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Abstract

Gradient-based approaches to direct policy search in reinforcement learning have received
much recent attention as a means to solve problems of partial observability and to avoid some of
the problems associated with policy degradation in value-function methods. In this paper we intro-
duceGPOMDP, a simulation-based algorithm for generatinigiasedestimate of the gradient of
theaverage rewardn Partially Observable Markov Decision Procesde@¥IDPs) controlled by
parameterized stochastic policies. A similar algorithm was proposed by Kimura, Yamamura, and
Kobayashi (1995). The algorithm’s chief advantages are that it requires storage of only twice the
number of policy parameters, uses one free paranietef0, 1) (which has a natural interpretation
in terms of bias-variance trade-off), and requires no knowledge of the underlying state. We prove
convergence oGPOMDP, and show how the correct choice of the paramgter related to the
mixing timeof the controlled®OMDP. We briefly describe extensions@POMDP to controlled
Markov chains, continuous state, observation and control spaces, multiple-agents, higher-order
derivatives, and a version for training stochastic policies with internal states. In a companion paper
(Baxter, Bartlett, & Weaver, 2001) we show how the gradient estimates generaeH®YIDP
can be used in both a traditional stochastic gradient algorithm and a conjugate-gradient procedure
to find local optima of the average reward.

1. Introduction

Dynamic Programming is the method of choice for solving problems of decision making under
uncertainty (Bertsekas, 1995). However, the application of Dynamic Programming becomes prob-
lematic in large or infinite state-spaces, in situations where the system dynamics are unknown, or
when the state is only partially observed. In such cases one looks for approximate techniques that
rely on simulation, rather than an explicit model, and parametric representations of either the value-
function or the policy, rather than exact representations.

Simulation-based methods that rely on a parametric form of the value function tend to go by
the name “Reinforcement Learning,” and have been extensively studied in the Machine Learning
literature (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998). This approach has yielded some
remarkable empirical successes in a number of different domains, including learning to play check-
ers (Samuel, 1959), backgammon (Tesauro, 1992, 1994), and chess (Baxter, Tridgell, & Weaver,
2000), job-shop scheduling (Zhang & Dietterich, 1995) and dynamic channel allocation (Singh &
Bertsekas, 1997).

Despite this success, most algorithms for training approximate value functions suffer from the
same theoretical flaw: the performance of the greedy policy derived from the approximate value-
function is not guaranteed to improve on each iteration, and in fact can be worse than the old policy
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by an amount equal to thmaximumapproximation error over all states. This can happen even when
the parametric class contains a value function whose corresponding greedy policy is optimal. We
illustrate this with a concrete and very simple example in Appendix A.

An alternative approach that circumvents this problem—the approach we pursue here—is to
consider a class aftochastic policieparameterized b§ € RE | compute the gradient with respect
to 0 of the average reward, and then improve the policy by adjusting the parameters in the gradient
direction. Note that the policy could be directly parameterized, or it could be generated indirectly
from a value function. In the latter case the value-function parameters are the parameters of the
policy, but instead of being adjusted to minimize error between the approximate and true value
function, the parameters are adjusted to directly improve the performance of the policy generated
by the value function.

These “policy-gradient” algorithms have a long history in Operations Research, Statistics, Con-
trol Theory, Discrete Event Systems and Machine Learning. Before describing the contribution of
the present paper, it seems appropriate to introduce some background material explaining this ap-
proach. Readers already familiar with this material may want to skip directly to section 1.2, where
the contributions of the present paper are described.

1.1 A Brief History of Policy-Gradient Algorithms

For large-scale problems or problems where the system dynamics are unknown, the performance
gradient will not be computable in closed fornThus the challenging aspect of the policy-gradient
approach is to find an algorithm for estimating the gradientsinaulation Naively, the gradient
can be calculated numerically by adjusting each parameter in turn and estimating the effect on per-
formance via simulation (the so-calledude Monte-Carldechnique), but that will be prohibitively
inefficient for most problems. Somewhat surprisingly, under mild regularity conditions, it turns out
that the full gradient can be estimated fronsiagle simulation of the system. The technique is
called thescore functioror likelihood ratio method and appears to have been first proposed in the
sixties (Aleksandrov, Sysoyev, & Shemeneva, 1968; Rubinstein, 1969) for computing performance
gradients in i.i.d. (independently and identically distributed) processes.

Specifically, suppose(X) is a performance function that depends on some random variable
X, andq(0, z) is the probability thatX = =z, parameterized by € RX. Under mild regularity
conditions, the gradient with respectdof the expected performance,

n(0) = Er(X), (1)
may be written
B Vq(0, X)
Vn(0) = Er(X)W. (2)

To see this, rewrite (1) as a sum

n(0) = r(z)q(0,),

T

differentiate (one source of the requirement of “mild regularity conditions”) to obtain

Vn(9) = Y r(z)Va(82),

T

1. See equation (17) for a closed-form expression for the performance gradient.
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rewrite as

Vq(0, z)
Vn(0) = r(x)———=
”6) =3 @) G
and observe that this formula is equivalent to (2).
If a simulator is available to generate samplésdistributed according tg(0, z), then any
sequenceXy, X, ..., Xy generated i.i.d. according td6, ;) gives an unbiased estimate,

Vq Vq(8, X;)
=~ Z 0X) 3)
of Vn(6). By the law of large numbersyn(#) — Vn(0) with probability one. The quantity
Vq(0,X)/q(0,X) is known as thdikelihood ratio or score functionin classical statistics. |If
the performance function(X') also depends o#f, thenr(X)Vq(0, X)/q(0, X) is replaced by
Vr(0,X)+r(0,X)Vq(d,X)/q(0,X)in (2).

q(0,z),

1.1.1 WNBIASED ESTIMATES OF THEPERFORMANCE GRADIENT FOR REGENERATIVE
PROCESSES

Extensions of the likelihood-ratio method tegenerative processdscluding Markov Decision
Processes avIDPs) were given by Glynn (1986, 1990), Glynn and L‘Ecuyer (1995) and Reiman
and Weiss (1986, 1989), and independently dpisodic Partially Observable Markov Decision
ProcessesPOMDPs) by Williams (1992), who introduced ti&EINFORCE algorithn?. Here the
i.i.d. samplesX of the previous section asequencesf statesXy, ..., X, (of random length)
encountered between visits to some designated recurrent’statesequences of states from some
start state to a goal state. In this c&&g#, X)/q(6, X) can be written as a sum
Va6, X) _ TZ VP X (0)

Q(oaX) PXi X1 (0) ’ (4)

t=0
wherepy, x,.,, (0) is the transition probability fronX; to X;,; given parameter8. Equation (4)
admits a recursive computation over the course of a regenerative cycle of thegfetnd € RX,
and after each state transitioh) — X1,

Vox,x,.,(0
241 = 2t 71)1\“\”1( )7 (5)
PXeXia (9)
so that each term(X)Vq(0, X)/q(#, X) in the estimate (3) is of the forfm (X, ..., X7)zr. If,
in addition, (X, ..., Xp) can be recursively computed by
r(Xo, ..., Xe1) = ¢(r(Xo, ..., Xi), Xey1)
for some functiong, then the estimate(Xy, ..., X7)zp for each cycle can be computed using

storage of onlyK + 1 parametersK for z; and1 parameter to update the performance function
r). Hence, the entire estimate (3) can be computed with storage oR&nky 1 real parameters, as
follows.

2. A thresholdedversion of these algorithms for neuron-like elements was described earlier in Barto, Sutton, and An-
derson (1983).

3. The vectorzr is known in reinforcement learning as afigibility trace. This terminology is used in Barto et al.
(1983).
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Algorithm 1.1: Policy-Gradient Algorithm for Regenerative Processes.
1. Setj =0,79 =0, zp = 0, andA¢ = 0 (29, Ay € RX).
2. For each state transitioki, — X 1:

e If the episode is finished (that iX;,; = i*), set
A]'+1 = A]' + ez,
j=7+1,
zgr1 = 0,
rev1 = 0.
e Otherwise, set
Vpx,x,,4(0)
PthH_l(g) ’
Tev1 = ¢(re, Xig1)-

Zi+1 = 2t +

3. If j = N returnAy /N, otherwise goto 2.

Examples of recursive performance functions include the sum of a scalar reward over a cycle,
r(Xo,...,Xr) = ZtT:oT(Xt) wherer(i) is a scalar reward associated with statghis corre-
sponds tay(f) being theaverage rewardnultiplied by the expected recurrence tirRg [T]); the
negative length of the cycle (which can be implemented by assigning a rewartitofeach state,

and is used when the task is to mimimize time taken to get to a goal stateyéfhada this case is

just —Ey [T']); the discounted rewardrom the start state;( Xy, . .., X7) = >.,_, ar(X;), where

a € [0,1) is the discount factor, and so on.

As Williams (1992) pointed out, a further simplification is possible in the caserthat
r(Xo, ..., Xr) is a sum of scalar rewardg X, t) depending on the state and possibly the time
t since the starting state (suchds,,t) = r(X;), orr(X;,t) = o!r(X;) as above). In that case,
the updateA from a single regenerative cycle may be written as

T—1 t T
A= ZM S or(Xes) + Y r(Xs,s)

=0 PXi X4 (0) s=0 s=t+1

Because changes iy, x,., (#) have no influence on the rewardgX, s) associated with earlier
states § < t), we should be able to drop the first term in the parentheses on the right-hand-side and
write

= Vpxxen (0) —
A=) SIS N (X, ). (6)

=0 PXi X1 (0) s=t+1

Although the proof is not entirely trivial, this intuition can indeed be shown to be correct.
Equation (6) allows an even simpler recursive formula for estimating the performance gradi-

ent. Setzy = Ay = 0, and introduce a new variable = 0. As before, set;;1 = 2z +
Vox, x40 (0)/px, x4, (0) @nds = s + 1if Xy # %, 0rs = 0 andz; = 0 otherwise. But
now, oneach iteration setA; ;1 = r(Xy, s)z; + As. ThenA,/t is our estimate oVn(f). SinceA;
is updated on every iteration, this suggests that we can do away\yititogether and simply up-
dated directly: 6,11 = 0;+~,r (X4, s)z, where they, are suitable step-sizesProving convergence

4. The usual requirements op for convergence of a stochastic gradient algorithm~gre- 0, >-7° v = oo, and
Yoo vi < oo.
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of such an algorithm is not as straightforward as normal stochastic gradient algorithms because the
updates-(X;)z; are not in the gradient direction (in expectation), although the sum of these updates
over aregenerative cycle are. Marbach and Tsitsiklis (1998) provide the only convergence proof that
we know of, albeit for a slightly different update of the fofin.; = 6; + v, [r(Xy, s) — 7(04)] 24,
where7(#;) is a moving estimate of the expected performance, and is also updated on-line (this
update was first suggested in the contex®OMDPs by Jaakkola et al. (1995)).

Marbach and Tsitsiklis (1998) also considered the caged#pendent rewards (recall the dis-
cussion after (3)), as did Baird and Moore (1999) with th&APS” algorithm (Value And Policy
Search). This last paper contains an interesting insight: through suitable choices of the performance
functionr(Xy, ..., X7, #), one can combine policy-gradient search with approximate value func-
tion methods. The resulting algorithms can be viewealsr-critic techniques in the spirit of Barto
et al. (1983); the policy is thactor and the value function is theritic. The primary motivation is
to reduce variance in the policy-gradient estimates. Experimental evidence for this phenomenon
has been presented by a number of authors, including Barto et al. (1983), Kimura and Kobayashi
(1998a), and Baird and Moore (1999). More recent work on this subject includes that of Sutton
et al. (2000) and Konda and Tsitsiklis (2000). We discuss the uSa B§-style updates further in
Section 6.2.

So far we have not addressed the question of how the parameterized state-transition probabili-
tiespx, x,,, (0) arise. Of course, they could simply be generated by parameterizing the matrix of
transition probabilities directly. Alternatively, in the caseMdDPs or POMDPS, state transitions
are typically generated by feeding abservationY; that depends stochastically on the staie
into a parameterizedtochastic policywhich selects &ontrol U, at random from a set of avail-
able controls (approximate value-function based approaches that generate controls stochastically
via some form of lookahead also fall into this category). The distribution over successor states
Px, x4, (Uy) is then afixed function of the control. If we denote the probability of conifajiven
parameter# and observation, by 1., (0, y:), then all of the above discussion carries through with
Vox,x,.41(0)/px, x4, (0) replaced bW urr, (6, Y;)/p, (60, Y:). In that case, Algorithm 1.1 is pre-
cisely Williams’ REINFORCE algorithm.

Algorithm 1.1 and the variants above have been extended to cover multiple agents (Peshkin
et al., 2000), policies with internal state (Meuleau et al., 1999), and importance sampling methods
(Meuleau et al., 2000). We also refer the reader to the work of Rubinstein and Shapiro (1993)
and Rubinstein and Melamed (1998) for in-depth analysis of the application of the likelihood-ratio
method to Discrete-Event SystenisiS), in particular networks of queues. Also worth mentioning
is the large literature on Infinitesimal Perturbation Analysis (IPA), which seeks a similar goal of esti-
mating performance gradients, but operates under more restrictive assumptions than the likelihood-
ratio approach; see, for example, Ho and Cao (1991).

1.1.2 BASED ESTIMATES OF THEPERFORMANCE GRADIENT

All the algorithms described in the previous section rely on an identifiable recurreni*statiner
to update the gradient estimate, or in the case of the on-line algorithm, to zero the eligibility trace
z. This reliance on a recurrent state can be problematic for two main reasons:

1. Thevarianceof the algorithms is related to the recurrence time between visits, wwhich
will typically grow as the state space grows. Furthermore, the time between visits depends on
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the parameters of the policy, and states that are frequently visited for the initial value of the
parameters may become very rare as performance improves.

2. In situations opartial observabilityit may be difficult to estimate the underlying states, and
therefore to determine when the gradient estimate should be updated, or the eligibility trace
zeroed.

If the system is available only through simulation, it seems difficult (if not impossible) to obtain
unbiasedestimates of the gradient direction without access to a recurrent state. Thus, to solve 1
and 2, we must look tbiasedestimates. Two principle techniques for introducing bias have been
proposed, both of which may be viewed as artificial truncations of the eligibility #adée first
method takes as a starting point the formdtar the eligibility trace at time:

2 = i VpXSXS+1 (9)
= Px.x..(0)
and simply truncates it at some (fixed, not random) number of tertasking backwards (Glynn,
1990; Rubinstein, 1991, 1992; Cao & Wan, 1998):

t—1

o VDX X1 (0)
Zt(n) o s:;—n stXs+1(0) ‘ (7)

The eligibility tracez;(n) is then updated after each transitidip — X, by

VpXtXt-H (0) . vat—nXt—n+1 (0)

zi+1(n) = z(n) Pxixess(0) N () ) (8)
and in the case of state-based rewards; ), the estimated gradient direction aftéisteps is
. 1 r
Van(0) == tz zi(n)r(Xy). (9)

Unlessn exceeds the maximum recurrence time (which is infinite in an ergodic Markov chain),
@nﬂ(e) is a biased estimate of the gradient direction, although-asoo, the bias approaches zero.
However thevarianceof V,,(6) diverges in the limit of large.. This illustrates a natural trade-off
in the selection of the parameter it should be large enough to ensure the bias is acceptable (the
expectation oﬁnnw) should at least be withifi0° of the true gradient direction), but not so large
that the variance is prohibitive. Experimental results by Cao and Wan (1998) illustrate nicely this
bias/variance trade-off.

One potential difficulty with this method is that the likelihood rat®gyx, x, ., (8)/px, x,,. (0)
must be remembered for the previoudime steps, requiring storage @&fn parameters. Thus,
to obtain small bias, the memory may have to grow without bound. An alternative approach that

requires a fixed amount of memory isdiscountthe eligibility trace, rather than truncating it:

L vatXt 1(0)
zi+1(8) = Ba(B) + ma

5. For ease of exposition, we have kept the expressionifoterms of the likelihood ratioSpx, x, |, (0)/px, x, . (6)
which rely on the availability of the underlying stat&. If X is not availableVpx, x, ,, (¢)/px.x, ., (#) should
be replaced wittV v, (0,Ys) /pu, (0, Ys).

(10)
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wherezy(8) = 0 andg € [0, 1) is a discount factor. In this case the estimated gradient direction
afterT" steps is simply

S
-

1

Visn(6) = T r(X¢)z(B). (11)
¢

Il
o

This is precisely the estimate we analyze in the present paper. A similar estimate( With; ()
replaced by(r(X;) — b)z (/) whereb is areward baselinevas proposed by Kimura et al. (1995,
1997) and for continuous control by Kimura and Kobayashi (1998b). In fact the yséXof) — b)

in place ofr(X;) does not affect the expectation of the estimates of the algorithm (although judi-
cious choice of the reward baselihean reduce the variance of the estimates). While the algorithm
presented by Kimura et al. (1995) provides estimates of the expectation under the stationary distri-
bution of the gradient of the discounted reward, we will show that these are in fact biased estimates
of the gradient of the expected discounted reward. This arises because the stationary distribution
itself depends on the parameters. A similar estimate to (11) was also proposed by Marbach and
Tsitsiklis (1998), but this time with(X;)z, (/) replaced by(r(X;) — 7(0))z:(8), wherer(6) is an
estimate of the average reward, and witfzeroed on visits to an identifiable recurrent state.

As a final note, observe that the eligibility tracg$/) and z;(n) defined by (10) and (8) are
simply filtered versions of the sequencépx, x,.,(0)/px,x.,,(#), a first-order, infinite impulse
response filter in the case of(3) and ann-th order, finite impulse response filter in the case of
z(n). This raises the question, not addressed in this paper, of whether there is an interesting theory
of optimal filtering for policy-gradient estimators.

1.2 Our Contribution

We describéaPOMDP, a general algorithm based upon (11) for generatib@sedestimate of the
performance gradieriz (@) in generalPOMDPs controlled by parameterized stochastic policies.
Heren(0) denotes theaveragereward of the policy with parametefs ¢ RX. GPOMDP does
not rely on access to an underlying recurrent state. Writig(6) for the expectation of the esti-
mate produced bPOMDP, we show thatimg_,; V3n(0) = Vn(#), and more quantitatively that
Vsn(0) is close to the true gradient provideéd(1 — /) exceeds thenixing timeof the Markov chain
induced by theeOMDP®. As with the truncated estimate above, the trade-off preventing the setting
of 8 arbitrarily close tal is that the variance of the algorithm’s estimates increase aproaches
1. We prove convergence with probability 16POMDP for both discrete and continuous observa-
tion and control spaces. We present algorithms for both general parameterized Markov chains and
POMDPs controlled by parameterized stochastic policies.

There are several extensionsG®OMDP that we have investigated since the first version of
this paper was written. We outline these developments briefly in Section 7.

In a companion paper we show how the gradient estimates produdgtyIDP can be used
to perform gradient ascent on the average rewdrj (Baxter et al., 2001). We describe both
traditional stochastic gradient algorithms, and a conjugate-gradient algorithm that utilizes gradient
estimates in a novel way to perform line searches. Experimental results are presented illustrat-

6. The mixing-time result in this paper applies only to Markov chains with distinct eigenvalues. Better estimates of the
bias and variance d&POMDP may be found in Bartlett and Baxter (2001), for more general Markov chains than
those treated here, and for more refined notions of the mixing time. Roughly speaking, the varia@it@dDP
grows with1/(1 — /3), while the bias decreases as a function 4fl — 3).
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ing both the theoretical results of the present paper on a toy problem, and practical aspects of the
algorithms on a number of more realistic problems.

2. The Reinforcement Learning Problem

We model reinforcement learning as a Markov decision procedsP) with a finite state space

S = {1,...,n}, and a stochastic matfix° = [pi;] giving the probability of transition from state

i to statej. Each staté has an associated rewéndi). The matrixP belongs to a parameterized
class of stochastic matrice®, := {P(#): # € RE}. Denote the Markov chain corresponding to
P(0) by M (6). We assume that these Markov chains and rewards satisfy the following assumptions:

Assumption 1. EachP(#) € P has a unique stationary distribution(§) := [r(0, 1),...,7(0,n)]’
satisfying thébalance equations

' (0)P(0) = «'(0) (12)
(throughoutr’ denotes the transpose of.

Assumption 2. The magnitudes of the rewards(i)|, are uniformly bounded by® < oo for all
states;.

Assumption 1 ensures that the Markov chain forms a single recurrent class for all par&neters
Since any finite-state Markov chain always ends up in a recurrent class, and it is the properties of
this class that determine the long-term average reward, this assumption is mainly for convenience
so that we do not have to include the recurrence class as a quantifier in our theorems. However,
when we consider gradient-ascent algorithms Baxter et al. (2001), this assumption becomes more
restrictive since it guarantees that the recurrence class cannot change as the parameters are adjusted.

Ordinarily, a discussion afIDPs would not be complete without some mention of the actions
available in each state and the space of policies available to the learner. In particular, the parameters
# would usually determine a policy (either directly or indirectly via a value function), which would
then determine the transition probabiliti&f#). However, for our purposes we do not céa@w
the dependence aP on 6 arises, just that it satisfies Assumption 1 (and some differentiability
assumptions that we shall meet in the next section). Note also that it is easy to extend this setup
to the case where the rewards also depend on the pararfiatersn the transitiong — j. It is
equally straightforward to extend our algorithms and results to these cases. See Section 6.1 for an
illustration.

The goal is to find & € R maximizing theaverage reward

-1

1
er(Xt)

t=0

n(f) := lim Ey

T—o00

oni],

whereEy denotes the expectation over all sequen&gsXy, ..., with transitions generated ac-
cording toP(#). Under Assumption 15(6) is independent of the starting statand is equal to
n(©) =Y w(0,i)r(i) ='O)r, (13)
i=1
wherer = [r(1),...,7(n)]" (Bertsekas, 1995).
7. A stochastianatrix P = [pi;] hasp;; > 0 forall i, j and}>"_, pi;; = 1 for all 4.

8. All the results in the present paper apply to bounded stochastic rewards, in whiel{©)asehe expectation of the
reward in state.
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3. Computing the Gradient of the Average Reward

For generaMDPs little will be known about the average reway(®), hence finding its optimum
will be problematic. However, in this section we will see that under general assumptions the gradient
V(@) exists, and so local optimization gfé) is possible.

To ensure the existence of suitable gradients (and the boundedness of certain random variables),
we require that the parameterized class of stochastic matrices satisfies the following additional as-
sumption.

Assumption 3. The derivatives,

3;0@']'(9)]
Ok ;=1 mk=1..K

VP(9) = [

exist for all§ € RX . The ratios

[ ‘ dpi;j (9) ‘
30,

i (0)

i,=1..n;k=1..K
are uniformly bounded b3 < oo for all € RE .

The second part of this assumption allows zero-probability transitigy®) = 0 only if
Vp;;j(0) is also zero, in which case we dgt0 = 0. One example is if — j is a forbidden
transition, so thap;;(#) = 0 for all 6 € RX . Another example satisfying the assumption is

0 e’
pij( ) = W,
wheref = [011,...,01n,...,0n] € R"* are the parameters &f(#), for then
9pi;(6)/90;;
=1-yp;;(0), and
Ipij(0)/ 00k
= —pri(0
pij(G) Pri(0)
Assuming for the moment th&t = (0) exists (this will be justified shortly), then, suppressihg

dependencies,
Vn = Va'r, (14)
since the reward does not depend dh Note that our convention fov in this paper is that it takes

precedence over all other operationsN&g(0) f (0) = [Vg(0)] f(6). Equations like (14) should be
regarded as shorthand notation férequations of the form

on(@)  [on(0,1) or(0,n)

= 1),... '
agk 80k ) ) aek I:’r( )? ’Ir(n)]

wherek = 1,..., K. To computeV, first differentiate the balance equations (12) to obtain

Vr'P+ VP =V,
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and hence
Vr'(I — P)=n'VP. (15)

The system of equations defined by (15) is under-constrained befaude is not invertible (the
balance equations show that- P has a left eigenvector with zero eigenvalue). Howeverglet
denote ther-dimensional column vector consisting of &f, so thaen’ is then x n matrix with the
stationary distributior’ in each row. Sinc&z’e = V(n'e) = V(1) = 0, we can rewrite (15) as

vr' [I — (P —en')] =x'VP.

To see that the invergé — (P — ex’)] ! exists, let4 be any matrix satisfyingim,_,,, A" = 0.
Then we can write

T T T+1
: tl — 13 t t
i (= A3 A = fim 1D 4T3 A
t=0 t=0 t=1
=7— lim ATH!
T—00

Thus,
(I-A)'=> A"
t=0

It is easy to prove by induction th&P — en’]" = P! — ex’ which converges t0 ast — oo by
Assumption 1. S¢I — (P — ex’)] " exists and is equal 12, [P! — en’]. Hence, we can write

V' =a'VP I - P+ en' - , (16)

and s8
Vn=n'VP[[-P+er'] ' (17)

ForMDPs with a sufficiently small number of states, (17) could be solved exactly to yield the precise
gradient direction. However, in general, if the state space is small enough that an exact solution of
(17) is possible, then it will be small enough to derive the optimal policy using policy iteration and
table-lookup, and there would be no point in pursuing a gradient based approach in the fit8t place

Thus, for problems of practical interest, (17) will be intractable and we will need to find some
other way of computing the gradient. One approximate technique for doing this is presented in the
next section.

9. The argument leading to (16) coupled with the fact thi@) is the unique solution to (12) can be used to justify the
existence oVx. Specifically, we can run through the same steps computing the valu@ of §) for smallé and
show that the expression (16) foFr is the unique matrix satisfying(d + 6) = w(6) + dV=(8) + O(||6]|?).

10. Equation (17) may still be useful f@OMDPs, since in that case there is no tractable dynamic programming
algorithm.
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4. Approximating the Gradient in Parameterized Markov Chains

In this section, we show that the gradient can be split into two components, one of which becomes
negligible as a discount factgrapproaches.

Forallg € [0,1), letJg(0) = [J3(0,1),...,Jg(0,n)] denote the vector of expected discounted
rewards from each staie

o0
T5(0,7) =By | 3 Bir(X0)| Xo = ] . (18)
t=0
Where thef dependence is obvious, we just wrifg.
Proposition 1. For all § € RX andg € [0, 1),
Vn=(1-B)Vr'Js+ pr'VPJs. (19)
Proof. Observe that/; satisfies thdellmanequations:
Jg =1+ BPJs. (20)
(Bertsekas, 1995). Hence,
Vn=Vr'r
= V' [Js — BPJg]
= Vr'Jg — BVr'Js + ' VP Jg by (15)
= (1 — ﬂ)Vﬂ"Jﬂ + BW,VPJg.
0

We shall see in the next section that the second term in (19) can be estimated from a single sam-
ple path of the Markov chain. In fact, Theorem 1 in (Kimura et al., 1997) shows that the gradient
estimates of the algorithm presented in that paper converge+@)n'V.Jg. By the Bellman equa-
tions (20), this is equal tol — 8)5(n'VPJg 4+ 'V Jg), which implies(1 — 8)n'V Jg = fn'V P Jg.

Thus the algorithm of Kimura et al. (1997) also estimates the second term in the expression for
Vn(0) given by (19). It is important to note thatV.Jz # V [’ Jz]—the two quantities disagree

by the first term in (19). This arises because the the stationary distribution itself depends on the
parameters. Hence, the algorithm of Kimura et al. (1997) does not estimate the gradient of the ex-
pected discounted reward. In fact, the expected discounted reward is diffply- ) times the
average rewarg(f) (Singh et al., 1994, Fact 7), so the gradient of the expected discounted reward
is proportional to the gradient of the average reward.

The following theorem shows that the first term in (19) becomes negligibleaggproacheg.

Notice that this is not immediate from Proposition 1, singecan become arbitrarily large in the
limit 8 — 1.

Theorem 2. For all # € RE
Vn = lim V. 21
n ,31 L 81, (21)

where
Vi = 7'V P Jg. (22)
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Proof. Recalling equation (17) and the discussion preceeding it, wethave
o
Vn=x'VP Z (P! —en'] r. (23)
=0

But VPe = V(Pe) = V(1) = 0 sinceP is a stochastic matrix, so (23) can be rewritten as

o0
Vn =1 [Z vPP!|r. (24)

t=0

Now let 3 € [0, 1] be a discount factor and consider the expression

F(B) =7 r (25)

> vp(pPp)
t=0

ClearlyVn = limg_,; f(3). To complete the proof we just need to show tfigt) = Vsn.
Since(sP)! = p!P! — Blen’ — 0, we can invoke the observation before (16) to write

o0

(BP) =1 -pBP"".
t=0

In particular,>:° ,(8P)! converges, so we can takeP back out of the sum in the right-hand-side
of (25) and writé?

f(B) =x'VP |y p'P|r (26)
t=0
But 7%, 8P| r = Jz. Thusf(B) = ©'VPJg = V. O

Theorem 2 shows tha¥zn is a good approximation to the gradient @spproached, but it
turns out that values of very close tol lead to large variance in the estimates\af; that we
describe in the next section. However, the following theorem showslthati need not be too
small, provided the transition probability matri(¢) has distinct eigenvalues, and the Markov
chain has a shornixing time From any initial state, the distribution over states of a Markov chain
converges to the stationary distribution, provided the assumption (Assumption 1) about the existence
and uniqueness of the stationary distribution is satisfied (see, for example, Lancaster & Tismenetsky,
1985, Theorem 15.8.1, p. 552). The spectral resolution theorem (Lancaster & Tismenetsky, 1985,
Theorem 9.5.1, p. 314) implies that the distribution converges to stationarity at an exponential rate,
and the time constant in this convergence rate (the mixing time) depends on the eigenvalues of
the transition probability matrix. The existence of a unique stationary distribution implies that the

11. Sinceen’r = en, (23) motivates a different kind of algorithm for estimatiRgy; based ondifferential rewards
(Marbach & Tsitsiklis, 1998).

12. We cannot back P out of the sum in the right-hand-side of (24) beca}3g , P’ diverges P — en’). The reason
S92, VPP! converges is thaP’ becomes orthogonal t0 P in the limit of larget. Thus, we can viewy_:° , P
as a sum of two orthogonal components: an infinite one in the direetamd a finite one in the direction™. It
is the finite component that we need to estimate. Approximdfifd,, P’ with >:° (8P)" is a way of rendering
thee-component finite while hopefully not altering thé -component too much. There should be other substitutions
that lead to better approximations (in this context, see the final paragraph in Section 1.1).
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largest magnitude eigenvaluelisand has multiplicityl, and the corresponding left eigenvector is
the stationary distribution. We sort the eigenvalugsn decreasing order of magnitude, so that
L= X > || > -+ > |As] for some2 < s < n. It turns out that\,| determines the mixing time
of the chain.

The following theorem shows thatif— 5 is small compared td — | Ao/, the gradient approx-
imation described above is accurate. Since we will be using the estimate as a direction in which to
update the parameters, the theorem compareditbetionsof the gradient and its estimate. In this
theorem s (A) denotes thepectral condition numbesf a nonsingular matrixi, which is defined
as the product of thepectral norm®f the matricesd and A1,

ra(A) = | All2| A7 2,

where

1Al = e [ Az,

and||z|| denotes the Euclidean norm of the vector

Theorem 3. Suppose that the transition probability matidX(6) satisfies Assumption 1 with sta-
tionary distributiont’ = (m,...,m,), and hasn distinct eigenvalues. Lef = (z1z5---z,) be
the matrix of right eigenvectors d? corresponding, in order, to the eigenvalues= A\; > |Az| >

- > |An|. Then the normalized inner product betwéeén and 5V satisfies

Vi - fVsn 1/2 IV, - V)l
1——— <K I1'/<8 27
o < e (11775) ] Vr l—ﬁIAI @)
wherell = diag(my,...,m,).

Notice thatr'TIr is the expectation under the stationary distributiom (©f)?.

As well as the mixing time (vig\2|), the bound in the theorem depends on another parameter of
the Markov chain: the spectral condition numbeFidf2S. If the Markov chain is reversible (which
implies that the eigenvectors, ..., z, are orthogonal), this is equal to the ratio of the maximum
to the minimum probability of states under the stationary distribution. However, the eigenvectors
do not need to be nearly orthogonal. In fact, the condition that the transition probability matrix
haven distinct eigenvalues is not necessary; without it, the condition number is replaced by a more
complicated expression involving spectral norms of matrices of the fétm \;I).

Proof. The existence of. distinct eigenvalues implies th& can be expressed &\S—!, where
A = diag(A1, ..., A,) (Lancaster & Tismenetsky, 1985, Theorem 4.10.2, p 153). It follows that for
any polynomialf, we can writef (P) = Sf(A)S™!
Now, Proposition 1 shows th&tn — fVzn = Vz'(1 — §)Js. But
(1—B)Jg = (1= B) (r+BPr+p*Pr+---)
=(1-B)(I+BP+p*P +-)r

S (i ﬁtAt> St

z% (z >)r,

t=0
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whereS—! = (y1,...,y.)".

It is easy to verify thaty; is the left eigenvector corresponding Xg, and that we can choose
y1 = w andz; = e. Thus we can write

(1=B)Jg = (L= Blen'r+ Y ajy (Z(l - ﬁ)(ﬁAj)t> r

=(1-Ben+ Y _ ) <11—_ﬁ€\'> r
j=2 J

= (1= Ben+SMS™'r,

where

s 1-8 1§
M-dl&g(O,1_B>\2,...,1_IB>\”>.

It follows from this and Proposition 1 that

L V0BV V- (V= V(1 - £)J5)
V|2 V|2
V- V7r'(1 - B)Js
V|2
Vv (1—pB)en+SMS1r)
V|2
V- Va'SMST'r
V|2
|V SMS e
< ;
Il

by the Cauchy-Schwartz inequality. Sin&r’ = V (ﬁ) I1'/2, we can apply the Cauchy-
Schwartz inequality again to obtain

_vnpw [V (V)| I sars |
Vol = 1 |

1

(28)

We use spectral norms to bound the second factor in the numerator. It is clear from the definition
that the spectral norm of a product of nonsingular matrices satigfiés|» < ||A||2||B||2, and that
the spectral norm of a diagonal matrix is given|pdiag(dy, . . ., dp)||2 = max; |d;]. It follows that

HHl/QSMS’Ir

= [ 2snes o |
o L S Y L

< Ko <H1/25> \/r’Hrll;mﬁM.
- 2

Combining with Equation (28) proves (27). O
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5. Estimating the Gradient in Parameterized Markov Chains

Algorithm 1 introducesMCG (M arkov Chain Gradient), an algorithm for estimating the approx-
imate gradientVzn from a single on-line sample patkiy, X1, ... from the Markov chainM (6).
MCG requires only2K reals to be stored, whei® is the dimension of the parameter spac¢é:
parameters for the eligibility trace, and K parameters for the gradient estimate. Note that
afterT time stepsAr is the average so far ef X;)z,

1 -1
AT = f ; Zt’l"(Xt).

Algorithm 1 TheMCG (Markov Chain Gradient) algorithm
1: Given:

e Parametef € RX .

e Parameterized class of stochastic matriees {P(6): 6 € R} satisfying Assumptions
3and 1.

B €[0,1).
Arbitrary starting stateX.

State sequenc&, X1,... generated by/(#) (i.e. the Markov chain with transition
probabilitiesP(6)).

e Reward sequencg Xy),r(X1), ... satisfying Assumption 2.

. Setzg = 0 andAg = 0 (29, Ag € RX).
. for each stateX, ; visiteddo
VpXtXt-H (9)
PXi X4 (9)
A1 = Ap+ 77 [F(Xeg1) 241 — Af]
end for

w N

»

Ziy1 = Bz +

Theorem 4. Under Assumptions 1, 2 and 3, thECG algorithm starting from any initial stat&(,

will generate a sequencfyy, Ay, ..., A, ... satisfying
lim Ay = Van w.p.l (29)
t—00

Proof. Let {X;} = {Xy, X1, ...} denote the random process corresponding/t@). If X, ~ 7
then the entire process is stationary. The proof can easily be generalized to arbitrary initial distri-
butions using the fact that under Assumption{ X; } is asymptotically stationary. WhefX,} is
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stationary, we can write

w'VPJs = Z () Vpij (0)J5(5)

sz @ . .
= Z ]](9) Jp(4)

= ZPr (X =1) Pr(Xyp1 = |1 Xy = z)%E(,}(t + )| X1 =17), (30)
irj *

where the first probability is with respect to the stationary distribution.Afid+ 1) is the process

oo

JE+1)= Y B r(X).

s=t+1

The fact thatE(J(t + 1)|X;41) = Jg(X¢41) for all X, follows from the boundedness of the
magnitudes of the rewards (Assumption 2) and Lebesgue’s dominated convergence theorem. We
can rewrite Equation (30) as

Vpi; (0)
Pij (9)

#VPI; =Y B [xz X (X2 14y

(2
wherey;(-) denotes the indicator function for state

it X, =i,
Xi(Xy) == { L

0 otherwise

and the expectation is again with respect to the stationary distribution. Whisrchosen according
to the stationary distribution, the proceiSk, } is ergodic. Since the proce$£,} defined by

Vpij(0)
p”(e)

is obtained by taking a fixed function ¢}, {Z,} is also stationary and ergodic (Breiman, 1966,

Proposition 6.31). Sinc Vppjf(g)‘ is bounded by Assumption 3, from the ergodic theorem we have
(almost surely):

Zy = xi(Xe) x5 (Xey1)

J(t+1)

T-1

. 1 Vp

/ ) . L
©'VPJ; = E ‘ Thm T tg_o Xi( X)X (Xpp1) )

~1

. 1 VpXtXt-H (0)
— im = PxeXenl9) g
;0 PXi X4 (0)

-1 T e’}
= lim lzw Yoot r(x)+ Y B (X (3D

T T 0
IS PXi X4 (0) s—t+1 s=T+1
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Concentrating on the second term in the right-hand-side of (31), observe that:

TZ VpXtXt+1 Z g1y

=0 PXi X4 (0 5= T+1

V| Vo, x .
‘Zﬁ CUp(x,)

pXtXt+1( s=T+1

where R and B are the bounds on the magnitudes of the rewards%%ét‘ from Assumptions 2
and 3. Hence,

1 <= Vpx,x,, (8) <
©'VPJz = lim — s A T (X). 32
B T—oo T ; pXtXtJrl(g) s;lﬁ ( ) -

Unrolling the equation foA7 in the MCG algorithm shows it is equal to

T

—Z Vp/\tXtH( ) Z Bs_t_lr(is)a

P (0) 57

henceAr — 'V P.Jz w.p.1 as required. O

6. Estimating the Gradient in Partially Observable Markov Decision Processes

Algorithm 1 applies to any parameterized class of stochastic matFi¢@sfor which we can com-
pute the gradient¥p;;(#). In this section we consider the special casé’¢f) that arise from a
parameterized class of randomized policies controlling a partially observable Markov decision pro-
cess POMDP). The ‘partially observable’ qualification means we assume that these policies have
access to an observation process that depends on the state, but in general they may not see the state.
Specifically, assume that there aké controlst/ = {1,...,N} and M observationsy =
{1,...,M}. Eachu € U determines a stochastic matriX(u) which does not depend on the
parameter®. For each staté € S, an observatioy” € ) is generated independently according to
a probability distributiorw (i) over observations ip. We denote the probability of observatign
by v, (7). A randomized policys simply a functiory, mapping observationg € Y into probability
distributions over the contro¥. That is, for each observation 1 (y) is a distribution over the
controls in{. Denote the probability under of control u given observationy by 1, (y).
To each randomized poligy(-) and observation distribution(-) there corresponds a Markov
chain in which state transitions are generated by first selecting an obsenyatistate; according
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to the distributionv (), then selecting a contral according to the distributiop(y), and then gen-
erating a transition to stateaccording to the probability;;(u). To parameterize these chains we
parameterize the policies, so thahow becomes a functign(d, y/) of a set of parametefsc RX as
well as the observatiop. The Markov chain corresponding ichas state transition matrix; ; (6)]
given by

pii(0) = Ey vy EBuuo,v)pii (U)- (33)
Equation (33) implies
Vpii(0) = Y vy (i)pij(w) Viu(0,9). (34)
u,y

Algorithm 2 introduces th&POMDP algorithm (forGradient of aPartially ObservableM arkov
DecisionProcess), a modified form of Algorithm 1 in which updateszpére based opy, (0, Y:),
rather tharpx, x,., (f). Note that Algorithm 2 does not require knowledge of the transition prob-
ability matrix P, nor of the observation process it only requires knowledge of the randomized
policy ;. GPOMDP is essentially the algorithm proposed by Kimura et al. (1997) without the
reward baseline.

The algorithmGPOMDP assumes that the poligyis a function only of the current observation.
It is immediate that the same algorithm works for any finite history of observations. In general, an
optimal policy needs to be a function of the entire observation histePAOMDP can be extended
to apply to policies with internal state (Aberdeen & Baxter, 2001).

Algorithm 2 The GPOMDP algorithm.
1. Given:

e Parameterized class of randomized polidig$0, -) : 6 € RE } satisfying Assumption 4.

e Partially observable Markov decision process which when controlled by the randomized
policies 1(0,-) corresponds to a parameterized class of Markov chains satisfying As-
sumption 1.

e 5 e0,1).
e Arbitrary (unknown) starting stat&,.

e Observation sequencs), Y7,... generated by th€® OMDP with controls Uy, U, . ..
generated randomly accordingi¢d, Y;).

e Reward sequence(Xy),r(X1),... satisfying Assumption 2, wher&,, X1,... is the
(hidden) sequence of states of the Markov decision process.

. Setzg = 0 andAg = 0 (29, Ag € RX).
. for each observatiofr;, controlU;, and subsequent rewar{X, ) do
V:U'Ut (97 th)
Koy (07 Y;f)
Apyr = A+ oy [r(Xe1) 2601 — A
6: end for

w N

R

2g41 = Bz +

a
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For convergence of Algorithm 2 we need to replace Assumption 3 with a similar bound on the
gradient ofu:

Assumption 4. The derivatives,

O (6, )
00,

exist forallu € U,y € Y and@ € RE . The ratios
‘3%(9,3/) ‘
90
1 (0, y)
y=1..M;u=1..N;k=1...K
are uniformly bounded b3, < oo for all 6 € RE.

Theorem 5. Under Assumptions 1, 2 and 4, Algorithm 2 starting from any initial st&gewill
generate a sequena®y, Aq,..., A, ... satisfying

lim Ay = Van w.p.1l (35)
t—o00
Proof. The proof follows the same lines as the proof of Theorem 4. In this case,

©'VPJs =Y (i) Vpi;(0)J5(5)
i

= Y w(i)pig (w)vy (i) Viu (0, ) J5(j) from (34)

©,0,Y,U
. ~ Vi (0, )
= 3 i)y w6 B9 0, 4) 75),
“ lf'u(gay)
z,],y,u
= ) EZ,
©,0,Y,U

where the expectation is with respect to the stationary distributiqiXef, and the procesgZ;} is
defined by
Viu(0,y)

Zy = Xi(Xe) x5 (Xer1) xu(Ur) xy (Y2) J(t+1),
1u (0, )
whereU, is the control process arg is the observation process. The result follows from the same
arguments used in the proof of Theorem 4. O

6.1 Control dependent rewards

There are many circumstances in which the rewards may themselves depend on the €oRtpls
example, some controls may consume more energy than others and so we may wish to add a penalty
term to the reward function in order to conserve energy. The simplest way to deal with this is to
define for each statethe expected rewardi) by

(1) = By i) Bu~puo,y)r (U, 1), (36)
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and then redefindg in terms ofr:

N
Js(6,1) := lim B gﬁtr(xt) Xo = ] , (37)
where the expectation is over all trajectori€g, X1, .... The performance gradient then becomes

Vn = Va'r + ©'Vr,
which can be approximated by )
Van = 7 [VPJ/; + Vf] ,
due to the fact thaig satisfies the Bellman equations (20) witheplaced by-.

For GPOMDP to take account of the dependencerain the controls, its fifth line should be
replaced by

0,Y,
At+1 _ At+ V:U'Ut+1( ) t+1)> _ At:| )

r(Upr1, X Zi41 +
t+1 |: ( t+1 t+1) ( o RU 44 (O’Yt-i-l)

It is straightforward to extend the proofs of Theorems 2, 3 and 5 to this setting.

6.2 Parameter dependent rewards

It is possible to modifyGPOMDP when the rewards themselves depend directly.oim this case,
the fifth line of GPOMDP is replaced with

1
t+1
Again, the convergence and approximation theorems will carry through, proWiaéf, i) is uni-
formly bounded. Parameter-dependent rewards have been considered by Glynn (1990), Marbach
and Tsitsiklis (1998), and Baird and Moore (1999). In particular, Baird and Moore (1999) showed
how suitable choices of(f,7) lead to a combination of value and policy search, BAPS”. For
example, ifj(o, i) is an approximate value-function, then settihg

At+1 = At + [’)”(9, Xt+1)zt+1 + V’)”(Q, Xt+1) — At] . (38)

(0, X0, Xi) =~ [r(X0) + (0, X0) ~ 760, %i0)]

wherer(X;) is the usual reward and € [0, 1) is a discount factor, gives an update that seeks to
minimize the expected Bellman error

2
n

S ow(0.0) [r(i) + > pii(0)J(0,5) - J©0,0)| (39)
j=1

i=1

This will have the effect of both minimizing the Bellman error.jitd, i), and driving the system

(via the policy) to states with small Bellman error. The motivation behind such an approach can
be understood if one considers/ahat haszeroBellman error for all states. In that case a greedy
policy derived fromJ will be optimal, and regardless of how the actual policy is parameterized, the
expectation of;r (6, X;, X;—1) will be zero and so will be the gradient computed ®yOMDP.

This kind of update is known as actor-critic algorithm (Barto et al., 1983), with the policy playing

the role of the actor, and the value function playing the role of the critic.

13. The use of rewards(6, X;, X;—1) that depend on the current and previous state does not substantially alter the
analysis.
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6.3 Extensions to infinite state, observation, and control spaces

The convergence proof for Algorithm 2 relied on finite sta$@, (Observation J) and control &)
spaces. However, it should be clear that with no modification Algorithm 2 can be applied imme-
diately to POMDPs with countably or uncountably infinit§ and ), and countablé{. All that
changes is thai;;(u) becomes &ernelp(z, z', u) andv (i) becomes a density on observations. In
addition, with the appropriate interpretation'6f. /s, it can be applied to uncountaldle Specifi-
cally, if / is a subset oRY thenu(y, #) will be a probabilitydensityfunction on/ with 1, (y, )

the density at.. If ¢/ and) are subsets of Euclidean space (8us a finite set), Theorem 5 can be
extended to show that the estimates produced by this algorithm converge almost siigly o
fact, we can prove a more general result that implies both this case of densities on suiSetssof
well as the finite case of Theorem 5. We allbdand)’ to be general spaces satisfying the following
topological assumption. (For definitions see, for example, (Dudley, 1989).)

Assumption 5. The control spacéf has an associated topology that is separable, Hausdorff, and
first-countable. For the corresponding Boretalgebra B generated by this topology, there is a
o-finite measure\ defined on the measurable spdég B). We say thah is thereference measure
for U.

Similarly, the observation spac® has a topology, Boreb-algebra, and reference measure
satisfying the same conditions.

In the case of Theorem 5, whekeand) are finite, the associated reference measure is the
counting measure. Féf = RY and) = RM, the reference measure is Lebesgue measure. We
assume that the distributions:) andu (6, y) are absolutely continuous with respect to the reference
measures, and the corresponding Radon-Nikodym derivatives (probability masses in the finite case,
densities in the Euclidean case) satisfy the following assumption.

Assumption 6. For everyy € ) andf € RX, the probability measurg(, y) is absolutely contin-
uous with respect to the reference measurefofor every: € S, the probability measure(7) is
absolutely continuous with respect to the reference measugg.for
Let\ be the reference measure f@r Forall u € U,y € ¥, 0 € RX  andk € {1,..., K}, the
derivatives
0 du(f,y)

20, an W

exist and the ratios o)
o duy (8,
a0, ud/\ 2 (u)

duud(/\ﬂ,y) ()

are bounded by3,, < co.

With these assumptions, we can replace Algorithm 2 with the Radon-Nikodym derivative
of u with respect to the reference measurefnin this case, we have the following convergence
result. This generalizes Theorem 5, and also applies to densitiesa Euclidean spacde.

Theorem 6. Suppose the control spatéand the observation spageésatisfy Assumption 5 and let
A be the reference measure on the control sgdc€onsider Algorithm 2 with

VN'Ut (93 Y;f)
KU, (93 Y;ﬁ)
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replaced by oy
VR ()

LR W)

Under Assumptions 1, 2 and 6, this algorithm, starting from any initial si&ewill generate a
sequence\g, Aq,..., A, ... satisfying

lim Ay = V3 w.p.l
t—o0

Proof. See Appendix B O

7. New Results

Since the first version of this paper, we have extendBdMDP to several new settings, and also
proved some new properties of the algorithm. In this section we briefly outline these results.

7.1 Multiple Agents

Instead of a single agent generating actions accordind@toy), suppose we have multiple agents

i = 1,...,n,, each with their own parameter s#tand distinct observation of the environment

v, and that generate their own actiomsaccording to a policy:,: (6°,4"). If the agents all re-

ceive the same reward signdlX;) (they may be cooperating to solve the same task, for example),
then GPOMDP can be applied to the collectiieOMDP obtained by concatenating the observa-
tions, controls, and parameters into single vectors: [y',...,y"], v = [u!,...,u"], and

6 = [0',...,0"] respectively. An easy calculation shows that the gradient estithaenerated

by GPOMDP in the collective case is precisely the same as that obtained by appli6gyIDP to

each agent independently, and then concatenating the results. Thati§A',..., A", where

A is the estimate produced WyPOMDP applied to ageni. This leads to an on-line algorithm

in which the agents adjust their parameters independently and without any explicit communication,
yet collectively the adjustments are maximizing the global average reward. For similar observa-
tions in the context oREINFORCE and VAPS, see Peshkin et al. (2000). This algorithm gives a
biologically plausible synaptic weight-update rule when applied to networks of spiking neurons in
which the neurons are regarded as independent agents (Bartlett & Baxter, 1999), and has shown
some promise in a network routing application (Tao, Baxter, & Weaver, 2001).

7.2 Policies with internal states

So far we have only considered puredactiveor memorylesgolicies in which the chosen control

is a function of only the current observatioPOMDP is easily extended to cover the case of
policies that depend on finite histories of observatibny; 1, ..., Y;_x, butin general, fooptimal

control of POMDPs, the policy must be a function of tleatire observation history. Fortunately, the
observation history may be summarized in the form bkeéef state(the current distribution over
states), which is itself updated based only upon the current observation, and knowledge of which
is sufficient for optimal behaviour (Smallwood & Sondik, 1973; Sondik, 1978). An extension of
GPOMDP to policies with parameterized internal belief states is described by Aberdeen and Baxter
(2001), similar in spirit to the extension 8fAPS and REINFORCE described by Meuleau et al.
(1999).
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7.3 Higher-Order Derivatives

GPOMDP can be generalized to compute estimates of second and higher-order derivatives of the
average reward (assuming they exist), still from a single sample path of the undeartymM@pr.
To see this for second-order derivatives, observe thatdf = [ ¢(6,z)r(z) dz for some twice-
differentiable density;(, z) and performance measurér), then

V?q(6, )

2 = rxT
vin(o) = [ rle) 0

whereV? denotes the matrix of second derivatives (Hessian). It can be verified that

q(0,z)dz

Vq(0,z)
q(0,z)

where the second term on the right-hand-side isaihier productbetweenV log ¢(6, x) and itself
(that is, the matrix with entrie8/00; log q(0,x)0/00; log q(, x)). Takingz to be a sequence of
statesXy, X1, ..., X between visits to a recurrent stdten a parameterized Markov chain (recall
Section 1.1.1), we havwg(¢, X) = IT/-'px, x,., (), which combined with (40) yields

= V?logq(0, ) + [Vlog (0, z))? (40)

— _ _ 2
VQQ(Ha X) _ TZI V2ptht+1 (9) _ TZI |:VpXtXt+1 (9) :| 2 + TZI vatXt+1 (9)
Q(9, X) =0 PXi X1 (0) =0 PXi Xt (9) =0 PXi Xt (9)

(the squared terms in this expression are also outer products). From this expression we can derive
aGPOMDP-like algorithm for computing a biased estimate of the Hes§ian(6), which involves
maintaining—in addition to the usual eligibility traege—a secondnatrix trace updated as follows:

VQPXtXtH (0) _ |:VpXtXt+1 (0):|2

Zyi1 = B2y +
PXi X4 (9) PX¢Xiq1 (0)

After T time steps the algorithm returns the average so faf&f) [Z; + 27| where the second term
is again an outer product. Computation of higher-order derivatives could be used in second-order
gradient methods for optimization of policy parameters.

7.4 Bias and Variance Bounds

Theorem 3 provides a bound on thias of V37 (#0) relative toVn(#) that applies when the underly-

ing Markov chain has distinct eigenvalues. We have extended this result to arbitrary Markov chains
(Bartlett & Baxter, 2001). However, the extra generality comes at a price, since the latter bound in-
volves the number of states in the chain, whereas Theorem 3 does not. The same paper also supplies
a proof that the variance ¢fPOMDP scales a3 /(1 — /3)2, providing a formal justification for the
interpretation of3 in terms of bias/variance trade-off.

8. Conclusion

We have presented a general algoritiyfiC(G) for computing arbitrarily accurate approximations
to the gradient of the average reward in a parameterized Markov chain. When the chain’s transition
matrix has distinct eigenvalues, the accuracy of the approximation was shown to be controlled by the
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size of the subdominant eigenvallig|. We showed how the algorithm could be modified to apply

to partially observable Markov decision processes controlled by parameterized stochastic policies,
with both discrete and continuous control, observation and state sgaRes(DP). For the finite

state case, we proved convergence with probability 1 of both algorithms.

We briefly described extensions to multi-agent problems, policies with internal state, estimating
higher-order derivatives, generalizations of the bias result to chains with non-distinct eigenvalues,
and a new variance result. There are many avenues for further research. Continuous time results
should follow as extensions of the results presented hereMI& andGPOMDP algorithms can
be applied to countably or uncountably infinite state spaces; convergence results are also needed in
these cases.

In the companion paper (Baxter et al., 2001), we present experimental results showing rapid
convergence of the estimates generatedaBY)MDP to the true gradien¥Vn. We give on-line
variants of the algorithms of the present paper, and also variants of gradient ascent that make use of
the estimates ofj3n. We present experimental results showing the effectiveness of these algorithms
in a variety of problems, including a three-state MDP, a nonlinear physical control problem, and a
call-admission problem.
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Appendix A. A Simple Example of Policy Degradation in Value-Function Learning

Approximate value-function approaches to reinforcement work by minimizing some form of error
between the approximate value function and the true value function. It has long been known that this
may not necessarily lead to improved policy performance from the new value function. We include
this appendix because it illustrates that this phenomenon can occur in the simplest possible system,
a two-stateMiDP, and also provides some geometric intuition for why the phenomenon arises.

Consider the two-state Markov decision process (MDP) in Figure 1. There are two controls
u1, u2 With corresponding transition probability matrices

1 2 2 1
P =1 1] P =3 1],

3 3

so thatu; always takes the system to stateith probability2/3, regardless of the starting state (and
therefore to staté with probability 1/3), anduy does the opposite. Since statbas a reward of,
while statel has a reward of, the optimal policy is to always select actian. Under this policy
the stationary distribution on states[is, 2] = [1/3,2/3], while the infinite-horizon discounted
value of each state= 1,2 with discount valuex € [0,1) is

Jo(i) =B (Zatr(Xt) Xo = Z> ;

t=0
where the expectation is over all state sequetigesy, X», ... with state transitions generated ac-
cording toP(u;). SolvingBellman's equationsJ, = r + aP(u;)J., whereJ, = [Jo(1), Jo(2)]'

andr = [r(1),7(2)]" yields Ja(1) = g% andJo(2) = 1 + 572
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r()=0 r2) =1

Figure 1: Two-state Markov Decsision Process

Now, suppose we are trying to learn an approximate value fundtfon this MDP, i.e., J(i) =
we(i) for each staté = 1,2 and some scalar featuge(¢ must have dimensionalityto ensure that
J really isapproximatg. Herew € R is the parameter being learnt. For the greedy policy obtained
from J to be optimal,J must value staté above staté. For the purposes of this illustration choose
$(1) = 2,4(2) = 1, so that for.J(2) > J(1), w must be negative.

Temporal Differencdearning (orTD())) is one of the most popular techniques for training
approximate value functions (Sutton & Barto, 1998). It has been shown that for linear functions,
TD(1) converges to a parameter* minimizing the expected squared loss under the stationary
distribution (Tsitsikilis & Van-Roy, 1997):

2

w* = argmin,, Z i [wh(i) — Jo (i) (41)
i=1
Substituting the previous expressions far, 72, ¢ and J, under the optimal policy and solving
for w*, yields w* = 9(31#70&) Hencew* > 0 for all values ofa € [0, 1), which is the wrong

sign. So we have a situation where the optimal policy is implementable as a greedy policy based
on an approximate value function in the class (just chooseuary 0), yet TD(1) observing the
optimal policy will converge to a value function whose corresponding greedy policy implements the
suboptimal policy.

A geometrical illustration of why this occurs is shown in Figure 2. In this figure, points on the
graph represent the values of the states. The scales of the state 1 and state 2 axes are weighted by
/7(1) and /7 (2) respectively. In this way, the squared euclidean distance on the graph between
two points.J and./ corresponds to the expectation under the stationary distribution of the squared
difference between values:

| [Vam), va@i@)] - [Vamio, va@io)| = . (100 - i)

For any value function in the shaded region, the corresponding greedy policy is optimal, since
those value functions rank state 2 above state 1. The bold line represents the set of all realizable
approximate value function@v¢(1), w¢(2)). The solution to (41) is then the approximate value
function found by projecting the point corresponding to the true value funfitibril), J,(2)] onto

this line. Thisis illustrated in the figure for = 3/5. The projection is suboptimal because weighted
mean-squared distance in value-function space does not take account of the policy boundary.

Appendix B. Proof of Theorem 6

The proof needs the following topological lemma. For definitions see, for example, (Dudley, 1989,
pp. 24-25).
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3
[Jq (1), Iy (2)]
2 _|
1 _|
[w* (1), w* @(2)]
( N\
Legend
! —
0 T Optimal Policy: == -
| 3 Approximate
|~ | Value Function: ——
: \ _J
|
-1 | | |
-1 0 1 2 3 4 5

Figure 2: Plot of value-function space for the two-state system. Note that the scale of each axis has
been weighted by the square root of the stationary probability of the corresponding state
under the optimal policy. The solution found by TD(1) is simply the projection of the true
value function onto the set of approximate value functions.

Lemma 7. Let (X,7) be a topological space that is Hausdorff, separable, and first-countable.
Let B be the Boreb-algebra generated by. Then the measurable spat&, B) has a sequence
81,89, ... C B of sets that satisfies the following conditions:

1. EachS; is a partition of X (that is, X = [J{S: S € S;} and any two distinct elements &f
have empty intersection).

2. Forallz € X, {z} € Band
(S €Si:zeS}={z}.
=1

Proof. Since X is separable, it has a countable dense sufset {x;,z2,...}. SinceX is first-
countable, each of thesg has a countable neighbourhood ba¥g, Now, construct the partitions
S; using the countable s&f = |J2, N; as follows. LetSy = X and, fori = 1,2,. .., define

Si:{SﬂNi:SESifl}U{Sﬂ(X—NZ‘):SESifl}.
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Clearly, eachs; is a measurable partition of. SinceX is Hausdorff, for each pait, =’ of distinct
points fromX, there is a pair of disjoint open setisand A’ such thatr € A andz’ € A’. SinceS
is dense, there is a pairs’ from S with s € A ands’ € A’. Also, N contains neighbourhoods;
and N, with Ny, C AandN, C A’. SoN, and N, are disjoint. Thus, for sufficiently large =
andz’ fall in distinct elements of the partitiofi;. Since this is true for any pair, 2/, it follows that

o.¢]

(WS €ESi:zeS}tC{z}.

i=1
The reverse inclusion is trivial. The measurability of all singlet¢n$ follows from the measura-
bility of S, :=U;{S € Si: SN {z} = ¢} and the fact thafz} = X — S,. O

We shall use Lemma 7 together with the following result to show that we can approximate
expectations of certain random variables using a single sample path of the Markov chain.

Lemma 8. Let(X, B) be a measurable space satisfying the conditions of Lemma 7, afid &, . . .
be a suitable sequence of partitions as in that lemmaylteg a probability measure defined on this
space. Lelf be an absolutely integrable function dh. For an eventS, define

fgfd,u
S) = .
1(8) 1(S)
Foreachz € X andk = 1,2,..., let S¢(z) be the unique element 6}, containingz. Then for

almost allz in X,

lim f(Si(x)) = f().
—00
Proof. Clearly, the signed finite measugedefined by
oe) = [ty (42)

is absolutely continuous with respect o and Equation (42) defineg as the Radon-Nikodym
derivative of¢ with respect tqu. This derivative can also be defined as

)= o oy
See, for example, (Shilov & Gurevich, 1966, Section 10.2). By the Radon-Nikodym Theorem (Dud-
ley, 1989, Theorem 5.5.4, p. 134), these two expressions are equal)a.e. ( O
Proof. (Theorem 6.)From the definitions,
Vsn = 7'V PJs
=22 m(0)Vpi;(0)750). (43)

i=1 j=1

For everyy, 1 is absolutely continuous with respect to the reference meastnence for any and
J we can write

pu® = [ [ pste LG ) adw) avli )
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Since X andv do not depend of anddu(f,y)/dX is absolutely integrable, we can differentiate
under the integral to obtain

Vpiy (0 / | pit )V 2O ) axw) dvi) ).

To avoid cluttering the notation, we shall ugeto denote the distributiom(6,y) on i/, andv to
denote the distributiom (i) on ). With this notation, we have

vplj / / pz] d/.l dv.

Now, letp be the probability measure @h x U generated by, andv. We can write (43) as

o v
Vsn = ZW(Z)Jﬁ(J)/ pij =g dp.
i\ yxu o

Using the notation of Lemma 8, we define

fS Pij dp
p(S) 7
1 Vj‘;

V(S):@ 5 dp,

pij(S) =

for a measurable sét C Y x U. Notice that, for a given, 7, andsS,

pzy('g) Pr (X1 =7 |Xe =14, (y,u) €9)
v

ax

X, =i, (Y,,U,) € S) .

Let S1,Ss,... be a sequence of partitions 9f x I/ as in Lemma 7, and lef,(y,u) denote the
element ofS, containing(y, ). Using Lemma 8, we have

Vi
[ B [t Syl ) ¥ (Selo: ) do(y. )
yxu yxuk

dax
] im E / pi; (S 0,

SES,
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where we have used Assumption 6 and the Lebesgue dominated convergence theorem to interchange
the integral and the limit. Hence,

Vsn = hm Z Z S)pij(S)Js(5)V(S)
7] SeSk’
= lim Y Pr(X; =i)Pr((Y;,Uy) € §)Pr(Xo1 = j| X, =i, (Y, Up) € 5)
k—)ooijs

\Y
E (J(t+ 1)[ X1 :j)E< d)“Xt—Z (Y3, Ut) ES)

=Jim > B

1,355

v
Xi (Xe)xs(Ye, Up)xj (Xgq1) J(t + 1) Z’\] ,
ax

where probabilities and expectations are with respect to the stationary distribubioi,, and the
distributions onY;, U;. Now, the random process inside the expectation is asymptotically stationary
and ergodic. From the ergodic theorem, we have (almost surely)

T—1 d
1 v
Vo = lim lim - ES ;0 Xi (Xe)xs(Ye, Up)x (X)) J (8 + 1) — = d’i :
7]7

It is easy to see that the double limit also exists when the order is reversed, so

1 T*l Vdﬂ
Vsn = Tlgr;of 2 klgn %xz (Xe)xs(Ye, Up)xj (Xey1)J(t +1)—= flz’i
v 0, Yt)(U)

T%oTzdwYt )J(t+1).
=0

The same argument as in the proof of Theorem 4 shows that the tallg f 1) can be ignored
when

dp(8,Y;
V%(Ut)

du(g/{Yt) )

and|r(X;)| are uniformly bounded. It follows thak; — 7'V P.Jg w.p.1, as required. O
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