
Scalable, Secure, and
Highly Available

Distributed File Access

Mahadev Satyanarayanan

Carnegie Mellon University

F or the users of a distributed system
to collaborate effectively, the abil-
ity toshare data easily is vital. Over

the last decade, distributed file systems
based on the Unix model have been the
subject of growing attention. They are now
widely considered an effective means of
sharing data in academic and research en-
vironments. This article presents a sum-
mary and historical perspective of work
done by my colleagues, students, and I in
designing and implementing such systems
at Carnegie Mellon University.

This work began in 1983 in the context
of Andrew, a joint project of CMU and
IBM to develop a state-of-the-art comput-
ing facility for education and research at
CMU. The project envisioned a dramatic
increase in computing power made pos-
sible by the widespread deployment of
powerful personal workstations. Our char-
ter was to develop a mechanism that would
enable the users of these workstations to
collaborate and share data effectively. We
decided to build a distributed file system
for this purpose because it would provide
the right balance between functionality
and complexity for our usage environment.

It was clear from the outset that our
distributed file system had to possess two
critical attributes: It had to scale well, so
that the system could grow to its antici-

Andrew and Coda are
distributed Unix file
systems that embody
many of the recent
advances in solving
the problem of data

sharing in large,
physically dispersed

workstation
environments.

pated final size of over 5,000 workstations.
It also had to be secure, so that users could
be confident of the privacy of their data.
Neither of these attributes is likely to be
present in a design by accident, nor can it
be added as an afterthought. Rather, each
attribute must be treated as a fundamental
constraint and given careful attention dur-

ing the design and implementation of a
system.

Our design has evolved over time, re-
sulting in three distinct versions of the
Andrew file system, called AFS-1, AFS-2,
and AFS-3. In this article “Andrew file
system” or “Andrew” will be used as a
collective term referring to all three ver-
sions.

As our user community became more
dependent on Andrew, the availability of
data in it became more important. Today, a
single failure in Andrew can seriously
inconvenience many users for significant
periods. To address this problem, we be-
gan the design of an experimental file
system called Coda in 1987. Intended for
the same computing environment as An-
drew, Coda retains Andrew’s scalability
and security characteristics while provid-
ing much higher availability.

The Andrew
architecture

The Andrew computing paradigm is a
synthesis of the best features of personal
computing and timesharing. It combines
the flexible and visually rich user interface
available in personal computing with the
ease of information exchange typical of

May 1990 001%9162/90/0500-0009$0i.00 CC 1990 IEEE 9



Figure 1. A high-level view of the An-
drew architecture. The structure la-
beled “Vice” is a collection of trusted
file servers and untrusted networks.
The nodes labeled “W” are private or
public workstations, or timesharing
systems. Software in each such node
makes the shared files in Vice appear
as an integral part of that node’s file
system.

I

A
tmp b in  lib- - - -“iunix afs

Local files

h
Shared files

Figure 2. File system view at a work-
station: how the shared files in Vice
appear to a user. The subtree under
the directory labeled “afs” is identical
at all workstations. The other directo-
ries are local to each workstation.
Symbolic links can be used to make lo-
cal directories correspond to directo-
ries in Vice.

timesharing. A conceptual view of this
model is shown in Figure 1.

The large, amoeba-like structure in the
middle, called Vice, is the information-
sharing backbone of the system. Although
represented as a single entity, it actually
consists of a cohection of dedicated file
servers and a complex local area network.

User computing cycles are provided by
workstations running the Unix operating
system.

Data sharing in Andrew is supported by
a distributed file system that appears as a
single large subtree of the local file system
oneach workstation. The only files outside
the shared subtree are temporary files and
files essential for workstation initiahza-
tion. A process called Venus, running on
each workstation, mediates shared file
access. Venus finds files in Vice, caches
them locally, and performs emulation of
Unix file system semantics. Both Vice and
Venus are invisible to workstation pro-
cesses, which only see a Unix file system,
one subtree of which is identical on all
workstations. Processes on two different
workstations can read and write files in this
subtree just as if they were running on a
single timesharing system. Figure 2 de-
picts the file system view seen by a work-
station user.

Our experience.with the Andrew archi-
tecture over the past six years has been
positive. It is simple and easily understood
by naive users, and it permits efficient
implementation. It also offers a number of
benefits that are particularly valuable on a
large scale:

l Data sharing is simplified. A worksta-
tion with a small disk can potentially ac-
cess any file in Andrew by name. Since the
file system is location transparent, users do
not have to remember the machines on
which files are currently located or where
files were created. System administrators
can move files from one server to another
without inconveniencing users, who are
completely unaware of such a move.

l User mobility is supported. A user can
walk to any workstation in the system and
access any file in the shared name space. A
user’s workstation is personal only in the
sense that he owns it.

l System administration is easier. Op-
erations staff can focus on the relatively
small number of servers, ignoring the more
numerous and physically dispersed clients.
Adding a new workstation involves merely
connecting it to the network and assigning
it an address.

l Better security ispossible.  The servers
in Vice are physically secure and run
trusted system software. No user programs
are executed on servers. Encryption-based
authentication and transmission are used
to enforce the,security of server-worksta-
tion communication. Although individuals
may tamper with the hardware and soft-
ware on their workstations. their malicious

actions cannot affect users at other work-
stations.

l Client autonomy is improved. Work-
stations can be turned off or physically
relocated at any time without inconve-
niencing other users. Backup is needed
only on the servers, since workstation disks
are used merely as caches.

Scalability in Andrew

A scalable distributed system is one that
can easily cope with the addition of users
and sites, its growth involving minimal
expense, performance degradation, and
administrative complexity. We have
achieved these goals in Andrew by reduc-
ing static bindings to a bare minimum and
by maximizing the number of active clients
that can be supported by a server. The
following sections describe the evolution
of our design strategies for scalability in
Andrew.

AFS-1. AFS-1 was a prototype with the
primary functions of validating the An-
drew file system architecture and provid-
ing rapid feedback on key design deci-
sions. Each server contained a local file
system mirroring the structure of the
shared file system. Vice file status infor-
mation, such as access lists, was stored in
shadow directories. If a file was not on a
server, the search for its name would end in
a stub directory that identified the server
containing that file. Since server processes
could not share memory, their only means
of sharing data structures was via the local
file system.

Clients cached pathname prefix infor-
mation and used it to direct file requests to
appropriate servers. The Vice-Venus inter-
face named files by their full pathnames.
There was no notion of a low-level name,
such as the inode in Unix.

Venus used a pessimistic approach to
maintaining cache coherence. All cached
copies of files were considered suspect.
Before using a cached file, Venus would
contact Vice to verify that it had the latest
version. Each open of a file thus resulted in
at least one interaction with a server, even
if the file was already in the cache and up
to date.

For the most part, we were pleased with
AFS- 1. Almost every application was able
to use Vice files without recompilation or
relinking. There were minor areas of in-
compatibility with standard Unix seman-
tics, but these were never serious enough to
discourage users.

10 COMPUTER





Figure 3. AFS-2 versus Sun NFS performance under load on identical client,
server, and network hardware. A load unit consists of one client workstation
running an instance of the Andrew benchmark. (Full details of the benchmark
and experimental configuration can be found in Howard et al.,’ from which this
graph is adapted.) As the graph clearly indicates, the performance of AFS-2,
even with a cold cache, degrades much more slowly than that of NFS.

server on each open, Venus now assumed
that cache entries were valid unless other-
wise notified. When a workstation cached
a file or directory, the server promised to
notify that workstation before allowing a
modification by any other workstation.
This promise, known as a cdlback, re-
sulted in a considerable reduction in cache
validation traffic.

mechanism in AFS-2, which was inte-
grated with the lightweight process mecha-
nism, supported a very large number of
active clients and used an optimized bulk-
transfer protocol for file transfer,

AFS-3. In 1988, work began on a new
version of the Andrew file system called
AFS-3. (For ease of exposition, all changes
made after the AFS-2 release described in
Howard et al.’ are described here as pertain-
ing to AFS-3. In reality, the transition from
AFS-2 to AFS-3 was gradual.) The revision
was initiated at CMU and has been contin-
ued since mid-1989 at Transarc Corpora-
tion, a commercial venture involving many
of the original implementers of AFS-3. The
revision was motivated by the need to pro-
vide decentralized system administration,
by the desire to operate over wide area
networks, and by the goal of using industry
standards in the implementation.

Callback made it feasible for clients to
cache directories and to translate path-
names locally. Without callbacks, the
lookup of every component of a pathname
would have generated a cache validation
request. For reasons of integrity, directory
modifications were made directly on serv-
ers, as in AFS- I. Each Vice file or direc-
tory in AFS-2 was identified by a unique
fixed-length file identifier. Location infor-
mation was contained in a slowly changing
volume location database replicated on
each server.

Besides the changes we made for per-
formance, we also eliminated AFS-l’s
inflexible mapping of Vice files to server
disk storage. This change was the basis of
a number of mechanisms that improved
system operability. Vice data in AFS-2
was organized in terms of a data-structur-
ing primitive called a volume, a collection
of files forming a partial subtree of the
Vice name space. Volumes were glued
together at mount points to form the com-
plete name space. Venus transparently
recognized and crossed mount points dur-
ing name resolution.

AFS-3 supports multiple administrative
cells, each with its own servers, worksta-
tions, system administrators, and users.
Each cell is a completely autonomous
Andrew environment, but a federation of
cells can cooperate in presenting users with
a uniform, seamless filename space. The
ability to decompose a distributed system
into cells is important at large scale because
it allows administrative responsibility to be
delegated along lines that parallel institu-
tional boundaries. This makes for smooth
and efficient system operation.

AFS-2 used a single process to service
all clients of a server, thus reducing the
context switching and paging overheads
observed in AFS-1. A nonpreemptive

‘lightweight process mechanism supported
concurrency and provided a convenient
programming abstraction on servers and
clients. The RPC (remote procedure call)

Volumes were usually small enough to
allow many volumes per server disk parti-
tion. Volumes formed the basis of disk
quotas. Each system user was typically
assigned a volume, and each volume was
assigned a quota. Easily moved between
servers by system administrators, a vol-
ume could be used (even for update) while
it was being moved.

Read-only replication of volumes made
it possible to provide increased availabil-

The RPC protocol used in AFS-3 pro-
vides good performance across local and
wide area networks. In conjunction with the
cell mechanism, this network capability has
made possible shared access to a common,
nationwide file system, distributed over
nodes such as MIT, the University of Michi-
gan, and Dartmouth, as well as CMU.

Venus has been moved into the Unix

12 COMPUTER

ity for frequently read but rarely updated
files, such as system programs. The backup
and restoration mechanism in AFS-2 also
made use of volume primitives. To back up
a volume, a read-only clone was first made.
Then, an asynchronous mechanism trans-
ferred this frozen snapshot to a staging
machine from which it was dumped to tape.
To handle the common case of accidental
deletion by users, the cloned backup vol-
ume of each user’s files was made available
as a read-only subtree of that user’s home
directory. Thus, users themselves could
restore files within 24 hours by means of
normal file operations.

AFS2 was in use at CMU from late 1985
until mid- 1989. Our experience confirmed
that it was indeed an efficient and conve-
nient system to use at large scale. Con-
trolled experiments established that it per-
formed better under load than other con-
temporary file systems.‘.* Figure 3 presents
the results of one such experiment.



Other contemporary distributed file systems

A testimonial to the importance of
distributed file systems is the large
number of efforts to build such sys-
tems in industry and academia. The
following are some systems currently
in use:

Sun NFS has been widely viewed
as a de facto standard since its intro-
duction in 1985. Portability and
heterogeneity are the dominant con-
siderations in its design. Although
originally developed on Unix, it is now
available for other operating systems
such as MS-DOS.

Apollo Domain is a distributed
workstation environment whose devel-
opment began in the early 1980s.
Since the system was originally in-
tended for a close-knit team of col-

Further reading
Surveys

Satyanarayanan, M., “A Survey of Distrib-
uted File Systems,” in Annual Reliew of
Computer Science, J.F. Traub et al., eds.,
Annual Reviews, Inc., Palo Alto, Calif.,
1989.

Svobodova, L., “File Servers for Network-
Based Distributed Systems,” ACM Cornpar-
ing Surveys, Vol. 16, No. 4. Dec. 1984.

Individual systems

Amoeba
van Renesse, R., H. van Staveren, and AS.
Tanenbaum, “The Performance of the
Amoeba Distributed Operating System,”

laborating individuals, scale was not a
dominant design consideration. But large
Apollo installations now exist.

IBM AIX-DS is a collection of distrib-
uted system services for the AIX operat-
ing system, a derivative of System V
Unix. A distributed file system is the pri-
mary component of AIX-DS. Its goals in-
clude strict emulation of Unix semantics,
ability to efficiently support databases,
and ease of administering a wide range
of installation configurations.

AT&T RFS is a distributed file system
developed for System V Unix. Its most
distinctive feature is precise emulation of
local Unix semantics for remote files.

Sprite is an operating system for net-
worked uniprocessor and multiprocessor
workstations, designed at the University
of California at Berkeley. The goals of the

Software Practice and Experience, Vol. 19, No.
3, Mar. 1989.

Apollo Domain
Levine, P., “The Apollo Domain Distributed
File System” in Theory and Practice of Distrib-
uted Operating Systems, Y. Paker, J.-T. Ba-
natre, and M. Bozyigit, eds., NATO AS1 Series,
Springer-Verlag, 1987.

AT&T FIFS
Rifiin, A.P., et al., “RFS Architectural Over-
view” Proc. Summer Usenix Conf., Atlanta,
1986, pp. 248-259.

Echo
Hisgen, A., et al., “Availability and Consis-
tency Trade-Offs in the Echo Distributed File
System,” Proc. Second IEEE Workshop on

Sprite file system include efficient use
of large main memory caches,
diskless operation, and strict Unix
emulation.

Amoeba is a distributed operating
system built by the Free University
and CWI (Mathematics Center) in
Amsterdam. The first version of the
distributed file system used optimistic
concurrency control. The current ver-
sion provides simpler semantics and
has high performance as its primary
objective.

Echo is a distributed file system
currently being implemented at the
System Research Center of Digital
Equipment CorporaGon. It uses a pri-
mary site replication scheme, with
reelection in case the primary site
fails.

Workstation Operating System.s.  CS Press,
Los Alamitos, Calif., Order No. 2003, Sept.
1989.

IBM AIX-DS
Sauer, C.H., et al., “RT PC Distributed Ser-
vices Overview,” ACM Operating Systems
Review, Vol. 2 1, No. 3, July 1987, pp. 18.29.

Sprite
Ousterhout, J.K., et al., “The Sprite Network
Operating System,” Cornpurer,  Vol. 2 1, No.
2, Feb. 1988, pp. 23-36,

Sun NFS
Sandberg, R., et al., “Design and Impiemen-
tation of the Sun Network File System.‘*
Proc. Summer Usenix Conf.. Portland, 1985,
pp. 119-130.

kernel in order to use the anode  file inter-
cept mechanism from Sun Microsystems,
a de facto industry standard. The change
also makes it possible for Venus to cache
files in large chunks (currently 64 Kbytes)
rather than in their entirety. This feature
reduces file-open latency and allows a
workstation to access files too large to fit
on its local disk cache.

Security in Andrew

A consequence of large scale is that the
casual attitude toward security typical of
close-knit distributed environments is not

acceptable. Andrew provides mechanisms
to enforce security, but we have taken care
to ensure that these mechanisms do not
inhibit legitimate use of the system. Of
course, mechanisms alone cannot guaran-
tee security; an installation also must fol-
low proper administrative and operational
procedures.

A fundamental question is who enforces
security. Rather than trusting thousands of
workstations, Andrew predicates security
on the integrity of the much smaller num-
ber of Vice servers. No user software is
ever run on servers. Workstations may be
owned privately or located in public areas.
Andrew assumes that the hardware and

software on workstations may be modified
in arbitrary ways.

This section summarizes the main as-
pects of security in Andrew, pointing out
the changes that occurred as the system
evolved. These changes have been small
compared to the changes for scalability.
More details on security in Andrew can be
found in an earlier w0rk.j

Protection domain. The protection do-
main in Andrew is composed of users and
groups. A user is an entity, usually a hu-
man, that can authenticate itself to Vice, be
held responsible for its actions, and be
charged for resource consumption. A

May I990 13



Figure 4. Major components and relationships involved in authentication in Andrew. Modifications such as password
changes and additions of new users are made to the master authentication server, which distributes these changes to the
slaves. When a user logs in, a client can obtain authentication tokens on the user’s behalf from any slave authentication
server. The client uses these tokens as needed to establish secure connections to file servers.

group is a set of other groups and users.
Every group is associated with a unique
user called its owner.

AFS-1 and AFS-2 supported group in-

heritance, with a user’s privileges being
the cumulative privileges of all the groups
it belonged to, either directly or indirectly.
Modifications of the protection domain
were made off line by system administra-
tors and typically were reflected in the
system once a day. In AFS-3, modifica-
tions are made directly by users to a protec-
tion server that immediately reflects the
changes in the system. To simplify the
implementation of the protection server,
the initial release of AFS-3 does not sup-
port group inheritance. This may change in
the future because group inheritance con-
ceptually simplifies management of the
protection domain.

One group is distinguished by the name
System:Administrators. Membership in
this group endows special administrative
privileges, including unrestricted access to
any file in the system. The use of a
System:Administrators group rather than a

pseudo-user (such as “root” in Unix sys-
tems) has the advantage that the actual
identity of the user exercising special privi-
leges is available for use in audit trails.

Authentication. The Andrew RPC
mechanism provides support for secure,
authenticated communication between
mutually suspicious clients and servers, by
using avariant ofthe Needham and Schroe-
der private key algorithm.4 When a user
logs in on a workstation, his or her pass-
word is used to obtain tokens from an
authentication server. These tokens are
saved by Venus and used as needed to
establish secure RPC connections to file
servers on behalf of the user.

The level of indirection provided by
tokens improves transparency and secu-
rity. Venus can establish secure connec-
tions to file servers without users’ having
to supply a password each time a new
server is contacted. Passwords do not have
to be stored in the cIear on workstations.
Because tokens typically expire after 24
hours, the period during which lost tokens

can cause damage is limited.
As shown in Figure 4, there are multiple

instances of the authentication server, each
running on a trusted Vice machine. One of
the authentication servers, the master, re-
sponds to updates by users and system
administrators and asynchronously propa-
gates the updates to other servers. The
latter are slaves and only respond to que-
ries. This design provides robustness by
allowing users to log in as long as any slave
or the master is accessible.

For reasons of standardization, the AFS-
3 developers plan to adopt the Kerberos
authentication system.5 Kerberos provides
the functionality of the Andrew authenti-
cation mechanism and closely resembles it
in design.

File system protection. Andrew uses an
access list mechanism for file protection.
The total rights specified for a user are the
union of the rights specified for the user
and for the groups he or she belongs to.
Access lists are associated with directories
rather than individual files. The reduction

I4 COMPUTER



in state obtained by this design decision
provides conceptual simplicity that is valu-
able at large scale. An access list can spec-
ify negative rights. An entry in a negative
rights list indicates denial of the specified
rights, with denial overriding possession
in case of conflict. Negative rights de-
couple the problems of rapid revocation
and propagation of group membership
information and are particularly valuable
in a large distributed system.

Although Vice actually enforces protec-
tion on the basis of access lists, Venus
superimposes an emulation of Unix pro-
tection semantics. The owner component
of the Unix mode bits on a file indicate
readability, writability, or executability.
These bits, which indicate what can be
done to the file rather than who can do it,
are set and examined by Venus but ignored
by Vice. The combination of access lists on
directories and mode bits on files has
proved to be an excellent compromise
between protection at fine granularity,
conceptual simplicity, and Unix compati-
bility.

Resource usage. A security violation in
a distributed system can manifest itself as
an unauthorized release or modification of
information or as a denial of resources to
legitimate users. Andrew’s authentication
and protection mechanisms guard against
unauthorized release and modification of
information. Although Andrew controls
server disk usage through a per-volume
quota mechanism, it does not control re-
sources such as network bandwidth and
server CPU cycles. In our experience, the
absence of such controls has not proved to
be a problem. What has been an occasional
problem is the inconvenience to the owner
of a workstation caused by the remote use
of CPU cycles on that workstation. The
paper on security in Andrew3 elaborates on
this issue.

High availability in
Coda

The Coda file system, a descendant of The design of Coda was presented in
AFS-2, is substantially more resilient to detail in a recent paper.6 A large subset of
server and network failures. The ideal that the design has been implemented, and
Coda strives for is constant data availabil- work is in progress to complete the im-
ity, allowing a user to continue working plementation. One can sit down at a Coda
regardless of failures elsewhere in the workstation today and execute Unix appli-
system. Coda provides users with the bene- cations without recompilation or relink-
fits of a shared data repository but allows ing. Execution continues transparently
them to rely entirely on local resources when contact with a server is lost due to a
when that repository is partially or totally crash or network failure. In the absence of
inaccessible. failures, using a Coda workstation feels no

When network
partitions occur,

Coda allows data to be
updated in each partition
but detects and confines

conflicting updates
as soon as possible

afier their occurrence.
It also provides

mechanisms to help
users recover from

such conflicts.

A related goal of Coda is to gracefully
integrate the use of portable computers. At
present, users manually copy relevant files
from Vice, use the machine while isolated
from the network, and manually copy
updated files back to Vice upon reconnec-
tion. These users are effectively perform-
ing manual caching of files with write-
back on reconnection. If one views the
disconnection from Vice as a deliberately
induced failure, it is clear that a mecha-
nism for supporting portable machines in
isolation is also a mechanism for fault
tolerance.

By providing the ability to move seam-
lessly between zones of normal and dis-
connected operation, Coda may simplify
the use of cordless network technologies
such as cellular telephone, packet radio, or
infrared communication in distributed file
systems. Although such technologies pro-
vide client mobility, they often have intrin-
sic limitations such as short range, inabil-
ity to operate inside steel-framed build-
ings, or line-of-sight constraints. These
shortcomings are reduced in significance
if clients are capable of temporary autono-
mous operation.

different from using an AFS-2 worksta-
tion.

Design overview. The Coda design re-
tains key features of AFS-2 that contribute
to scalability and security:

l Clients cache entire files on their local
disks. From the perspective of Coda,
whole-file transfer also offers a degree of
intrinsic resiliency. Once a file is cached
and open at a client, it is immune to server
and network failures. Caching on local
disks is also consistent with our goal of
supporting portable machines.

l Cache coherence is maintained by the
use of callbacks.

l Clients dynamically find files on serv-
ers and cache location information.

l Token-based authentication and end-
to-end encryption are used as the basis of
security.

Coda provides failure resiliency through
two distinct mechanisms. It uses sen*er
replicucion,  or the storing of copies of files
at multiple servers, to provide a highly
available shared storage repository. When
no server can be contacted, the client re-
sorts to disconnected operation, a mode of
execution in which the client relies solely
on cached data. Neither mechanism is
adequate alone. While server replication
increases the availability of all shared data,
it does not help if all servers fail or if all are
inaccessible due to a network failure adja-
cent to a client. On the other hand, perma-
nent disconnected operation is infeasible.
The disk storage capacity of a client is a
small fraction of the total shared data.
Permanent disconnected operation is also
inconsistent with the Andrew model of
treating each client’s disk merely as a
cache. Key advantages of the Andrew
architecture, namely mobility and a user’s
ability to treat any workstation as his or her
own, are lost.

From a user’s perspective, transitions
between these complementary mecha-
nisms are seamless. A client relies on
server replication as long as it remains in
contact with at least one server. It treats
disconnected operation as a measure of last
resort and reverts to normal operation at
the earliest opportunity. A portable client
that is isolated from the network is effec-
tively operating in disconnected mode.

When network partitions occur, Coda
allows data to be updated in each partition
but detects and confines conflicting up-
dates as soon as possible after their occur-
rence. It also provides mechanisms to help

May 1990 IS



Figure 5. Servicing a cache miss in Coda: the events that follow from a cache
miss at the client. Both data and status are fetched from Server 1, which is the
preferred server (PS). Only status is fetched from Server 2 and Server 3. The
calls to all three servers occur in parallel.

users recover from such conflicts, This tion with a pessimistic strategy. Second, it
strategy is optimistic, in contrast to apes- is widely believed that sequential write
simistic strategy that would preserve strict sharing between users is relatively infre-
consistency by disallowing updates in all quent in Unix environments, so conflicting
but one partition. We chose an optimistic updates are likely to be rare.
strategy for two reasons: First, we saw no Coda provides a scalable and highly
clean way to support disconnected opera- available approximation of Unix seman-

Figure 6. A store operation in Coda: the two phases of the Coda update protocol.
In the first phase, COPl, the three servers are sent new status and data in paral-
lel. In the later asynchronous phase, COP2, the update set is sent to these serv-
ers. COP2 also occurs in parallel and can he piggybacked on the next COP1 to
these servers.

tics. We arrived at this semantics on the
basis of our positive experience with AFS-
2. In the absence of failures, Coda and
AFS-2 semantics are identical. On open,
the latest copy of a file in the system is
cached from Vice. Read and write opera-
tions are made to the cached copy. On
close, the modified file is propagated to
Vice. Future opens anywhere in the system
will see the new copy of the file. In the
presence of failures, Coda and AFS-2
semantics differ. An open or close in AFS-
2 would fail if the server responsible for
the file was inaccessible. In Coda, an open
fails only on a cache miss during discon-
nected operation or if aconflict is detected.
A close fails only if a conflict is detected.

Server replication. The unit of replica-
tion in Coda is a volume. A replicated
volume consists of several physical vol-
umes, or replicas, that are managed as one
logical volume by the system. Individual
replicas are not normally visible to users.
The set of servers with replicas of a volume
constitutes its volume storage group
(VSG). The degree of replication and the
identity of the replication sites are speci-
fied when a volume is created. Although
these parameters can be changed later, we
do not anticipate such changes to be fre-
quent. For every volume from which it has
cached data, Venus keeps track of the
subset of the VSG that is currently acces-
sible. This subset is called the accessible
VSG (AVSG). Different clients may have
different AVSGs for the same volume at a
given instant. Venus performs periodic
probes to detect shrinking or enlargement
of the AVSGs from which it has cached
data. These probes are relatively infre-
quent, occurring once every 10 minutes in
our current implementation.

Coda integrates server replication with
caching, using a variant of the read-one,
write-all strategy. This variant can be
characterized as read-one-data, read-all-
status, write-all. In the common case of a
cache hit on valid data, Venus avoids con-
tacting the servers altogether. When ser-
vicing a cache miss, Venus obtains data
from one member of its AVSG, known as
thepreferred server. The PS can be chosen
at random or on the basis of performance
criteria such as physical proximity, server
load, or server CPU power. Although data
is transferred only from one server, Venus
contacts the other servers to collect their
versions and other status information.
Venus uses this information to check
whether the accessible replicas are equiva-
lent. If the replicas are in conflict, the

16 COMPUTER










