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Logging is a simple yet surprisingly versatile and powerful implementation technique. Since its invention and
popularization as a recovery technique for transactional databases [3], it has been used for a variety of other
purposes such as updating meta-data in file systems [4], exploiting write-once media [2, 12], maintaining
authentication audit trails [10], and increasing the write bandwidth of disks [9].

In this position paper we describe how logging in different guises is used in the Coda File System [5, 11]. Coda is a
distributed file system whose goals are to provide highly available, scalable, secure and efficient shared file access
in an environment of Unix workstations.  High availability is achieved through two complementary mechanisms,
server replication and disconnected operation.

Our experience with logging in Coda is especially valuable because we did not start out with any preconceived
notions about the aptness of logging for our system.  In fact, we did not think of using logging for any aspect of
Coda until well into its detailed design.  That logging has proved so useful is hence compelling evidence of its value
as an implementation technique.

In the light of our experience, we now hold the position that logging should be at the forefront of techniques
considered by a system designer when implementing a distributed file system.

Logging is used in at least three distinct ways in the current implementation of Coda. First, value logging forms the
basis of the recovery technique for RVM, a transactional virtual memory package.  Second, operation logging is used
in the replay log that records update activity made by a client while disconnected from all servers.  Third, operation
logging is used in resolution logs on servers to allow transparent resolution of directory updates made to partitioned
server replicas.

1. RVM
RVM, an acronym for recoverable virtual memory, is a Unix library that supports local, non-nested transactions on
data structures mapped into a process’ virtual memory [7]. A unique aspect of RVM is that it allows independent
control over the basic transactional properties of atomicity, permanence, and serializability.

Atomicity and permanence of transactions are obtained using a NO-UNDO/REDO value log.  The log can be a raw
disk partition or a Unix file.  If a Unix file is used, true transactional guarantees are achieved only if the fsync
system call blocks until dirty file buffer cache data has been written to disk.  There are two log operations: flush
and truncate. As transactions are committed, new-value records of virtual memory modifications are written to
the log device in the flush operation. Periodically, the modifications represented by the log records are applied to
the committed data image via the truncate operation.



Flushing and truncation are usually transparent to applications.  But because log management is the strongest
determinant of RVM performance, these operations are made visible and an application can use knowledge of its
internals to optimize their timing.  For example, an application can reduce commit latency by labelling the commit
as no-flush, thereby avoiding a synchronous write to disk at the expense of persistence.  To ensure persistence of
no-flush transactions, the application must explicitly flush RVM’s write-ahead log from time to time. When used in
this manner, RVM provides bounded persistence, where the bound is the period between log flushes.

RVM’s design is minimalistic.  Much of the motivation for building RVM has come from experience with
Camelot [1], a general-purpose transaction system used in an early implementation of Coda.  While Camelot is more
general than RVM, we found that we were deriving most of the benefit of transactions using only a fraction of
Camelot’s facilities.  RVM may thus be viewed as an exercise in discovering the minimum transaction processing
functionality useful in building non-database applications such as Unix file servers.

2. The Replay Log
Coda supports disconnected operation at client workstations when no server replica of a volume is accessible.
While disconnected, the cache manager, Venus, must record sufficient information to replay update activity upon
reconnection. It maintains this information in a per-volume operation of mutating operations called a replay log.
Each log entry contains a copy of the corresponding system call arguments as well as the version state of all objects
referenced by the call.  Since the replay log is maintained in RVM, we have a situation where an operational logging
layer is built upon a value logging layer.

Besides replay logs, Venus maintains other meta-data such as cached directories, symbolic link contents, and status
information for cached objects of all types in RVM.  The actual contents of cached files are not in RVM, but are
stored as local Unix files.

The use of transactions to manipulate meta-data simplifies Venus’ job enormously.  To maintain its invariants
Venus need only ensure that each transaction takes meta-data from one consistent state to another.  It need not be
concerned with crash recovery, since RVM handles this transparently.  If we had chosen the obvious alternative of
placing meta-data in local Unix files, we would have had to follow a strict discipline of carefully timed synchronous
writes and an ad-hoc recovery algorithm.

Venus exploits the capabilities of RVM to provide good performance at a constant level of persistence.  When
servers are accessible, Venus initiates log flushes infrequently, since a copy of the data is available on servers.
Since servers are not accessible when disconnected, Venus is more conservative and flushes the log more frequently.
This lowers performance, but keeps the amount of data lost by a client crash within acceptable limits.

Venus uses a number of optimizations to reduce the length of the replay log, resulting in a log size that is typically a
few percent of cache size.  A small log conserves disk space, a critical resource during periods of disconnection.  It
also improves reintegration performance by reducing latency and server load.

3. The Resolution Log
Coda also supports optimistic replication of data at servers.  A key problem in optimistic replication is detecting
when replicas of an object have been updated simultaneously in multiple partitions and using the object’s semantics
to merge the concurrent partitioned updates.  We refer to the process of examining replicas of a directory, deducing
the set of partitioned updates and merging them using Unix semantics as directory resolution. Concurrent
partitioned updates that violate Unix semantics when merged are called conflicting updates.

The basic data structure used for directory resolution is a resolution log associated with each replica.  Each
resolution log entry contains the arguments of the directory operation it represents.  Atomicity of the log and
directory mutation is guaranteed by by placing both log and directory contents in RVM and mutating them within



the same transaction.

This is another instance of operational logging being layered on value logging.  There is one physical resolution log
associated with each Coda volume.  However, log entries for each directory are linked together for faster lookup
since each directory is resolved separately.

By examining the logs from a set of replicas, it is possible to unambiguously determine the updates missed by each
replica, and to detect conflicting updates.  A four-phase protocol, with one server acting as coordinator, is used to
perform directory resolution.  In the first phase all the replicas participating in the resolution are locked.  In the
second phase, the coordinator collects the resolution logs of the other replicas. In the third phase, a merged log is
shipped to the replicas, and each computes and replays missed updates. In the final phase, all the replicas are
unlocked.

A log entry’s space can be reclaimed as soon as the corresponding directory update has been propagated to all other
replicas. Such information is usually made available to a server during the second phase of the update protocol
(Coda Optimistic Protocol [11]). Therefore, in the absence of failures a log entry is reclaimed shortly after it is
allocated. However, during partitions a log on a server can become full. In that case the server can unilaterally
reclaim old log entries.  Correctness is not violated by this, although the ability to transparently resolve non-
conflicting updates is lost.

Using a log-based strategy for directory resolution provides an easily-understood tradeoff between resource usage
and usability: the larger a log, the lower the likelihood of loss of transparency.  Further, it is substantially easier to
implement, and is more flexible and efficient than the purely inferential scheme used in the Ficus file system [8].

Measurements from the implementation show that the time for resolution is typically within 10% of the time for
performing the original set of partitioned updates.  Analysis based on file traces from our environment indicate that a
log size of 2 MB per hour of partition should be ample for typical servers [6].

4. Conclusion
In the near future, we see at least one additional use of logging in Coda.  This is a generalized logging facility for
"conflict-smart" applications to perform transparent file resolution.  We plan to implement such a logging facility on
top of RVM.  We expect that applications will use the facility for operational logging, though nothing precludes its
use for value logging.

Overall, our strategy of using a general-purpose value logging layer at the bottom, with special-purpose operation
logging above has worked out very well.  It combines the well-known strengths of these two forms of logging in a
highly convenient and usable manner.
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