
Abstract

Although numerous mechanisms for promoting soft-
ware reuse have been proposed and implemented over the
years, most have focused on the reuse of implementation
code. There is much conjecture and some empirical evi-
dence, however, that the most effective forms of reuse are
generally found at more abstract levels of software design.
In this paper we discuss software reuse at the architectural
level of design. Specifically, we argue that the concept of
“architectural style” is useful for supporting the classifi-
cation, storage, and retrieval of reusable architectural
design elements. We briefly describe the Aesop system’s
Software Shelf, a tool that assists designers in selecting
appropriate design elements and patterns based on stylis-
tic information and design constraints.

1. Introduction

Traditionally, the primary focus of reuse research has
been on the reuse of code-level entities, such as classes,
subroutines, and data structures. While there have been
significant improvements in code reuse technology and
methods, code-level artifacts are not the only ones that can
be profitably reused. In this paper we describe an approach
and supporting tool for a class of design reuse – namely,
architectural reuse.

Broadly speaking, design reuse appears promising for
at least three reasons. First, since designs address early
phases of system development, many of the up-front (and
hence most costly) errors can be avoided. Second, reuse of
familiar designs can improve the understandability of a
system, making it easier to evolve and maintain. Third,
design reuse promotes code reuse: often much of the infra-
structure to support a design can be shared among applica-
tions that share that design.

It is perhaps not surprising then, that some of the

more impressive examples of reuse today involve a strong
component of design reuse. Prominent examples include
specialized frameworks such as user interface toolkits,
application generators (such as Visual Basic), domain-
specific software architectures [MG92], and object-ori-
ented patterns [GHJV94].

But what exactly is design reuse and how can it be
exploited? Most examples, such as those just mentioned,
capitalize on a specialized domain, providing specific
facilities for a fairly narrow class of system. By trading
generality for power, they leverage the domain to provide
common infrastructure, and specific instantiation mecha-
nisms for reusing that infrastructure.

We have been exploring a different, but complemen-
tary approach. Rather than focus on a specific class of sys-
tem we consider the more general problem of the reuse of
architectural designs. An architectural design is concerned
with the gross decomposition of a system into a set of
interacting components [GS93, PW92]. At this level of
abstraction, key issues include the assignment of function-
ality to design elements, protocols of interaction, system
extensibility, and broad system properties such as through-
put, schedulability, and overall performance. The reuse
problem for architectural designs then becomes how to
exploit the basic elements of architectural design (large-
scale components and their interactions), as well as com-
mon structures and idioms for their composition.

The approach we describe in this paper uses the con-
cept of architectural style, for representing and reusing
architectural designs and design fragments. As we will
illustrate, the use of architectural style can provide assur-
ance that elements built following the stylistic guidelines
are interoperable. Further, the use of style supplements tra-
ditional mechanisms for classifying design elements, stor-
ing those elements in a repository, and narrowing the
search space to more accurately locate potential element
matches in a given context.

We begin by contrasting our approach to existing
work in the areas of reuse and software architecture. Next
we motivate the challenges for design reuse by consider-
ing existing problems with code-level reuse. We then
show how an architectural view of the problem, supported
by the concept of architectural style, addresses those
issues. As a concrete demonstration of how these ideas can
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be used, we describe a prototype tool called the “Software
Shelf” which provides a repository for reusable architec-
tural design elements.

2. Related Work

The two areas most closely related to the research pre-
sented here are software reuse and software architecture.

2.1. Software Reuse

Over the past decade there has been a vast amount of
work in the area of software reuse (e.g., see [BP89]).
Within this broad arena a number of researchers have
looked at the problem of design reuse. In particular, efforts
to raise the level of abstraction in code reuse date back at
least to the Draco system [Nei84], which was aimed at
reusing domain specific knowledge, tools, and frame-
works, and Baxter’s work on Design Maintenance Sys-
tems [Bax92].

Currently the most successful forms of design reuse
are in three areas. The first is the area of application frame-
works, including user interface toolkits (such as X-Win-
dows and Motif, Microsoft Windows API, and the
Macintosh Toolbox), and application generators (such
as Lotus Notes, Microsoft Visual Basic, Lex and
Yacc). In this area reuse is achieved by exploiting a shared
implementation base and a common design framework for
a specific class of software application [Kru92].

The second area is domain-specific software architec-
ture (DSSA). A DSSA system focuses on software support
for an application domain, such as avionics, mobile robot-
ics, or command and control [MG92]. Typically it pro-
vides one or more domain-specific notations for
characterizing a specific use of the architecture, together
with tools for using these notations to generate a specific
system implementation.

The third area is the recent development of object-ori-
ented design patterns. These patterns attempt to capture
common idioms of object-oriented software organization,
such as the model-view-controller paradigm of Smalltalk-
80 [KP88]. Recently a number of patterns have been col-
lected into published handbooks [GHJV94, Pree95].

Broadly speaking, our work is motivated by the same
concerns that these three areas address – providing high-
level abstractions for constructing new systems based on
previous designs and implementations. It does, however,
also differ in several ways.

With respect to the first two areas, our work attempts
to address the broader concern of architectural modeling:
unlike application frameworks and DSSA, our mecha-
nisms are not specifically tied to a particular application

domain. While we also exploit architectural commonali-
ties (in our use of “architectural style”), we start from a
much more generic base of components and interactions.
The advantage of taking this more general approach is that
we provide a framework for architectural reuse that cuts
across many application domains.

Our work is much more closely related to the third
area – object-oriented patterns. As with our approach,
object-oriented patterns are not tied to specific applica-
tions. Consequently, they can provide general design
guidelines for structuring a wide variety of systems. On
the other hand, object-oriented patterns are (not surpris-
ingly) object-oriented. That is, they rely on method invo-
cation as their primary form of compositional glue. In
contrast, our work allows designers to define and use
higher-level abstractions (such as pipes, event broadcast,
and other complex protocols) for component composition.
This permits the description of more abstract designs, but
at the same time places our descriptions at a farther dis-
tance from real implementations.

2.2. Software Architecture

The second broad area of related work is software
architecture, a topic that is receiving increasing attention
from researchers and practitioners in areas such as module
interface languages, domain-specific architectures, soft-
ware reuse, codification of organizational patterns for soft-
ware, architectural description languages, formal
underpinnings for architectural design, and architectural
design environments. Collectively these efforts are
attempting to establish an engineering basis for architec-
tural design, and make principles and techniques of archi-
tectural design more widely accessible.

In this paper we leverage the results of this commu-
nity of research in several ways. First, as we detail later,
we adopt the architectural vocabulary of components, con-
nectors and configurations that is becoming increasingly
well-accepted as the basis for architectural description
[GS93, PW92]. Second, we make essential use of the
notion of architectural idioms – or styles – as a way of
characterizing a family of architectural designs that share
a set of common assumptions [AAG93]. Third, we take
advantage of the emerging class of architecture support
tools for developing and analyzing architectures
[Shaw+95, Luc+95]. Indeed, their very existence moti-
vated us to provide tools for reusing architectural designs.

One of these support tools is our own Aesop system
[GAO94]. As we outline later in this paper, Aesop is a
development environment for software architectures. In
previous papers we have described the basic concepts
behind Aesop and illustrated its use. In this paper we



extend those results by showing how a new tool, the Soft-
ware Shelf, can further exploit architectural designs and
architectural styles to support design reuse.

Outside of our own research, there are two closely
related tools for architectural design: Weaves [GR91] and
MacSTILE [SW88]. Weaves supports the development of
systems based on asynchronous typed datastreams. It pro-
vides a repository mechanism, called a “tray,” that, like
our Software Shelf, uses the context of an architectural
design to determine likely candidates for reuse. On the
other hand, Weaves focuses on a specific style. It does not
specifically address the more general issues of architec-
tural design reuse. Similarly, MacSTILE provides an envi-
ronment for graphically describing logical relations
between components. These relations, however, work only
within a fixed number of styles.

3. Limitations of code-level reuse

Although reusing implementation-level code can sig-
nificantly improve the economics of software develop-
ment, it faces at least three fundamental problems.

1.The assumptions about the context in which an
implementation will work are unstated: With con-
crete code reuse it is often difficult to discover the
assumptions about the context in which the compo-
nent is intended to work [GAO95]. Context includes
expected protocols of interaction, locus of control,
scheduling constraints, etc.

2.Programming languages do not adequately support
the description of complex software assets: For
example, a software component may be designed to
interact in different ways with different parts of its
environment, such as communicating over data
streams to some entities, providing a procedural API
to a user interface, and relying on operating systems
libraries for other interactions. Ideally one would like
to characterize each of these “interfaces” separately.
But it is difficult to describe more complex packages,
such as those involving multiple cooperating objects
with current programming languages.

3.Storage and retrieval mechanisms are generally
based on ad-hoc classification systems: If the ele-
ments in a repository are arbitrary implementation
code then the (re)user will have to rely on whatever
meta-data and documentation has been associated
with the repository entities, or else examine the code
itself. Although numerous repository schemas have
been developed for classifying software assets, such
as component facets [PDF87], most of these mecha-

nisms are based on informal classification schemes.
Reliance on the accuracy of the informal descriptions
of the code is suspect, especially if the annotations
were added independently by different people over a
significant period of time.

A plausible antidote for these ills is a stronger focus
on design reuse. By making available higher-level design
entities it should be possible to address the problems just
enumerated. First, by relying on a richer design vocabu-
lary – and not primarily code – the context of use can be
explicitly defined. Moreover, design-oriented notations
can permit the description of more complex entities than
one could describe using an implementation-level lan-
guage. Finally, design-level taxonomies can be used to
classify and retrieve reusable parts.

To realize these potential benefits, however, the
notion of design reuse must be made much more concrete.
What kinds of design-oriented parts can be reused? How
are they described, classified, stored, and retrieved? In the
next three sections we show how an architectural approach
leads to one set of answers.

4. Software Architecture and Architectural
Style

Software architecture is the level of design at which a
system is defined as a composition of interacting, module-
scale components [GS93,PW92]. Adopting the emerging
vocabulary of this field, a software architecture can be
defined in terms ofcomponents representing the applica-
tion-level computational entities,connectors representing
interactions between components, andconfigurations rep-
resenting assemblages of components and connectors. As
a simple example, the architecture of a small client-server
system might be a configuration of two components (a cli-
ent and a server), joined by a single connector (represent-
ing the client-server protocol).

Architectural designs are ubiquitous as system docu-
mentation for complex industrial software systems. Com-
monly they are represented as informal box-and-line
diagrams, although recently architectural definition lan-
guages are beginning to emerge [Luc+95, Shaw+95], as
well as formalisms for architectural specification and anal-
ysis [AG92, Mor94].

Architectural description has a number of important
design-level benefits over code-level descriptions. First, it
permits richer descriptions of components. In particular, it
is common to partition a component’s interface into multi-
ple “ports,” each port determining an interaction with
some part of its environment. This is in contrast to module
languages that provide a single flat interface. Second,



architectural descriptions typically provide the ability to
define new kinds of system “glue,” or connectors. This
allows expressiveness beyond what is provided by pro-
gramming languages (and their module facilities), since it
permits first class abstractions for interactions such as
piped data streams, event broadcast, and other complex
protocols of interaction.

Third, the use of architectural description naturally
leads to the capability for exploiting “architectural styles.”
An architectural style provides a specialized architectural
design vocabulary for a family of systems, and typically
incorporates a number of idiomatic uses of that vocabulary
and design rules for system composition [GS93, PW92,
Mor94, GAO94]. As a simple example, Unix pipe-and-fil-
ter systems provide a specialized component vocabulary
of filters (as data stream transformations) and a connector
vocabulary of pipes (as data channels). Among the idiom-
atic patterns are the notions of a strict “pipeline” topology.

From the point of view of a designer, architectural
style is important for several reasons. It limits the design
space, thereby simplifying design choices. It allows a
designer to exploit recurring patterns of organization, such
as topological configurations, or even specific organiza-
tions of components (such as the MVC pattern in object-
oriented systems). It provides a context within which cer-
tain kinds of design integrity can be enforced, such as the
fact that no cycles are allowed. It permits specialized anal-
yses such as detection of deadlock. And finally, as we
detail in the next section, it provides a basis for supporting
reuse of architectural building blocks and patterns.

While the field of software architecture is only now
emerging as an engineering discipline, there are already
many indications that architectural design will become an
increasingly important component of large scale software
development. The DSSA program (mentioned earlier) has
demonstrated that considerable cost savings can be
achieved through support of architectural design within
specific domains. More recently, other projects such as the
Advanced Distributed Simulation Program has developed
a reusable “high-level” software architecture for integra-
tion of diverse sets of simulations. Further, there are the
increasingly prominent results of the object-oriented pat-
terns community [GHJV94].

5. Style-Based Architectural Reuse

By focusing on the reuse of architectural entities and
exploiting the notion of architectural style, it is possible to
realize many of the benefits of design-level reuse. To dem-
onstrate how this is accomplished at a concrete level, we
describe theSoftware Shelf,1 a tool for storing and retriev-
ing architectural designs. As we elaborate below, the main

features of the Shelf are:

• Support for storage of rich design elements: The
Shelf can store not only components with associated
implementations, but also connectors and design pat-
terns. Moreover, by associating stylistic information
with these design entities, we are able to explicitly
define the intended context of use. This addresses prob-
lems 1 and 2 enumerated in Section 3.

• A common vocabulary: Every design element stored
on the shelf has a number of architectural attributes
associated with it, including the styles in which it works,
its architectural category and class (see table 1), and the
interface(s) it provides to the outside world. Because all
items that share a stylistic attribute conform to the con-
straints of that style, a potential reuser can quickly
determine the high-level attributes of an item without
having to review ad hoc annotations about that item, or
worse, review its low-level code. This addresses prob-
lems 2 and 3 of Section 3.

• Mechanisms to support design checking and guid-
ance: By attributing design entities with information
such as the styles within which they can be used, the
specific stylistic type within the vocabulary of the style
(e.g., a filter, pipe, client, or server), as well as various
extra-functional properties, our tools can check whether
a component is being used in an appropriate context.
Moreover, it also permits one to do context-sensitive
browsing. That is, the context of use within a design can
be exploited to limit the search of the Shelf to those
objects that could legally fit in that context. This
addresses problems 2 and 3 of Section 3.

6. A Style-Based Repository for Architectural
Designs

As part of the process of exploring the concepts of
architectural style and design reuse, we have built a toolkit
calledAesop that is designed to support the rapid develop-
ment of “style-aware” software architecture design envi-
ronments. More recently, we have added to Aesop a
repository for design elements and patterns called the
Software Shelf. The following sections provides a brief
overview of how Aesop and its Software Shelf support
design reuse, focusing on how they use stylistic annota-
tions to supplement more traditional mechanisms for clas-
sifying, storing, and retrieving software assets.

1. The term “Software Shelf” was originally suggested
to us by Jon Ward at Honeywell.



6.1. Aesop

Aesop [GAO94] is an experimental platform for
exploring software architecture and architectural style
that, among other things, allows us to test different mecha-
nisms and strategies for supporting architectural reuse.
The basic thesis underlying Aesop is that software design-
ers can benefit from using specialized design environ-
ments and tools that exploit stylistic knowledge about a
family of systems. Historically, these specialized environ-
ments have been expensive to build and configure for indi-
vidual styles and families of systems. Aesop attempts to
minimize the cost of building these systems by providing a
generic infrastructure of common tools (design database,
GUI, Software Shelf, editors, protocol consistency check-
ers, etc.) and providing mechanisms for easily building a
new environment to support a specific style of design.

A core capability of Aesop is the ability to define
architectural styles. A style definition consists of a vocab-
ulary of design elements that are available for use in that
style, rules for determining when a configuration of com-
ponents and connectors is well formed, and tools to
manipulate and analyze designs created in the style. For
example, a client-server style would likely define compo-
nent classes for clients and servers, as well as connector
classes for the interactions between clients and servers.
Configuration rules might prohibit two clients from direct
communication. Analyses might include checking for
potential sources of deadlock (via cycles), compiling a
design using existing RPC facilities of a host operating
system, or calculating expected throughputs. Such analy-
ses make use of style-specific properties of the compos-
able design elements.

The nature of the checking that can be performed by
Aesop depends considerably on the style in question.
Some styles specify few constraints that can be automati-
cally analyzed. Others have detailed semantics and criteria
for completeness and consistency. (We return to this issue
in the Evaluation section.)

6.2. The Software Shelf

The Software Shelf (or simply “Shelf”) is a tool that
communicates with Aesop to support the classification,
storage, and retrieval of architectural elements: compo-
nents, connectors, and configurations (or, design patterns).
We now describe the strategies taken to implement this
functionality, and provide examples to illustrate the utility
of embedding stylistic information in the reusable assets
stored on the Shelf. Many of the underlying mechanisms
that we use to implement Shelf functionality are not new.
Our intention has been to leverage well-known repository
techniques while updating them to support and exploit the

concept of architectural style.

6.2.1. Classification:

Entities stored on the Shelf are classified along three
basic dimensions. The first dimension specifies whether
the design element represents a computation (component),
an interaction (connector), or a configuration (pattern).
The second dimension is the specific style, or set of styles,
for which that design element was created. This deter-
mines the context into which the element can be inserted
(reused). The third dimension is the specific class to which
the design element belongs within the styles. Table 1 illus-
trates this first-level classification scheme. In addition to
this basic classification scheme, elements can also be
annotated and classified by style-specific and class-spe-
cific attributes, as we will illustrate later.

The primary benefit that the use of style brings to this
classification scheme is that users are able to determine a
lot about a reusable item based solely on its category and
style. A style definition provides a set of constraints and
guidelines to which all elements claiming to support that
style must conform. As a result, a (re)user familiar with
the style being considered quickly knows a lot about that
design element, including the interface(s) it provides to
other design elements and some guarantees about how it
will behave when put into a design.

For example, when reusing a “Tool-Invoker” connec-
tor (from Table 1), the fact that its class is “Event-Dis-
patch” indicates that it will support a particular protocol of
event interaction, and can be used to connect other compo-
nents in this style. Similarly, the fact that the “Anomaly-
Detector” component (again from Table 1) is afilter
assures the user that it has an interface that can be con-
nected via pipes to any other filter in a design.

6.2.2. Storage:

Architectural entities provided by the Shelf are stored
as objects in a persistent objectbase. These objects are
either basic architectural entities (individual components
and connectors) or else more complex configurations rep-
resenting design patterns.

Representation of Basic Elements:

Components. Component storage is best illustrated
by example. Consider two basic components built in the
pipe-and-filter style [AG92] and stored on a Software
Shelf. Both are represented as objects derived from the
Filter  class of architectural entities. The first compo-
nent is a “generic” filter (visible as the dashed box labeled
“filter” in figure 1). It defines the basic architectural struc-
ture of allFilter  objects. In particular, any instantiation
of it in a design will have a set of input and output ports,
its behavior will be a transformation function, etc. It will,



however, have no explicit behavioral description that
determines what it will actually compute. This information
must be provided in the context of a specific design when
the filter is instantiated. A “generic” filter, such as this one,
can be thought of as a template with a well defined inter-
face and an implicit, albeit simple, behavioral description.
This is a useful starting point for creating more specialized
filters without having to recreate the structure common to
all filters. This simplification can reduce both development
time and the potential for subtle interface problems.

The second example component possesses a more
detailed behavioral description. This component imple-
ments a “Kalman Filter” for reducing the noise in a stream
of floating point values passed to it through its single float-
ing-point input port (see the corresponding box in figure
2). It then writes a stream of filtered floating-point values
to its single output port. Like the first example, this com-
ponent possesses a large amount of implicit architectural
information simply by being aFilter  object. In addi-
tion, however, it includes explicit behavioral and structural
data, in the form of attributes and attached representations.
These representations could include: source code, a formal
specification, and/or attributes describing details such as
performance characteristics or algorithmic choices.

Connectors. In addition to components, a shelf can
also store connectors, which define protocols of interac-
tion between components. For example, within the pipe-
and-filter style we store several kinds of pipes: a “raw”
pipe that is minimally specified, a buffered pipe that speci-
fies a buffer size, and pipes specialized by the form of data
that they transmit. To take an example from a different
style, a Shelf that supports a distributed message passing
style might contain three types of connectors, each more
fully instantiated than the previous:message-pass-
channel , async-message-pass-channel , and
buffered-async-message-pass-channel .

These examples illustrate that the design elements
stored on the Shelf are classified and described primarily
based on their architectural attributes, instead of just their
implementation. Further, it shows how design elements
stored on the Shelf can vary greatly in their degree of
specificity. Finally, it shows how architectural entities can
be stored using straightforward reuse mechanisms.

Design Patterns: Storing basic components and con-
nectors in the repository is a necessary step towards
achieving design reuse; it provides the basic building
blocks for creating software architectures from reusable
entities. In order to more fully exploit the concept of
design reuse, however, the Shelf also provides mecha-
nisms for reusing configurations of components and con-
nectors in the form of design patterns. Like basic
components and connectors, patterns may be stored on the
Shelf in various degrees of instantiation. To expand on the
earlier examples, the pattern counterpart to the “raw” filter
might be a “raw” pipeline. Figure 1 depicts a two-stage
version of the raw pipeline pattern, which is a sequence of
two arbitrary filters, each with one or more input ports and
one or more output ports, that are composed in a linear
sequence with a series of pipe connectors. As a further
constraint, none of the pipe connectors can create a cycle.
Figure 2 shows a fully instantiated example of the “raw”
two-stage pipeline pattern. It includes theKalman Fil-
ter  component of the previous example and an anomaly
detection filter. This pattern is a small configuration that
would generally be used as a fragment of a larger architec-
ture. It provides a fully instantiated, albeit simple, noise
reduction and anomaly reporting sub-architecture.

A further example: To expand on the previous
examples, we now consider a reusable design pattern for a
different architectural style. Figure 3 shows a forked mem-
ory pattern created in the Real-Time Producer/Consumer
(RTP/C) style described in [Jef93]. This pattern shows two
shared-memory data stores that are synchronously
accessed by a pair of independent RTP/C Components.
The architectural style defines the basic semantics for the
shared-memory components, the synchronous message
passing connectors, and other components and connectors
available in the style. It also defines the composition rules
specifying how these elements can be combined.

This particular pattern shows a standard composition
of elements from this style’s design vocabulary; it also
adds an additional constraint (above and beyond those
imposed by the style itself) on what components can be
selected for instantiation in the placeholder positions.
Only those components that satisfy the property of being
“RTP/C Components” can be selected to “fill-in” the

Design Element Name Category Style(s) Class

Kalman-Filter Component Pipe-and-Filter Filter

Anomaly-Detector Component Pipe-and-Filter Filter

Tool-Invoker Connector Implicit-Invocation Event-Dispatch

Proxy Design Pattern Object-Oriented Proxy

Table 1: Sample classifications for four design elements.



dashed-box placeholders. By limiting the design space to
include only a specific class of components we are then
able to perform some checks on the system design at the
architectural level. As an example, if there are formal
specifications associated with the components that are
chosen to instantiate this pattern, Aesop’s tools will be
able to check for deadlock-freedom as a property of the
design as a whole. Likewise, various performance model-
ling analyses can be performed on the design itself to
determine whether it will be possible to schedule the
implemented system on a single processor running at a
user-specified speed.

6.2.3. Retrieval:

Classifying and storing design elements are not the
only tasks necessary for supporting effective reuse of soft-
ware designs; users also need mechanisms for browsing,
searching, and querying the repository, as well as custom-
izing and/or instantiating the design element or fragment
that they have selected.

To support search, the Shelf provides a query lan-
guage that allows users to perform queries based on stylis-
tic attributes, as well as traditional string and keyword
matching. While the query language and search mecha-

RTP/C
Component

RTP/C

Shared Memory

Component

Shared Memory

Figure 3: Forked-memory pattern in the Real-time
Producer/Consumer (RTP/C) style. All
arrows represent synchronous message
passing connectors.

nisms are fairly standard, there are three novel features of
the Shelf’s retrieval mechanism. First, the items being
queried and retrieved are design elements (as opposed to
concrete code modules). Second, the class and style hier-
archies provide a natural taxonomy of elements for search-
ing the repository. Third, and arguably the most important,
the use of architectural structures and architectural styles
permits automated queries based on the context within
which the reused design fragment will be integrated.

Table 2 provides a flavor of the types of style-based
queries that a Shelf user can perform. A query is simply a
series of predicates joined by “AND” and “OR” junctions.
Predicates consist of a keyword attribute-- Style, Type,
Name,or Attribute -- followed by a relational expression
(==, !=, contains, etc.) and a value for that field. The value
may be any valid regular expression. AnAttribute key-
word is followed by the name of a style-specific attribute
that can be attached to design elements built in that style.
The Attribute keyword allows styles to define their own
attributes to be used as valid query keys.

Although it is readable by humans, we designed the
query language with the expectation that many queries to
the Software Shelf will be automatically generated. In par-
ticular, the standard structure of design elements and their
stylistic attributes facilitates context-sensitive queries. For
example, the design environment that is interacting with
the Shelf can provide the Shelf with a list of the styles of
design elements that it is willing to accept. The Shelf can
then limit the search space by prepending a disjunctive
series of style constraints at the beginning of the query
(e.g. {{Style == Foo} OR {Style == Bar}} AND {rest of
the query...}). More powerful context-sensitive searches
are also possible with this scheme. For example, a user can
select a pair of ports on two different components in the
design environment (a port is an interface to a compo-
nent), and have the design environment automatically gen-
erate a query for all connectors with an appropriate
interface for linking the two components together.

Instantiation and customization: Retrieval may

KalmanInput
Source

Smoothed Data

Figure 2: Kalman filter /anomaly detection pattern in the pipe-and-filter style.
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Figure 1: “Raw” 2-stage pipeline pattern in the pipe-and-filter style.
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involve more than just finding an appropriate element.
One of the important characteristics of architectural enti-
ties is that they can represent abstract or incomplete design
fragments. Thus, when retrieving an item from the Shelf,
an architect will often need to specialize it to fit within the
target design. The Software Shelf provides an instantiation
model for retrieval. Once an item has been selected for
insertion into a design, an instantiation tool appropriate for
the selected item is invoked to guide the architect in spe-
cializing the selected design element to meet his or her
needs. Instantiation tools are often style-specific and capa-
ble of exploiting the knowledge they have about both the
design element being instantiated and that element’s style.
As a default, the Shelf includes both a generic instantiation
tool that provides limited support for specialization of any
design element and an identity instantiation tool for
retrieving fully instantiated items stored on the Shelf that
have no instantiation options.

To illustrate instantiation, consider the process of
pulling the patterns in Figures 1 and 2 off of the Shelf and
placing them into a design environment. When a user
instantiates the raw pattern (Figure 1), the pipe-and-filter
instantiation tool recognizes the filter placeholders (repre-
sented as dashed boxes in the diagram) and asks the user
to select filter components that meet the placeholder crite-
ria. The user can select either zero, one, or two filters from
the Shelf to be instantiated in the pattern. Any selected fil-
ters will then be placed in the pattern, hooked up appropri-
ately, and instantiated as a configuration in the design
environment. Depending on the filters selected it may also
be necessary to provide instantiation information for the
individual filters. Any dashed boxes that are left empty are
instantiated in the design environment as generic filters
that can be replaced or specialized at a later point.

The instantiation process for the Kalman Filter pattern
(Figure 2) is similar to that for the raw pipeline pattern
except the user has no placeholders to fill in. Because the
pattern is almost fully specified at an architectural level,
the instantiation tool only specializes the individual com-
ponents and connectors in the pattern. For example, the
instantiation tool might request that the user define the
type of data expected from the input source (float, integer,

etc.) and a threshold value for anomaly detection. This
example assumes that the person who put this pattern on
the Shelf provided these instantiation options. It is also
possible that the pattern is fully specified and supports no
further specialization at instantiation time.

7. Evaluation

The Software Shelf has been available as a research
prototype for the past year, and is currently being distrib-
uted with the Aesop System to interested users. The sys-
tem supports four styles: a generic architectural style, two
kinds of pipe-and-filter styles, and a real-time style. Two
of these were illustrated above. We have populated a num-
ber of different Shelf repositories with architectural design
elements, building both highly specialized repositories,
such as a Shelf full of Unix filters, as well as generic
repositories that are capable of storing design elements
and patterns created in any style. Currently a half dozen
sites have installed the Aesop system.

We have built a graphical browser and query tool that
implements these ideas on top of the Software Shelf repos-
itory. It currently supports simple point and click explora-
tion of the repository and explicit queries. The hypertext-
like browsing mechanisms are useful for supporting “acci-
dental discovery,” or the process of learning about the
structure and contents of the repository while traversing
the repository in search of other design elements.
Although we have not yet created large repositories, our
experience thus far indicates that the browser should be
able to deal with properly structured repositories contain-
ing as much as 500 to 1000 architectural design elements.

While feedback from external users is only now
becoming available, we have had substantial in-house
experience with the Shelf. Currently the Shelf provides a
rich repository for each of Aesop’s styles, and it has func-
tioned as a centerpoint for our own system development
and demonstration. Ultimately, of course, the long-term
viability of the approach will need to be determined by its
usefulness to practitioners.

Despite the current lack of an established user base,
the research described in this paper takes an important first

Informal Query Description Shelf Query Language Description

1. All design patterns in the pipe-and-filter style {Style == pipe-and-filter} AND {Type == Pattern}

2. All asynchronous RPC connectors. {Style == RPC} AND {Type == Connector} AND
{Attribute “Asynchronous” == True}

3. The client-server style pattern called “anonymous-
server-group”

{Style == client-server} AND {Type == Pattern} AND
{Name == “anonymous-server-group”}

4. All real-time-message-passing style components
with a throughput of 10 packets/unit time

{Style == real-time-message-passing} AND {Type ==
Component} AND {Attribute “Throughput” == 10}

Table 2: Sample style-based queries on the Software Shelf repository



step towards establishing a better understanding of both
the potential and the pitfalls of architecture-based reuse. In
this regard, we have learned four important general les-
sons that should be of practical benefit to others working
in the area of design reuse.

1. Architectural abstractions can provide a concrete
form of design reuse. One of the problems with
“design reuse” is that it is not well defined. What kinds
of design knowledge can be captured? How can that
knowledge be exploited? This research shows how to
make one class of design artifact reusable. By provid-
ing mechanisms to represent architectural designs in
terms of attributed components, connectors, and con-
figurations, we provide a specific vocabulary with
which to represent architectures.

There are three innovative aspects of these representa-
tions. First is the use of connectors as first class reus-
able entities. In traditional approaches to reuse the
interconnection mechanisms are dictated by the pro-
gramming language (usually procedure call and data
sharing). But the approach that we have adopted allows
new kinds of interconnection abstractions to be charac-
terized and reused. Second is the use of patterns as par-
tially instantiated configurations. This allows us to
support reuse of larger, more complex artifacts. Third,
computational components are characterized by multi-
ple interfaces, providing better discrimination of their
capabilities for interacting with other componentry.

2. Standard repository technology is sufficient. We
were somewhat surprised to discover that we needed
no new mechanisms for object storage or retrieval.
Reuse of architectural designs fits well within an object
paradigm, together with its well-understood techniques
for object browsing, selection, and documentation.

3. The benefits of style can vary considerably. In addi-
tion to focusing on architectural artifacts, the primary
new thrust of this work is the exploitation of architec-
tural styles. We have found, however, that the ability to
take advantage of styles is not uniform. Some styles
contain relatively few semantic constraints and a rela-
tively sparse vocabulary. These styles do not permit
detailed checking of context constraints, nor do they
provide good discriminators for selection of design ele-
ments from the Shelf. Other styles, such as the Real-
time Producer/Consumer style illustrated earlier, are
associated with more detailed classes of information
(such as types of data communicated over connectors,
protocols of interaction, rates and timing of processing,
resource consumption, etc.) This information allows
the tools to do a better job of determining when a
selected element will fit within a design.

4. The long-term viability of the approach will require
standardized interchange formats. Currently the
Shelf functions as a tool that is tightly bound to the
Aesop System. We would like to make it more gener-
ally available as a stand-alone tool that could be used
independent of Aesop. But this is problematic since
there is no general agreement about how architectures
should be represented or transmitted between different
kinds of architecture-based environments. While it
would be possible to write specialized translators from
the Shelf to each of these tools, the long term solution
will be to use more widely accepted standards for com-
municating architectural designs. Such standards are
beginning to emerge [GMW95], although it will likely
be some time before they are widely used.

In addition to the lessons learned, this research raises
a number of questions about ways to further exploit archi-
tecture-based reuse and architectural styles. These can be
viewed as a partial research agenda for others interested in
pursuing these ideas.

• Constraint retention. As we have illustrated, when an
architectural artifact is reused it frequently must be
instantiated by supplying missing pieces. The question
then arises: how is one allowed to later change aspects
of the reused artifact? For example, if you instantiate a
pipeline pattern, but later add a pipe that causes it to
branch, should this be treated as a design constraint vio-
lation or are the constraints strictly intended to guide the
initial instantiation process?

• Architectural property formalism.  In order to exploit
styles there must be some representation of the con-
straints imposed by those styles. For example, in the
pipe-filter world, the types of data read and written to
the pipe must be the same. In order for tools to check
this property it must be (a) stated precisely, and (b)
checkable by tools. Research is needed to determine the
properties that can be formally stated, and the best ways
to state them so that tools can take advantage of them.

• Combining generators with architecture develop-
ment environments. To get practical benefits from
architectural design reuse it is important to be able to
reuse implementations of architectural artifacts. How-
ever, there is usually not a one-to-one association
between code fragments and architectural entities. This
is obvious in the case of reused patterns. But reusable
connectors also present challenges. For example, a typi-
cal implementation of pipes requires the use of operat-
ing systems communications available through I/O
libraries. In this case many different architectural ele-
ments – i.e. all of the pipes in the design – use the same
implementation. This suggests a strong link between



application generation capabilitie, such as [Bat+94] and
the forms of reuse that our tools support.

8. Conclusion

Design reuse would appear to be one of the more
promising avenues for improving the prospects for soft-
ware reuse. But “design reuse” can mean many things. In
this paper we have described one approach, based on the
reuse of architectural designs. The essential ingredients
are (a) the use of components, connectors, and configura-
tions as the basic vocabulary of reusable assets, and (b) the
exploitation of architectural style to aid in the classifica-
tion, retrieval, and instantiation of those assets.

The primary contribution of this work is the integra-
tion of the concepts of software architecture and architec-
tural style with traditional mechanisms for performing
standard software reuse tasks. We are thus able to leverage
prior work to create software design environments that
support the reuse of architectural designs, assist designers
in selecting appropriate design elements and patterns, and
flag potential architectural mismatch problems early in the
design and development cycle.
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