(SR) for First Class Transactions

The execution of any first class transaction is guaranteed to be serializable with all committed
transactions.

� Local Serializability(LSR) for Second Class Transactions

The execution of any second class transaction is guaranteed to be serializable with other second class
transactions executed on the same client.

� Global Serializability(GSR) for Second Class Transactions

One of the consistency criteria for validating a pending transaction T is that T must be globally
serializable(GSR) with all committed transactions. It means that if T’s result in the client’s local
cache were reintegrated to the servers as is, T would be SR with all committed transactions.

GSR is significantly different from SR or LSR in that GSR can not be enforced at transaction execution
time. It can only be tested when the relevant partitions are healed. Therefore, as an integral part of
the GSR guarantee we must specify what the system will do if the test fails. The IOT model provides
the following automatic resolution options.

– Re-executing the transaction.
Successful re-execution of the transaction using the up-to-date server files is guaranteed to
resolve the related inconsistencies. For example, this option can be used to automatically re-run
make when the compilation results are inconsistent. It is our default option.

– Invoking the transaction’s application specific resolver(ASR).
Sometimes it is more effective to resolve a transaction by using application-specific knowledge.
The IOT model allows the transaction writer to attach an ASR to a transaction to be automatically
invoked by the system. For example, non-serializable updates to an appointment calendar file
can often be merged by an ASR as long as there are no time slot conflicts.

– Aborting the transaction.
Simply aborting a non-GSR transaction will suffice to restore consistency. Suppose a transaction
is executed on a disconnected client to compress a large file while the same task has already
been done by someone else on the servers, aborting the transaction is an appropriate action in
such a situation.

– Notifying the users.
As a last resort, users can choose to manually resolve a non-GSR transaction. The IOT system
will only mark its write-set as inaccessible and notify the users. If a transaction is used for editing
the files of a co-authored paper on a disconnected laptop, this option is useful for coordinating
possible concurrent updates.

� Global Certification Order(GCO) for Second Class Transactions

In certain situations, GSR alone is not adequate for voluntarily disconnected mobile clients. In the
earlier example, suppose Joe ran make as a second class transaction TJ to build the new version of



repair; and the library libresolve.a is updated by a first class transaction TL; and there are no
other related file accesses. When Joe re-connects his Coda laptop to the servers, TJ will be admitted
because it can be serialized before TL.

To remedy this problem, we adopt a stronger consistency criterion called global certification or-
der(GCO). GCO requires a pending transaction to be serializable not only with but also after all the
committed transactions. GCO has the same set of resolution options as GSR.

If Joe wants to make sure that his work done on an isolated laptop is compatible with the most recent
system state, he can select GCO as the consistency criterion for transaction validation. Now TJ will
be rejected because it can not be serialized after TL. Joe can also use the default resolution option to
let the system automatically re-run make to build an up-to-date version of repair.

6. Implementation Strategy

Because of the need for partitioned transaction execution, logging is the foundation for IOT implementation
in Coda. Based on the properties of the Coda mobile computing environment, we choose and extend the
transaction implementation technologies that offer the best engineering trade-off. For brevity, we only
highlight the following issues that are critical to the overall transaction processing performance.

� Concurrency Control for First Class Transactions

We chose the optimisticconcurrency control(OCC) method to enforce SR for first class transactions[7].
The main idea of OCC is trading transaction re-execution for global synchronization. This fits well
with the scalable Coda architecture where client cycles are considered cheaper than server commu-
nication bandwidth. OCC is also capable of providing high throughput in the Coda environment
because of low data contention. We extended the OCC scheme so that transaction history information
can be utilized to process long-running transactions more efficiently.

� Transaction Validation for GSR

We apply Davidson’s optimistic transaction model for GSR testing[1]. This method builds a data
structure called the precedence graph to represent the inter-dependency among transactions across
partitions. GSR testing then becomes a matter of cycle detection in the corresponding precedence
graph. We also extended the model so that GSR testing can be performed even when the transaction
histories are truncated.

� Transaction Logging

Continuous transaction logging is needed on both servers and clients. Because log space is finite,
transaction service will be unavailable to a client if its log space is exhausted. However, a server will
truncate its recorded transaction history to reuse log space. Based on our preliminary observations
and estimation, a modest amount of server log space(e.g. 40MB/server) may suffice for a typical
working day. Fortunately, the GCO testing can be performed without using transaction histories.

7. Evaluation Plan

When the IOT system is fully implemented, it will be put to actual daily use by a number of Coda users.
Our experiments will focus on the software development domain where read/write sharing is believed to be
frequent. Important applications such as make, cc and latex etc. will be modified to use IOT.



Quantitatively, we will measure the various aspects of transaction processing performance such as:

� What is the performance overhead for file access operations due to IOT processing?

� How much space is adequate for transaction logging on servers and mobile clients?

� How efficient are transaction validation and resolution?

With the availability of an explicit file system transaction service, we also expect to collect interesting data
such as:

� How often read/write conflicts occur during a typical session of disconnected operations on a mobile
client.

� What fraction of them lead to non-GSR or non-GCO transaction executions.

This new information will allow us to gain more insightful knowledge about the nature of mobile computing
as well as the data sharing patterns in software development activities.

Qualitatively, our main effort will be to characterize the IOT usage properties. Based on the actual
experiences of the participating Coda users, we will study important issues such as:

� Can the IOT abstraction be conveniently incorporated into existing Unix applications?

� Do GSR and GCO provide sufficient consistency support for normal mobile computing practice?

� How often are the different resolution options used and how useful are they?

8. Current Status

We are in the initial process of building a working implementation of an IOT service on the Coda file system
running Mach 2.6. A detailed architectural and algorithmic design including key algorithms, protocols and
data structures has been developed. Progress has been made on Mach kernel changes, Coda client/server
interface extensions and the addition of a pseudo-disconnected operation mode which supports transaction
processing. As of this writing, a simple transaction manager with primitive functionality is operational.

9. Acknowledgements

We wish to thank Jay Kistler for his valuable help in formulating the initial IOT framework. We would also
like to thank members of the Coda group, especially Puneet Kumar, Maria Ebling, Lily Mummert, David
Steere, Brian Noble and Josh Raiff for helpful discussions and assistance.

This research is supported by the Advanced Research Projects Agency (Hanscom Air Force Base under
Contract F19628-93-C-0193, ARPA Order No. A700), the IBM Corporation, Digital Equipment Corpora-
tion, the Intel Corporation, and Bellcore. The views and conclusion expressed in this paper are those of the
author, and should not be interpreted as those of the funding organizations or Carnegie Mellon University.



References

[1] Susan B. Davidson. An Optimistic Protocol for Partitioned Distributed Database Systems. PhD thesis,
Princeton University, 1982.

[2] J. Gray, R. Lorie, G. Putzulo, and I. Traiger. Granularity of Locks and Degrees of Consistency in a
Shared Database. Research Report RJ1654, IBM, September 1975.

[3] R. Guy and G. Popek. Reconciling Partially Replicated Name Spaces. Technical Report CSD-900010,
University of California, Los Angeles, 1990.

[4] J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System. ACM Transactions
on Computer Systems, 10(1), February 1992.

[5] P. Kumar and M. Satyanarayanan. Log-Based Directory Resolution in the Coda File System. In Proc.
of the Second International Conference on Parallel and Distributed Information Systems, San Diego,
CA, January 1993.

[6] P. Kumar and M. Satyanarayanan. Supporting Application-Specific Resolution in an Optimistically
Replicated File System. In Proc. of the Fourth Workshop on Workstation Operating Systems, Napa,
CA, October 1993.

[7] H.T. Kung and J. Robinson. On Optimistic Methods for Concurrency Control. ACM Transaction on
Database Systems, 6(2), June 1981.

[8] B. Martin and C. Pedersen. Long-lived Concurrent Activities. Technical Report HPL-90-178, HP
Laboratories, 1990.

[9] D. Parker, G. Popek, G. Rudisin, A. Stoughton, B. Walker, E. Walton, J. Chow, D. Kiser, and C. Kline.
Detection of Mutual Inconsistency in Distributed Systems. IEEE Transaction on Software Engineering,
SE-9(3), May 1983.

[10] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D. Steere. Coda: A Highly
Available File System for a Distributed Workstation Environment. IEEE Transaction on Computers,
20(4), April 1990.

[11] M. Satyanarayanan, J. Kistler, L. Mummert, M. Ebling, P. Kumar, and Q. Lu. Experience with
Disconnected Operation in a Mobile Computing Environment. In Proc. of the USENIX Mobile and
Location-Independent Computing Symposium, Cambridge, MA, August 1993.


