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Abstract
Gradient-based approaches to direct policy search in reinforcement learning have received

much recent attention as a means to solve problems of partial observability and to avoid some of
the problems associated with policy degradation in value-function methods. In this paper we intro-
duceGPOMDP, a simulation-based algorithm for generating abiasedestimate of the gradient of
theaverage rewardin Partially Observable Markov Decision Processes (POMDPs) controlled by
parameterized stochastic policies. A similar algorithm was proposed by Kimura, Yamamura, and
Kobayashi (1995). The algorithm’s chief advantages are that it requires storage of only twice the
number of policy parameters, uses one free parameter� 2 [0; 1) (which has a natural interpretation
in terms of bias-variance trade-off), and requires no knowledge of the underlying state. We prove
convergence ofGPOMDP, and show how the correct choice of the parameter� is related to the
mixing timeof the controlledPOMDP. We briefly describe extensions ofGPOMDP to controlled
Markov chains, continuous state, observation and control spaces, multiple-agents, higher-order
derivatives, and a version for training stochastic policies with internal states. In a companion paper
(Baxter, Bartlett, & Weaver, 2001) we show how the gradient estimates generated byGPOMDP
can be used in both a traditional stochastic gradient algorithm and a conjugate-gradient procedure
to find local optima of the average reward.

1. Introduction

Dynamic Programming is the method of choice for solving problems of decision making under
uncertainty (Bertsekas, 1995). However, the application of Dynamic Programming becomes prob-
lematic in large or infinite state-spaces, in situations where the system dynamics are unknown, or
when the state is only partially observed. In such cases one looks for approximate techniques that
rely on simulation, rather than an explicit model, and parametric representations of either the value-
function or the policy, rather than exact representations.

Simulation-based methods that rely on a parametric form of the value function tend to go by
the name “Reinforcement Learning,” and have been extensively studied in the Machine Learning
literature (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998). This approach has yielded some
remarkable empirical successes in a number of different domains, including learning to play check-
ers (Samuel, 1959), backgammon (Tesauro, 1992, 1994), and chess (Baxter, Tridgell, & Weaver,
2000), job-shop scheduling (Zhang & Dietterich, 1995) and dynamic channel allocation (Singh &
Bertsekas, 1997).

Despite this success, most algorithms for training approximate value functions suffer from the
same theoretical flaw: the performance of the greedy policy derived from the approximate value-
function is not guaranteed to improve on each iteration, and in fact can be worse than the old policy
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by an amount equal to themaximumapproximation error over all states. This can happen even when
the parametric class contains a value function whose corresponding greedy policy is optimal. We
illustrate this with a concrete and very simple example in Appendix A.

An alternative approach that circumvents this problem—the approach we pursue here—is to
consider a class ofstochastic policiesparameterized by� 2 RK , compute the gradient with respect
to � of the average reward, and then improve the policy by adjusting the parameters in the gradient
direction. Note that the policy could be directly parameterized, or it could be generated indirectly
from a value function. In the latter case the value-function parameters are the parameters of the
policy, but instead of being adjusted to minimize error between the approximate and true value
function, the parameters are adjusted to directly improve the performance of the policy generated
by the value function.

These “policy-gradient” algorithms have a long history in Operations Research, Statistics, Con-
trol Theory, Discrete Event Systems and Machine Learning. Before describing the contribution of
the present paper, it seems appropriate to introduce some background material explaining this ap-
proach. Readers already familiar with this material may want to skip directly to section 1.2, where
the contributions of the present paper are described.

1.1 A Brief History of Policy-Gradient Algorithms

For large-scale problems or problems where the system dynamics are unknown, the performance
gradient will not be computable in closed form1. Thus the challenging aspect of the policy-gradient
approach is to find an algorithm for estimating the gradient viasimulation. Naively, the gradient
can be calculated numerically by adjusting each parameter in turn and estimating the effect on per-
formance via simulation (the so-calledcrude Monte-Carlotechnique), but that will be prohibitively
inefficient for most problems. Somewhat surprisingly, under mild regularity conditions, it turns out
that the full gradient can be estimated from asingle simulation of the system. The technique is
called thescore functionor likelihood ratiomethod and appears to have been first proposed in the
sixties (Aleksandrov, Sysoyev, & Shemeneva, 1968; Rubinstein, 1969) for computing performance
gradients in i.i.d. (independently and identically distributed) processes.

Specifically, supposer(X) is a performance function that depends on some random variable
X, andq(�; x) is the probability thatX = x, parameterized by� 2 R

K . Under mild regularity
conditions, the gradient with respect to� of the expected performance,

�(�) = Er(X); (1)

may be written

r�(�) = Er(X)
rq(�;X)

q(�;X)
: (2)

To see this, rewrite (1) as a sum
�(�) =

X
x

r(x)q(�; x);

differentiate (one source of the requirement of “mild regularity conditions”) to obtain

r�(�) =
X
x

r(x)rq(�; x);

1. See equation (17) for a closed-form expression for the performance gradient.
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rewrite as

r�(�) =
X
x

r(x)
rq(�; x)
q(�; x)

q(�; x);

and observe that this formula is equivalent to (2).
If a simulator is available to generate samplesX distributed according toq(�; x), then any

sequenceX1;X2; : : : ;XN generated i.i.d. according toq(�; x) gives an unbiased estimate,

r̂�(�) = 1

N

NX
i=1

r(Xi)
rq(�;Xi)

q(�;Xi)
; (3)

of r�(�). By the law of large numbers,̂r�(�) ! r�(�) with probability one. The quantity
rq(�;X)=q(�;X) is known as thelikelihood ratio or score functionin classical statistics. If
the performance functionr(X) also depends on�, then r(X)rq(�;X)=q(�;X) is replaced by
rr(�;X) + r(�;X)rq(�;X)=q(�;X) in (2).

1.1.1 UNBIASED ESTIMATES OF THEPERFORMANCEGRADIENT FOR REGENERATIVE

PROCESSES

Extensions of the likelihood-ratio method toregenerative processes(including Markov Decision
Processes orMDPs) were given by Glynn (1986, 1990), Glynn and L‘Ecuyer (1995) and Reiman
and Weiss (1986, 1989), and independently forepisodicPartially Observable Markov Decision
Processes (POMDPs) by Williams (1992), who introduced theREINFORCE algorithm2. Here the
i.i.d. samplesX of the previous section aresequencesof statesX0; : : : ;XT (of random length)
encountered between visits to some designated recurrent statei�, or sequences of states from some
start state to a goal state. In this caserq(�;X)=q(�;X) can be written as a sum

rq(�;X)

q(�;X)
=

T�1X
t=0

rpXtXt+1(�)

pXtXt+1(�)
; (4)

wherepXtXt+1(�) is the transition probability fromXt to Xt+1 given parameters�. Equation (4)
admits a recursive computation over the course of a regenerative cycle of the formz0 = 0 2 R

K ,
and after each state transitionXt ! Xt+1,

zt+1 = zt +
rpXtXt+1(�)

pXtXt+1(�)
; (5)

so that each termr(X)rq(�;X)=q(�;X) in the estimate (3) is of the form3 r(X0; : : : ;XT )zT . If,
in addition,r(X0; : : : ;XT ) can be recursively computed by

r(X0; : : : ;Xt+1) = �(r(X0; : : : ;Xt);Xt+1)

for some function�, then the estimater(X0; : : : ;XT )zT for each cycle can be computed using
storage of onlyK + 1 parameters (K for zt and1 parameter to update the performance function
r). Hence, the entire estimate (3) can be computed with storage of only2K + 1 real parameters, as
follows.

2. A thresholdedversion of these algorithms for neuron-like elements was described earlier in Barto, Sutton, and An-
derson (1983).

3. The vectorzT is known in reinforcement learning as aneligibility trace. This terminology is used in Barto et al.
(1983).
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Algorithm 1.1: Policy-Gradient Algorithm for Regenerative Processes.

1. Setj = 0, r0 = 0, z0 = 0, and�0 = 0 (z0;�0 2 RK ).

2. For each state transitionXt ! Xt+1:

� If the episode is finished (that is,Xt+1 = i�), set
�j+1 = �j + rtzt,
j = j + 1,
zt+1 = 0,
rt+1 = 0.

� Otherwise, set

zt+1 = zt +
rpXtXt+1(�)

pXtXt+1(�)
;

rt+1 = �(rt;Xt+1).

3. If j = N return�N=N , otherwise goto 2.

Examples of recursive performance functions include the sum of a scalar reward over a cycle,
r(X0; : : : ;XT ) =

PT
t=0 r(Xt) wherer(i) is a scalar reward associated with statei (this corre-

sponds to�(�) being theaverage rewardmultiplied by the expected recurrence timeE� [T ]); the
negative length of the cycle (which can be implemented by assigning a reward of�1 to each state,
and is used when the task is to mimimize time taken to get to a goal state, since�(�) in this case is
just�E� [T ]); thediscounted rewardfrom the start state,r(X0; : : : ;XT ) =

PT
t=0 �

tr(Xt), where
� 2 [0; 1) is the discount factor, and so on.

As Williams (1992) pointed out, a further simplification is possible in the case thatrT =
r(X0; : : : ;XT ) is a sum of scalar rewardsr(Xt; t) depending on the state and possibly the time
t since the starting state (such asr(Xt; t) = r(Xt), or r(Xt; t) = �tr(Xt) as above). In that case,
the update� from a single regenerative cycle may be written as

� =
T�1X
t=0

rpXtXt+1(�)

pXtXt+1(�)

"
tX

s=0

r(Xs; s) +
TX

s=t+1

r(Xs; s)

#
:

Because changes inpXtXt+1(�) have no influence on the rewardsr(Xs; s) associated with earlier
states (s � t), we should be able to drop the first term in the parentheses on the right-hand-side and
write

� =
T�1X
t=0

rpXtXt+1(�)

pXtXt+1(�)

TX
s=t+1

r(Xs; s): (6)

Although the proof is not entirely trivial, this intuition can indeed be shown to be correct.
Equation (6) allows an even simpler recursive formula for estimating the performance gradi-

ent. Setz0 = �0 = 0, and introduce a new variables = 0. As before, setzt+1 = zt +
rpXtXt+1(�)=pXtXt+1(�) ands = s + 1 if Xt+1 6= i�, or s = 0 andzt+1 = 0 otherwise. But
now, oneach iteration, set�t+1 = r(Xt; s)zt+�t. Then�t=t is our estimate ofr�(�). Since�t

is updated on every iteration, this suggests that we can do away with�t altogether and simply up-
date� directly: �t+1 = �t+
tr(Xt; s)zt, where the
t are suitable step-sizes4. Proving convergence

4. The usual requirements on
t for convergence of a stochastic gradient algorithm are
t > 0,
P
1

t=0 
t = 1, andP
1

t=0 

2
t <1.
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of such an algorithm is not as straightforward as normal stochastic gradient algorithms because the
updatesr(Xt)zt are not in the gradient direction (in expectation), although the sum of these updates
over a regenerative cycle are. Marbach and Tsitsiklis (1998) provide the only convergence proof that
we know of, albeit for a slightly different update of the form�t+1 = �t + 
t [r(Xt; s)� �̂(�t)] zt,
where�̂(�t) is a moving estimate of the expected performance, and is also updated on-line (this
update was first suggested in the context ofPOMDPs by Jaakkola et al. (1995)).

Marbach and Tsitsiklis (1998) also considered the case of�-dependent rewards (recall the dis-
cussion after (3)), as did Baird and Moore (1999) with their “VAPS” algorithm (Value And Policy
Search). This last paper contains an interesting insight: through suitable choices of the performance
function r(X0; : : : ;XT ; �), one can combine policy-gradient search with approximate value func-
tion methods. The resulting algorithms can be viewed asactor-critic techniques in the spirit of Barto
et al. (1983); the policy is theactor and the value function is thecritic. The primary motivation is
to reduce variance in the policy-gradient estimates. Experimental evidence for this phenomenon
has been presented by a number of authors, including Barto et al. (1983), Kimura and Kobayashi
(1998a), and Baird and Moore (1999). More recent work on this subject includes that of Sutton
et al. (2000) and Konda and Tsitsiklis (2000). We discuss the use ofVAPS-style updates further in
Section 6.2.

So far we have not addressed the question of how the parameterized state-transition probabili-
tiespXtXt+1(�) arise. Of course, they could simply be generated by parameterizing the matrix of
transition probabilities directly. Alternatively, in the case ofMDPs orPOMDPs, state transitions
are typically generated by feeding anobservationYt that depends stochastically on the stateXt

into a parameterizedstochastic policy, which selects acontrol Ut at random from a set of avail-
able controls (approximate value-function based approaches that generate controls stochastically
via some form of lookahead also fall into this category). The distribution over successor states
pXtXt+1(Ut) is then a fixed function of the control. If we denote the probability of controlut given
parameters� and observationyt by �ut(�; yt), then all of the above discussion carries through with
rpXtXt+1(�)=pXtXt+1(�) replaced byr�Ut(�; Yt)=�Ut(�; Yt). In that case, Algorithm 1.1 is pre-
cisely Williams’REINFORCE algorithm.

Algorithm 1.1 and the variants above have been extended to cover multiple agents (Peshkin
et al., 2000), policies with internal state (Meuleau et al., 1999), and importance sampling methods
(Meuleau et al., 2000). We also refer the reader to the work of Rubinstein and Shapiro (1993)
and Rubinstein and Melamed (1998) for in-depth analysis of the application of the likelihood-ratio
method to Discrete-Event Systems (DES), in particular networks of queues. Also worth mentioning
is the large literature on Infinitesimal Perturbation Analysis (IPA), which seeks a similar goal of esti-
mating performance gradients, but operates under more restrictive assumptions than the likelihood-
ratio approach; see, for example, Ho and Cao (1991).

1.1.2 BIASED ESTIMATES OF THEPERFORMANCEGRADIENT

All the algorithms described in the previous section rely on an identifiable recurrent statei�, either
to update the gradient estimate, or in the case of the on-line algorithm, to zero the eligibility trace
z. This reliance on a recurrent state can be problematic for two main reasons:

1. Thevarianceof the algorithms is related to the recurrence time between visits toi�, which
will typically grow as the state space grows. Furthermore, the time between visits depends on
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the parameters of the policy, and states that are frequently visited for the initial value of the
parameters may become very rare as performance improves.

2. In situations ofpartial observabilityit may be difficult to estimate the underlying states, and
therefore to determine when the gradient estimate should be updated, or the eligibility trace
zeroed.

If the system is available only through simulation, it seems difficult (if not impossible) to obtain
unbiasedestimates of the gradient direction without access to a recurrent state. Thus, to solve 1
and 2, we must look tobiasedestimates. Two principle techniques for introducing bias have been
proposed, both of which may be viewed as artificial truncations of the eligibility tracez. The first
method takes as a starting point the formula5 for the eligibility trace at timet:

zt =

t�1X
s=0

rpXsXs+1(�)

pXsXs+1
(�)

and simply truncates it at some (fixed, not random) number of termsn looking backwards (Glynn,
1990; Rubinstein, 1991, 1992; Cao & Wan, 1998):

zt(n) :=

t�1X
s=t�n

rpXsXs+1(�)

pXsXs+1(�)
: (7)

The eligibility tracezt(n) is then updated after each transitionXt ! Xt+1 by

zt+1(n) = zt(n) +
rpXtXt+1(�)

pXtXt+1(�)
� rpXt�nXt�n+1(�)

pXt�nXt�n+1(�)
; (8)

and in the case of state-based rewardsr(Xt), the estimated gradient direction afterT steps is

r̂n�(�) :=
1

T � n+ 1

TX
t=n

zt(n)r(Xt): (9)

Unlessn exceeds the maximum recurrence time (which is infinite in an ergodic Markov chain),
r̂n�(�) is a biased estimate of the gradient direction, although asn!1, the bias approaches zero.
However thevarianceof r̂n�(�) diverges in the limit of largen. This illustrates a natural trade-off
in the selection of the parametern: it should be large enough to ensure the bias is acceptable (the
expectation of̂rn�(�) should at least be within90Æ of the true gradient direction), but not so large
that the variance is prohibitive. Experimental results by Cao and Wan (1998) illustrate nicely this
bias/variance trade-off.

One potential difficulty with this method is that the likelihood ratiosrpXsXs+1(�)=pXsXs+1(�)
must be remembered for the previousn time steps, requiring storage ofKn parameters. Thus,
to obtain small bias, the memory may have to grow without bound. An alternative approach that
requires a fixed amount of memory is todiscountthe eligibility trace, rather than truncating it:

zt+1(�) := �zt(�) +
rpXtXt+1(�)

pXtXt+1(�)
; (10)

5. For ease of exposition, we have kept the expression forz in terms of the likelihood ratiosrpXsXs+1
(�)=pXsXs+1

(�)
which rely on the availability of the underlying stateXs. If Xs is not available,rpXsXs+1

(�)=pXsXs+1
(�) should

be replaced withr�Us(�; Ys)=�Us(�; Ys).
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wherez0(�) = 0 and� 2 [0; 1) is a discount factor. In this case the estimated gradient direction
afterT steps is simply

r̂��(�) := 1

T

T�1X
t=0

r(Xt)zt(�): (11)

This is precisely the estimate we analyze in the present paper. A similar estimate withr(Xt)zt(�)
replaced by(r(Xt) � b)zt(�) whereb is a reward baselinewas proposed by Kimura et al. (1995,
1997) and for continuous control by Kimura and Kobayashi (1998b). In fact the use of(r(Xt)� b)
in place ofr(Xt) does not affect the expectation of the estimates of the algorithm (although judi-
cious choice of the reward baselineb can reduce the variance of the estimates). While the algorithm
presented by Kimura et al. (1995) provides estimates of the expectation under the stationary distri-
bution of the gradient of the discounted reward, we will show that these are in fact biased estimates
of the gradient of the expected discounted reward. This arises because the stationary distribution
itself depends on the parameters. A similar estimate to (11) was also proposed by Marbach and
Tsitsiklis (1998), but this time withr(Xt)zt(�) replaced by(r(Xt)� �̂(�))zt(�), where�̂(�) is an
estimate of the average reward, and withzt zeroed on visits to an identifiable recurrent state.

As a final note, observe that the eligibility traceszt(�) andzt(n) defined by (10) and (8) are
simply filtered versions of the sequencerpXtXt+1(�)=pXtXt+1(�), a first-order, infinite impulse
response filter in the case ofzt(�) and ann-th order, finite impulse response filter in the case of
zt(n). This raises the question, not addressed in this paper, of whether there is an interesting theory
of optimal filtering for policy-gradient estimators.

1.2 Our Contribution

We describeGPOMDP, a general algorithm based upon (11) for generating abiasedestimate of the
performance gradientr�(�) in generalPOMDPs controlled by parameterized stochastic policies.
Here�(�) denotes theaveragereward of the policy with parameters� 2 R

K . GPOMDP does
not rely on access to an underlying recurrent state. Writingr��(�) for the expectation of the esti-
mate produced byGPOMDP, we show thatlim�!1r��(�) = r�(�), and more quantitatively that
r��(�) is close to the true gradient provided1=(1��) exceeds themixing timeof the Markov chain
induced by thePOMDP6. As with the truncated estimate above, the trade-off preventing the setting
of � arbitrarily close to1 is that the variance of the algorithm’s estimates increase as� approaches
1. We prove convergence with probability 1 ofGPOMDP for both discrete and continuous observa-
tion and control spaces. We present algorithms for both general parameterized Markov chains and
POMDPs controlled by parameterized stochastic policies.

There are several extensions toGPOMDP that we have investigated since the first version of
this paper was written. We outline these developments briefly in Section 7.

In a companion paper we show how the gradient estimates produced byGPOMDP can be used
to perform gradient ascent on the average reward�(�) (Baxter et al., 2001). We describe both
traditional stochastic gradient algorithms, and a conjugate-gradient algorithm that utilizes gradient
estimates in a novel way to perform line searches. Experimental results are presented illustrat-

6. The mixing-time result in this paper applies only to Markov chains with distinct eigenvalues. Better estimates of the
bias and variance ofGPOMDP may be found in Bartlett and Baxter (2001), for more general Markov chains than
those treated here, and for more refined notions of the mixing time. Roughly speaking, the variance ofGPOMDP
grows with1=(1 � �), while the bias decreases as a function of1=(1� �).
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ing both the theoretical results of the present paper on a toy problem, and practical aspects of the
algorithms on a number of more realistic problems.

2. The Reinforcement Learning Problem

We model reinforcement learning as a Markov decision process (MDP) with a finite state space
S = f1; : : : ; ng, and a stochastic matrix7 P = [pij] giving the probability of transition from state
i to statej. Each statei has an associated reward8 r(i). The matrixP belongs to a parameterized
class of stochastic matrices,P := fP (�) : � 2 R

K g. Denote the Markov chain corresponding to
P (�) byM(�). We assume that these Markov chains and rewards satisfy the following assumptions:

Assumption 1. EachP (�) 2 P has a unique stationary distribution�(�) := [�(�; 1); : : : ; �(�; n)]0

satisfying thebalance equations
�0(�)P (�) = �0(�) (12)

(throughout�0 denotes the transpose of�).

Assumption 2. The magnitudes of the rewards,jr(i)j, are uniformly bounded byR < 1 for all
statesi.

Assumption 1 ensures that the Markov chain forms a single recurrent class for all parameters�.
Since any finite-state Markov chain always ends up in a recurrent class, and it is the properties of
this class that determine the long-term average reward, this assumption is mainly for convenience
so that we do not have to include the recurrence class as a quantifier in our theorems. However,
when we consider gradient-ascent algorithms Baxter et al. (2001), this assumption becomes more
restrictive since it guarantees that the recurrence class cannot change as the parameters are adjusted.

Ordinarily, a discussion ofMDPs would not be complete without some mention of the actions
available in each state and the space of policies available to the learner. In particular, the parameters
� would usually determine a policy (either directly or indirectly via a value function), which would
then determine the transition probabilitiesP (�). However, for our purposes we do not carehow
the dependence ofP on � arises, just that it satisfies Assumption 1 (and some differentiability
assumptions that we shall meet in the next section). Note also that it is easy to extend this setup
to the case where the rewards also depend on the parameters� or on the transitionsi ! j. It is
equally straightforward to extend our algorithms and results to these cases. See Section 6.1 for an
illustration.

The goal is to find a� 2 RK maximizing theaverage reward:

�(�) := lim
T!1

E�

"
1

T

T�1X
t=0

r(Xt)

�����X0 = i

#
;

whereE� denotes the expectation over all sequencesX0;X1; : : : ; with transitions generated ac-
cording toP (�). Under Assumption 1,�(�) is independent of the starting statei and is equal to

�(�) =

nX
i=1

�(�; i)r(i) = �0(�)r; (13)

wherer = [r(1); : : : ; r(n)]0 (Bertsekas, 1995).

7. A stochasticmatrixP = [pij ] haspij � 0 for all i; j and
Pn

j=1 pij = 1 for all i.
8. All the results in the present paper apply to bounded stochastic rewards, in which caser(i) is the expectation of the

reward in statei.
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3. Computing the Gradient of the Average Reward

For generalMDPs little will be known about the average reward�(�), hence finding its optimum
will be problematic. However, in this section we will see that under general assumptions the gradient
r�(�) exists, and so local optimization of�(�) is possible.

To ensure the existence of suitable gradients (and the boundedness of certain random variables),
we require that the parameterized class of stochastic matrices satisfies the following additional as-
sumption.

Assumption 3. The derivatives,

rP (�) :=
�
@pij(�)

@�k

�
i;j=1:::n;k=1:::K

exist for all� 2 RK . The ratios 2
4
���@pij(�)@�k

���
pij(�)

3
5
i;j=1:::n;k=1:::K

are uniformly bounded byB <1 for all � 2 RK .

The second part of this assumption allows zero-probability transitionspij(�) = 0 only if
rpij(�) is also zero, in which case we set0=0 = 0. One example is ifi ! j is a forbidden
transition, so thatpij(�) = 0 for all � 2 RK . Another example satisfying the assumption is

pij(�) =
e�ijPn
j=1 e

�ij
;

where� = [�11; : : : ; �1n; : : : ; �nn] 2 Rn2 are the parameters ofP (�), for then

@pij(�)=@�ij
pij(�)

= 1� pij(�); and

@pij(�)=@�kl
pij(�)

= �pkl(�):

Assuming for the moment thatr�(�) exists (this will be justified shortly), then, suppressing�
dependencies,

r� = r�0r; (14)

since the rewardr does not depend on�. Note that our convention forr in this paper is that it takes
precedence over all other operations, sorg(�)f(�) = [rg(�)] f(�). Equations like (14) should be
regarded as shorthand notation forK equations of the form

@�(�)

@�k
=

�
@�(�; 1)

@�k
; : : : ;

@�(�; n)

@�k

�
[r(1); : : : ; r(n)]0

wherek = 1; : : : ;K. To computer�, first differentiate the balance equations (12) to obtain

r�0P + �0rP = r�0;
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and hence

r�0(I � P ) = �0rP: (15)

The system of equations defined by (15) is under-constrained becauseI � P is not invertible (the
balance equations show thatI � P has a left eigenvector with zero eigenvalue). However, lete
denote then-dimensional column vector consisting of all1s, so thate�0 is then�n matrix with the
stationary distribution�0 in each row. Sincer�0e = r(�0e) = r(1) = 0, we can rewrite (15) as

r�0 �I � (P � e�0)
�
= �0rP:

To see that the inverse[I � (P � e�0)]�1 exists, letA be any matrix satisfyinglimt!1At = 0.
Then we can write

lim
T!1

"
(I �A)

TX
t=0

At

#
= lim

T!1

"
TX
t=0

At �
T+1X
t=1

At

#

= I � lim
T!1

AT+1

= I:

Thus,

(I �A)�1 =

1X
t=0

At:

It is easy to prove by induction that[P � e�0]t = P t � e�0 which converges to0 ast ! 1 by
Assumption 1. So[I � (P � e�0)]�1 exists and is equal to

P1
t=0

�
P t � e�0

�
. Hence, we can write

r�0 = �0rP �I � P + e�0
��1

; (16)

and so9

r� = �0rP �I � P + e�0
��1

r: (17)

ForMDPs with a sufficiently small number of states, (17) could be solved exactly to yield the precise
gradient direction. However, in general, if the state space is small enough that an exact solution of
(17) is possible, then it will be small enough to derive the optimal policy using policy iteration and
table-lookup, and there would be no point in pursuing a gradient based approach in the first place10.

Thus, for problems of practical interest, (17) will be intractable and we will need to find some
other way of computing the gradient. One approximate technique for doing this is presented in the
next section.

9. The argument leading to (16) coupled with the fact that�(�) is the unique solution to (12) can be used to justify the
existence ofr�. Specifically, we can run through the same steps computing the value of�(� + Æ) for smallÆ and
show that the expression (16) forr� is the unique matrix satisfying�(�+ Æ) = �(�) + Ær�(�) +O(kÆk2).

10. Equation (17) may still be useful forPOMDPs, since in that case there is no tractable dynamic programming
algorithm.
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4. Approximating the Gradient in Parameterized Markov Chains

In this section, we show that the gradient can be split into two components, one of which becomes
negligible as a discount factor� approaches1.

For all� 2 [0; 1), letJ�(�) = [J�(�; 1); : : : ; J�(�; n)] denote the vector of expected discounted
rewards from each statei:

J�(�; i) := E�

"
1X
t=0

�tr(Xt)

�����X0 = i

#
: (18)

Where the� dependence is obvious, we just writeJ� .

Proposition 1. For all � 2 RK and� 2 [0; 1),

r� = (1� �)r�0J� + ��0rPJ� : (19)

Proof. Observe thatJ� satisfies theBellmanequations:

J� = r + �PJ�: (20)

(Bertsekas, 1995). Hence,

r� = r�0r
= r�0 [J� � �PJ�]

= r�0J� � �r�0J� + ��0rPJ� by (15)

= (1� �)r�0J� + ��0rPJ� :

We shall see in the next section that the second term in (19) can be estimated from a single sam-
ple path of the Markov chain. In fact, Theorem 1 in (Kimura et al., 1997) shows that the gradient
estimates of the algorithm presented in that paper converge to(1��)�0rJ�. By the Bellman equa-
tions (20), this is equal to(1��)�(�0rPJ�+�0rJ�), which implies(1��)�0rJ� = ��0rPJ�.
Thus the algorithm of Kimura et al. (1997) also estimates the second term in the expression for
r�(�) given by (19). It is important to note that�0rJ� 6= r [�0J�]—the two quantities disagree
by the first term in (19). This arises because the the stationary distribution itself depends on the
parameters. Hence, the algorithm of Kimura et al. (1997) does not estimate the gradient of the ex-
pected discounted reward. In fact, the expected discounted reward is simply1=(1 � �) times the
average reward�(�) (Singh et al., 1994, Fact 7), so the gradient of the expected discounted reward
is proportional to the gradient of the average reward.

The following theorem shows that the first term in (19) becomes negligible as� approaches1.
Notice that this is not immediate from Proposition 1, sinceJ� can become arbitrarily large in the
limit � ! 1.

Theorem 2. For all � 2 RK ,
r� = lim

�!1
r��; (21)

where
r�� := �0rPJ�: (22)
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Proof. Recalling equation (17) and the discussion preceeding it, we have11

r� = �0rP
1X
t=0

�
P t � e�0

�
r: (23)

ButrPe = r(Pe) = r(1) = 0 sinceP is a stochastic matrix, so (23) can be rewritten as

r� = �0

"
1X
t=0

rPP t

#
r: (24)

Now let� 2 [0; 1] be a discount factor and consider the expression

f(�) := �0

"
1X
t=0

rP (�P )t
#
r (25)

Clearlyr� = lim�!1 f(�). To complete the proof we just need to show thatf(�) = r��.
Since(�P )t = �tP t ! �te�0 ! 0, we can invoke the observation before (16) to write

1X
t=0

(�P )t = [I � �P ]�1 :

In particular,
P1

t=0(�P )
t converges, so we can takerP back out of the sum in the right-hand-side

of (25) and write12

f(�) = �0rP
"
1X
t=0

�tP t

#
r: (26)

But
�P1

t=0 �
tP t
�
r = J� . Thusf(�) = �0rPJ� = r��.

Theorem 2 shows thatr�� is a good approximation to the gradient as� approaches1, but it
turns out that values of� very close to1 lead to large variance in the estimates ofr�� that we
describe in the next section. However, the following theorem shows that1 � � need not be too
small, provided the transition probability matrixP (�) has distinct eigenvalues, and the Markov
chain has a shortmixing time. From any initial state, the distribution over states of a Markov chain
converges to the stationary distribution, provided the assumption (Assumption 1) about the existence
and uniqueness of the stationary distribution is satisfied (see, for example, Lancaster & Tismenetsky,
1985, Theorem 15.8.1, p. 552). The spectral resolution theorem (Lancaster & Tismenetsky, 1985,
Theorem 9.5.1, p. 314) implies that the distribution converges to stationarity at an exponential rate,
and the time constant in this convergence rate (the mixing time) depends on the eigenvalues of
the transition probability matrix. The existence of a unique stationary distribution implies that the

11. Sincee�0r = e�, (23) motivates a different kind of algorithm for estimatingr� based ondifferential rewards
(Marbach & Tsitsiklis, 1998).

12. We cannot backrP out of the sum in the right-hand-side of (24) because
P
1

t=0 P
t diverges (P t ! e�0). The reasonP

1

t=0rPP
t converges is thatP t becomes orthogonal torP in the limit of larget. Thus, we can view

P
1

t=0 P
t

as a sum of two orthogonal components: an infinite one in the directione and a finite one in the directione?. It
is the finite component that we need to estimate. Approximating

P
1

t=0 P
t with

P
1

t=0(�P )t is a way of rendering
thee-component finite while hopefully not altering thee?-component too much. There should be other substitutions
that lead to better approximations (in this context, see the final paragraph in Section 1.1).
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largest magnitude eigenvalue is1 and has multiplicity1, and the corresponding left eigenvector is
the stationary distribution. We sort the eigenvalues�i in decreasing order of magnitude, so that
1 = �1 > j�2j > � � � > j�sj for some2 � s � n. It turns out thatj�2j determines the mixing time
of the chain.

The following theorem shows that if1� � is small compared to1 � j�2j, the gradient approx-
imation described above is accurate. Since we will be using the estimate as a direction in which to
update the parameters, the theorem compares thedirectionsof the gradient and its estimate. In this
theorem,�2(A) denotes thespectral condition numberof a nonsingular matrixA, which is defined
as the product of thespectral normsof the matricesA andA�1,

�2(A) = kAk2kA�1k2;
where

kAk2 = max
x:kxk=1

kAxk;

andkxk denotes the Euclidean norm of the vectorx.

Theorem 3. Suppose that the transition probability matrixP (�) satisfies Assumption 1 with sta-
tionary distribution�0 = (�1; : : : ; �n), and hasn distinct eigenvalues. LetS = (x1x2 � � � xn) be
the matrix of right eigenvectors ofP corresponding, in order, to the eigenvalues1 = �1 > j�2j �
� � � � j�nj. Then the normalized inner product betweenr� and�r�� satisfies

1� r� � �r��
kr�k2 � �2

�
�1=2S

� kr(
p
�1; : : : ;

p
�n)k

kr�k
p
r0�r

1� �

1� �j�2j ; (27)

where� = diag(�1; : : : ; �n).

Notice thatr0�r is the expectation under the stationary distribution ofr(X)2.
As well as the mixing time (viaj�2j), the bound in the theorem depends on another parameter of

the Markov chain: the spectral condition number of�1=2S. If the Markov chain is reversible (which
implies that the eigenvectorsx1; : : : ; xn are orthogonal), this is equal to the ratio of the maximum
to the minimum probability of states under the stationary distribution. However, the eigenvectors
do not need to be nearly orthogonal. In fact, the condition that the transition probability matrix
haven distinct eigenvalues is not necessary; without it, the condition number is replaced by a more
complicated expression involving spectral norms of matrices of the form(P � �iI).

Proof. The existence ofn distinct eigenvalues implies thatP can be expressed asS�S�1, where
� = diag(�1; : : : ; �n) (Lancaster & Tismenetsky, 1985, Theorem 4.10.2, p 153). It follows that for
any polynomialf , we can writef(P ) = Sf(�)S�1.

Now, Proposition 1 shows thatr� � �r�� = r�0(1� �)J� . But

(1� �)J� = (1� �)
�
r + �Pr + �2P 2r + � � � �

= (1� �)
�
I + �P + �2P 2 + � � � � r

= (1� �)S

 
1X
t=0

�t�t

!
S�1r

= (1� �)

nX
j=1

xjy
0
j

 
1X
t=0

(��j)
t

!
r;
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whereS�1 = (y1; : : : ; yn)
0.

It is easy to verify thatyi is the left eigenvector corresponding to�i, and that we can choose
y1 = � andx1 = e. Thus we can write

(1� �)J� = (1� �)e�0r +

nX
j=2

xjy
0
j

 
1X
t=0

(1� �)(��j)
t

!
r

= (1� �)e� +
nX

j=2

xjy
0
j

�
1� �

1� ��j

�
r

= (1� �)e� + SMS�1r;

where

M = diag

�
0;

1� �

1� ��2
; : : : ;

1� �

1� ��n

�
:

It follows from this and Proposition 1 that

1� r� � �r��
kr�k2 = 1� r� � (r� �r�0(1� �)J�)

kr�k2

=
r� � r�0(1� �)J�

kr�k2

=
r� � r�0 �(1� �)e� + SMS�1r

�
kr�k2

=
r� � r�0SMS�1r

kr�k2

�


r�0SMS�1r




kr�k ;

by the Cauchy-Schwartz inequality. Sincer�0 = r
�p

�0
�
�1=2, we can apply the Cauchy-

Schwartz inequality again to obtain

1� r� � �r��
kr�k2 �




r�p�0�




�1=2SMS�1r




kr�k : (28)

We use spectral norms to bound the second factor in the numerator. It is clear from the definition
that the spectral norm of a product of nonsingular matrices satisfieskABk2 � kAk2kBk2, and that
the spectral norm of a diagonal matrix is given bykdiag(d1; : : : ; dn)k2 = maxi jdij. It follows that


�1=2SMS�1r




 = 


�1=2SMS�1��1=2�1=2r





�



�1=2S





2




S�1��1=2




2




�1=2r



 kMk2

� �2

�
�1=2S

�p
r0�r

1� �

1� �j�2j :

Combining with Equation (28) proves (27).
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5. Estimating the Gradient in Parameterized Markov Chains

Algorithm 1 introducesMCG (Markov Chain Gradient), an algorithm for estimating the approx-
imate gradientr�� from a single on-line sample pathX0;X1; : : : from the Markov chainM(�).
MCG requires only2K reals to be stored, whereK is the dimension of the parameter space:K
parameters for the eligibility tracezt, andK parameters for the gradient estimate�t. Note that
afterT time steps�T is the average so far ofr(Xt)zt,

�T =
1

T

T�1X
t=0

ztr(Xt):

Algorithm 1 TheMCG (MarkovChainGradient) algorithm
1: Given:

� Parameter� 2 RK .

� Parameterized class of stochastic matricesP = fP (�) : � 2 RK g satisfying Assumptions
3 and 1.

� � 2 [0; 1).

� Arbitrary starting stateX0.

� State sequenceX0;X1; : : : generated byM(�) (i.e. the Markov chain with transition
probabilitiesP (�)).

� Reward sequencer(X0); r(X1); : : : satisfying Assumption 2.

2: Setz0 = 0 and�0 = 0 (z0;�0 2 RK ).
3: for each stateXt+1 visiteddo

4: zt+1 = �zt +
rpXtXt+1(�)

pXtXt+1(�)

5: �t+1 = �t +
1

t+1 [r(Xt+1)zt+1 ��t]
6: end for

Theorem 4. Under Assumptions 1, 2 and 3, theMCG algorithm starting from any initial stateX0

will generate a sequence�0;�1; : : : ;�t; : : : satisfying

lim
t!1

�t = r�� w.p.1: (29)

Proof. Let fXtg = fX0;X1; : : : g denote the random process corresponding toM(�). If X0 � �
then the entire process is stationary. The proof can easily be generalized to arbitrary initial distri-
butions using the fact that under Assumption 1,fXtg is asymptotically stationary. WhenfXtg is
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stationary, we can write

�0rPJ� =
X
i;j

�(i)rpij(�)J�(j)

=
X
i;j

�(i)pij(�)
rpij(�)
pij(�)

J�(j)

=
X
i;j

Pr(Xt = i) Pr(Xt+1 = jjXt = i)
rpij(�)
pij(�)

E(J(t+ 1)jXt+1 = j); (30)

where the first probability is with respect to the stationary distribution andJ(t+ 1) is the process

J(t+ 1) =

1X
s=t+1

�s�t�1r(Xs):

The fact thatE(J(t + 1)jXt+1) = J�(Xt+1) for all Xt+1 follows from the boundedness of the
magnitudes of the rewards (Assumption 2) and Lebesgue’s dominated convergence theorem. We
can rewrite Equation (30) as

�0rPJ� =
X
i;j

E

�
�i(Xt)�j(Xt+1)

rpij(�)
pij(�)

J(t+ 1)

�
;

where�i(�) denotes the indicator function for statei,

�i(Xt) :=

(
1 if Xt = i;

0 otherwise;

and the expectation is again with respect to the stationary distribution. WhenXt is chosen according
to the stationary distribution, the processfXtg is ergodic. Since the processfZtg defined by

Zt := �i(Xt)�j(Xt+1)
rpij(�)
pij(�)

J(t+ 1)

is obtained by taking a fixed function offXtg, fZtg is also stationary and ergodic (Breiman, 1966,

Proposition 6.31). Since
���rpij(�)pij(�)

��� is bounded by Assumption 3, from the ergodic theorem we have

(almost surely):

�0rPJ� =
X
i;j

lim
T!1

1

T

T�1X
t=0

�i(Xt)�j(Xt+1)
rpij(�)
pij(�)

J(t+ 1)

= lim
T!1

1

T

T�1X
t=0

rpXtXt+1(�)

pXtXt+1(�)
J(t+ 1)

= lim
T!1

1

T

T�1X
t=0

rpXtXt+1(�)

pXtXt+1(�)

"
TX

s=t+1

�s�t�1r(Xs) +

1X
s=T+1

�s�t�1r(Xs)

#
: (31)
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Concentrating on the second term in the right-hand-side of (31), observe that:����� 1T
T�1X
t=0

rpXtXt+1(�)

pXtXt+1
(�)

1X
s=T+1

�s�t�1r(Xs)

�����
� 1

T

T�1X
t=0

����rpXtXt+1
(�)

pXtXt+1
(�)

����
1X

s=T+1

�s�t�1 jr(Xs)j

� BR

T

T�1X
t=0

1X
s=T+1

�s�t�1

=
BR

T

T�1X
t=0

�T�t

1� �

=
BR�

�
1� �T

�
T (1� �)2

! 0asT !1;

whereR andB are the bounds on the magnitudes of the rewards andjrpij j
pij

from Assumptions 2
and 3. Hence,

�0rPJ� = lim
T!1

1

T

T�1X
t=0

rpXtXt+1(�)

pXtXt+1(�)

TX
s=t+1

�s�t�1r(Xs): (32)

Unrolling the equation for�T in theMCG algorithm shows it is equal to

1

T

T�1X
t=0

rpXtXt+1(�)

pXtXt+1(�)

TX
s=t+1

�s�t�1r(is);

hence�T ! �0rPJ� w.p.1 as required.

6. Estimating the Gradient in Partially Observable Markov Decision Processes

Algorithm 1 applies to any parameterized class of stochastic matricesP (�) for which we can com-
pute the gradientsrpij(�). In this section we consider the special case ofP (�) that arise from a
parameterized class of randomized policies controlling a partially observable Markov decision pro-
cess (POMDP). The ‘partially observable’ qualification means we assume that these policies have
access to an observation process that depends on the state, but in general they may not see the state.

Specifically, assume that there areN controlsU = f1; : : : ; Ng andM observationsY =
f1; : : : ;Mg. Eachu 2 U determines a stochastic matrixP (u) which does not depend on the
parameters�. For each statei 2 S, an observationY 2 Y is generated independently according to
a probability distribution�(i) over observations inY. We denote the probability of observationy
by �y(i). A randomized policyis simply a function� mapping observationsy 2 Y into probability
distributions over the controlsU . That is, for each observationy, �(y) is a distribution over the
controls inU . Denote the probability under� of controlu given observationy by �u(y).

To each randomized policy�(�) and observation distribution�(�) there corresponds a Markov
chain in which state transitions are generated by first selecting an observationy in statei according
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to the distribution�(i), then selecting a controlu according to the distribution�(y), and then gen-
erating a transition to statej according to the probabilitypij(u). To parameterize these chains we
parameterize the policies, so that� now becomes a function�(�; y) of a set of parameters� 2 RK as
well as the observationy. The Markov chain corresponding to� has state transition matrix[pij(�)]
given by

pij(�) = EY��(i)EU��(�;Y )pij(U): (33)

Equation (33) implies

rpij(�) =
X
u;y

�y(i)pij(u)r�u(�; y): (34)

Algorithm 2 introduces theGPOMDP algorithm (forGradient of aPartially ObservableMarkov
DecisionProcess), a modified form of Algorithm 1 in which updates ofzt are based on�Ut(�; Yt),
rather thanpXtXt+1(�). Note that Algorithm 2 does not require knowledge of the transition prob-
ability matrix P , nor of the observation process�; it only requires knowledge of the randomized
policy �. GPOMDP is essentially the algorithm proposed by Kimura et al. (1997) without the
reward baseline.

The algorithmGPOMDP assumes that the policy� is a function only of the current observation.
It is immediate that the same algorithm works for any finite history of observations. In general, an
optimal policy needs to be a function of the entire observation history.GPOMDP can be extended
to apply to policies with internal state (Aberdeen & Baxter, 2001).

Algorithm 2 TheGPOMDP algorithm.
1: Given:

� Parameterized class of randomized policies
�
�(�; �) : � 2 RK	 satisfying Assumption 4.

� Partially observable Markov decision process which when controlled by the randomized
policies�(�; �) corresponds to a parameterized class of Markov chains satisfying As-
sumption 1.

� � 2 [0; 1).

� Arbitrary (unknown) starting stateX0.

� Observation sequenceY0; Y1; : : : generated by thePOMDP with controlsU0; U1; : : :
generated randomly according to�(�; Yt).

� Reward sequencer(X0); r(X1); : : : satisfying Assumption 2, whereX0;X1; : : : is the
(hidden) sequence of states of the Markov decision process.

2: Setz0 = 0 and�0 = 0 (z0;�0 2 RK ).
3: for each observationYt, controlUt, and subsequent rewardr(Xt+1) do

4: zt+1 = �zt +
r�Ut(�; Yt)
�Ut(�; Yt)

5: �t+1 = �t +
1

t+1 [r(Xt+1)zt+1 ��t]
6: end for
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For convergence of Algorithm 2 we need to replace Assumption 3 with a similar bound on the
gradient of�:

Assumption 4. The derivatives,
@�u(�; y)

@�k

exist for allu 2 U , y 2 Y and� 2 RK . The ratios

2
4
���@�u(�;y)@�k

���
�u(�; y)

3
5
y=1:::M ;u=1:::N ;k=1:::K

are uniformly bounded byB� <1 for all � 2 RK .

Theorem 5. Under Assumptions 1, 2 and 4, Algorithm 2 starting from any initial stateX0 will
generate a sequence�0;�1; : : : ;�t; : : : satisfying

lim
t!1

�t = r�� w.p.1: (35)

Proof. The proof follows the same lines as the proof of Theorem 4. In this case,

�0rPJ� =
X
i;j

�(i)rpij(�)J�(j)

=
X
i;j;y;u

�(i)pij(u)�y(i)r�u(�; y)J�(j) from (34)

=
X
i;j;y;u

�(i)pij(u)�y(i)
r�u(�; y)
�u(�; y)

�u(�; y)J�(j);

=
X
i;j;y;u

EZ 0t;

where the expectation is with respect to the stationary distribution offXtg, and the processfZ 0tg is
defined by

Z 0t := �i(Xt)�j(Xt+1)�u(Ut)�y(Yt)
r�u(�; y)
�u(�; y)

J(t+ 1);

whereUt is the control process andYt is the observation process. The result follows from the same
arguments used in the proof of Theorem 4.

6.1 Control dependent rewards

There are many circumstances in which the rewards may themselves depend on the controlsu. For
example, some controls may consume more energy than others and so we may wish to add a penalty
term to the reward function in order to conserve energy. The simplest way to deal with this is to
define for each statei the expected reward�r(i) by

�r(i) = EY��(i)EU��(�;Y )r(U; i); (36)
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and then redefineJ� in terms of�r:

�J�(�; i) := lim
N!1

E�

"
NX
t=0

�t�r(Xt)

�����X0 = i

#
; (37)

where the expectation is over all trajectoriesX0;X1; : : : . The performance gradient then becomes

r� = r�0�r + �0r�r;

which can be approximated by
r�� = �0

�rP �J� +r�r
�
;

due to the fact that�J� satisfies the Bellman equations (20) with�r replaced byr.
ForGPOMDP to take account of the dependence ofr on the controls, its fifth line should be

replaced by

�t+1 = �t +
1

t+ 1

�
r(Ut+1;Xt+1)

�
zt+1 +

r�Ut+1(�; Yt+1)

�Ut+1(�; Yt+1)

�
��t

�
:

It is straightforward to extend the proofs of Theorems 2, 3 and 5 to this setting.

6.2 Parameter dependent rewards

It is possible to modifyGPOMDP when the rewards themselves depend directly on�. In this case,
the fifth line ofGPOMDP is replaced with

�t+1 = �t +
1

t+ 1
[r(�;Xt+1)zt+1 +rr(�;Xt+1)��t] : (38)

Again, the convergence and approximation theorems will carry through, providedrr(�; i) is uni-
formly bounded. Parameter-dependent rewards have been considered by Glynn (1990), Marbach
and Tsitsiklis (1998), and Baird and Moore (1999). In particular, Baird and Moore (1999) showed
how suitable choices ofr(�; i) lead to a combination of value and policy search, or “VAPS”. For
example, if ~J(�; i) is an approximate value-function, then setting13

r(�;Xt;Xt�1) = �1

2

h
r(Xt) + � ~J(�;Xt)� ~J(�;Xt�1)

i2
;

wherer(Xt) is the usual reward and� 2 [0; 1) is a discount factor, gives an update that seeks to
minimize the expected Bellman error

nX
i=1

�(�; i)

2
4r(i) + �

nX
j=1

pij(�) ~J(�; j)� ~J(�; i)

3
5
2

: (39)

This will have the effect of both minimizing the Bellman error in~J(�; i), and driving the system
(via the policy) to states with small Bellman error. The motivation behind such an approach can
be understood if one considers a~J that haszeroBellman error for all states. In that case a greedy
policy derived from~J will be optimal, and regardless of how the actual policy is parameterized, the
expectation ofztr(�;Xt;Xt�1) will be zero and so will be the gradient computed byGPOMDP.
This kind of update is known as anactor-critic algorithm (Barto et al., 1983), with the policy playing
the role of the actor, and the value function playing the role of the critic.

13. The use of rewardsr(�;Xt; Xt�1) that depend on the current and previous state does not substantially alter the
analysis.
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6.3 Extensions to infinite state, observation, and control spaces

The convergence proof for Algorithm 2 relied on finite state (S), observation (Y) and control (U)
spaces. However, it should be clear that with no modification Algorithm 2 can be applied imme-
diately toPOMDPs with countably or uncountably infiniteS andY, and countableU . All that
changes is thatpij(u) becomes akernelp(x; x0; u) and�(i) becomes a density on observations. In
addition, with the appropriate interpretation ofr�=�, it can be applied to uncountableU . Specifi-
cally, if U is a subset ofRN then�(y; �) will be a probabilitydensityfunction onU with �u(y; �)
the density atu. If U andY are subsets of Euclidean space (butS is a finite set), Theorem 5 can be
extended to show that the estimates produced by this algorithm converge almost surely tor��. In
fact, we can prove a more general result that implies both this case of densities on subsets ofR

N as
well as the finite case of Theorem 5. We allowU andY to be general spaces satisfying the following
topological assumption. (For definitions see, for example, (Dudley, 1989).)

Assumption 5. The control spaceU has an associated topology that is separable, Hausdorff, and
first-countable. For the corresponding Borel�-algebraB generated by this topology, there is a
�-finite measure� defined on the measurable space(U ;B). We say that� is thereference measure
for U .

Similarly, the observation spaceY has a topology, Borel�-algebra, and reference measure
satisfying the same conditions.

In the case of Theorem 5, whereU andY are finite, the associated reference measure is the
counting measure. ForU = R

N andY = R
M , the reference measure is Lebesgue measure. We

assume that the distributions�(i) and�(�; y) are absolutely continuous with respect to the reference
measures, and the corresponding Radon-Nikodym derivatives (probability masses in the finite case,
densities in the Euclidean case) satisfy the following assumption.

Assumption 6. For everyy 2 Y and� 2 RK , the probability measure�(�; y) is absolutely contin-
uous with respect to the reference measure forU . For everyi 2 S, the probability measure�(i) is
absolutely continuous with respect to the reference measure forY.

Let� be the reference measure forU . For all u 2 U , y 2 Y, � 2 R
K , andk 2 f1; : : : ;Kg, the

derivatives
@

@�k

d�(�; y)

d�
(u)

exist and the ratios ��� @
@�k

d�u(�;y)
d� (u)

���
d�u(�;y)

d� (u)

are bounded byB� <1.

With these assumptions, we can replace� in Algorithm 2 with the Radon-Nikodym derivative
of � with respect to the reference measure onU . In this case, we have the following convergence
result. This generalizes Theorem 5, and also applies to densities� on a Euclidean spaceU .

Theorem 6. Suppose the control spaceU and the observation spaceY satisfy Assumption 5 and let
� be the reference measure on the control spaceU . Consider Algorithm 2 with

r�Ut(�; Yt)
�Ut(�; Yt)
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replaced by
rd�(�;Yt)

d� (Ut)
d�(�;Yt)

d� (Ut)
:

Under Assumptions 1, 2 and 6, this algorithm, starting from any initial stateX0 will generate a
sequence�0;�1; : : : ;�t; : : : satisfying

lim
t!1

�t = r�� w.p.1:

Proof. See Appendix B

7. New Results

Since the first version of this paper, we have extendedGPOMDP to several new settings, and also
proved some new properties of the algorithm. In this section we briefly outline these results.

7.1 Multiple Agents

Instead of a single agent generating actions according to�(�; y), suppose we have multiple agents
i = 1; : : : ; na, each with their own parameter set�i and distinct observation of the environment
yi, and that generate their own actionsui according to a policy�ui(�

i; yi). If the agents all re-
ceive the same reward signalr(Xt) (they may be cooperating to solve the same task, for example),
thenGPOMDP can be applied to the collectivePOMDP obtained by concatenating the observa-
tions, controls, and parameters into single vectorsy =

�
y1; : : : ; yna

�
, u =

�
u1; : : : ; una

�
, and

� =
�
�1; : : : ; �na

�
respectively. An easy calculation shows that the gradient estimate� generated

byGPOMDP in the collective case is precisely the same as that obtained by applyingGPOMDP to
each agent independently, and then concatenating the results. That is,� =

�
�1; : : : ;�na

�
, where

�i is the estimate produced byGPOMDP applied to agenti. This leads to an on-line algorithm
in which the agents adjust their parameters independently and without any explicit communication,
yet collectively the adjustments are maximizing the global average reward. For similar observa-
tions in the context ofREINFORCE andVAPS, see Peshkin et al. (2000). This algorithm gives a
biologically plausible synaptic weight-update rule when applied to networks of spiking neurons in
which the neurons are regarded as independent agents (Bartlett & Baxter, 1999), and has shown
some promise in a network routing application (Tao, Baxter, & Weaver, 2001).

7.2 Policies with internal states

So far we have only considered purelyreactiveor memorylesspolicies in which the chosen control
is a function of only the current observation.GPOMDP is easily extended to cover the case of
policies that depend on finite histories of observationsYt; Yt�1; : : : ; Yt�k, but in general, foroptimal
control ofPOMDPs, the policy must be a function of theentireobservation history. Fortunately, the
observation history may be summarized in the form of abelief state(the current distribution over
states), which is itself updated based only upon the current observation, and knowledge of which
is sufficient for optimal behaviour (Smallwood & Sondik, 1973; Sondik, 1978). An extension of
GPOMDP to policies with parameterized internal belief states is described by Aberdeen and Baxter
(2001), similar in spirit to the extension ofVAPS andREINFORCE described by Meuleau et al.
(1999).
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7.3 Higher-Order Derivatives

GPOMDP can be generalized to compute estimates of second and higher-order derivatives of the
average reward (assuming they exist), still from a single sample path of the underlyingPOMDP.
To see this for second-order derivatives, observe that if�(�) =

R
q(�; x)r(x) dx for some twice-

differentiable densityq(�; x) and performance measurer(x), then

r2�(�) =

Z
r(x)

r2q(�; x)

q(�; x)
q(�; x) dx

wherer2 denotes the matrix of second derivatives (Hessian). It can be verified that

r2q(�; x)

q(�; x)
= r2 log q(�; x) + [r log q(�; x)]2 (40)

where the second term on the right-hand-side is theouter productbetweenr log q(�; x) and itself
(that is, the matrix with entries@=@�i log q(�; x)@=@�j log q(�; x)). Takingx to be a sequence of
statesX0;X1; : : : ;XT between visits to a recurrent statei� in a parameterized Markov chain (recall
Section 1.1.1), we haveq(�;X) = �T�1

t=0 pXtXt+1(�), which combined with (40) yields

r2q(�;X)

q(�;X)
=

T�1X
t=0

r2pXtXt+1(�)

pXtXt+1(�)
�

T�1X
t=0

�rpXtXt+1(�)

pXtXt+1(�)

�2
+

"
T�1X
t=0

rpXtXt+1(�)

pXtXt+1(�)

#2

(the squared terms in this expression are also outer products). From this expression we can derive
aGPOMDP-like algorithm for computing a biased estimate of the Hessianr2�(�), which involves
maintaining—in addition to the usual eligibility tracezt—a secondmatrix trace updated as follows:

Zt+1 = �Zt +
r2pXtXt+1(�)

pXtXt+1(�)
�
�rpXtXt+1(�)

pXtXt+1(�)

�2
:

After T time steps the algorithm returns the average so far ofr(Xt)
�
Zt + z2t

�
where the second term

is again an outer product. Computation of higher-order derivatives could be used in second-order
gradient methods for optimization of policy parameters.

7.4 Bias and Variance Bounds

Theorem 3 provides a bound on thebiasof r��(�) relative tor�(�) that applies when the underly-
ing Markov chain has distinct eigenvalues. We have extended this result to arbitrary Markov chains
(Bartlett & Baxter, 2001). However, the extra generality comes at a price, since the latter bound in-
volves the number of states in the chain, whereas Theorem 3 does not. The same paper also supplies
a proof that the variance ofGPOMDP scales as1=(1 � �)2, providing a formal justification for the
interpretation of� in terms of bias/variance trade-off.

8. Conclusion

We have presented a general algorithm (MCG) for computing arbitrarily accurate approximations
to the gradient of the average reward in a parameterized Markov chain. When the chain’s transition
matrix has distinct eigenvalues, the accuracy of the approximation was shown to be controlled by the
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size of the subdominant eigenvaluej�2j. We showed how the algorithm could be modified to apply
to partially observable Markov decision processes controlled by parameterized stochastic policies,
with both discrete and continuous control, observation and state spaces (GPOMDP). For the finite
state case, we proved convergence with probability 1 of both algorithms.

We briefly described extensions to multi-agent problems, policies with internal state, estimating
higher-order derivatives, generalizations of the bias result to chains with non-distinct eigenvalues,
and a new variance result. There are many avenues for further research. Continuous time results
should follow as extensions of the results presented here. TheMCG andGPOMDP algorithms can
be applied to countably or uncountably infinite state spaces; convergence results are also needed in
these cases.

In the companion paper (Baxter et al., 2001), we present experimental results showing rapid
convergence of the estimates generated byGPOMDP to the true gradientr�. We give on-line
variants of the algorithms of the present paper, and also variants of gradient ascent that make use of
the estimates ofr��. We present experimental results showing the effectiveness of these algorithms
in a variety of problems, including a three-state MDP, a nonlinear physical control problem, and a
call-admission problem.
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Appendix A. A Simple Example of Policy Degradation in Value-Function Learning

Approximate value-function approaches to reinforcement work by minimizing some form of error
between the approximate value function and the true value function. It has long been known that this
may not necessarily lead to improved policy performance from the new value function. We include
this appendix because it illustrates that this phenomenon can occur in the simplest possible system,
a two-stateMDP, and also provides some geometric intuition for why the phenomenon arises.

Consider the two-state Markov decision process (MDP) in Figure 1. There are two controls
u1; u2 with corresponding transition probability matrices

P (u1) =

�
1
3

2
3

1
3

2
3

�
; P (u2) =

�
2
3

1
3

2
3

1
3

�
;

so thatu1 always takes the system to state2 with probability2=3, regardless of the starting state (and
therefore to state1 with probability1=3), andu2 does the opposite. Since state2 has a reward of1,
while state1 has a reward of0, the optimal policy is to always select actionu1. Under this policy
the stationary distribution on states is[�1; �2] = [1=3; 2=3], while the infinite-horizon discounted
value of each statei = 1; 2 with discount value� 2 [0; 1) is

J�(i) = E

 
1X
t=0

�tr(Xt)

�����X0 = i

!
;

where the expectation is over all state sequencesX0;X1;X2; : : : with state transitions generated ac-
cording toP (u1). SolvingBellman’s equations:J� = r+ �P (u1)J�, whereJ� = [J�(1); J�(2)]

0

andr = [r(1); r(2)]0 yieldsJ�(1) = 2�
3(1��) andJ�(2) = 1 + 2�

3(1��) .
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1 2

r(1) = 0 r(2) = 1

Figure 1: Two-state Markov Decsision Process

Now, suppose we are trying to learn an approximate value function~J for thisMDP, i.e. , ~J(i) =
w�(i) for each statei = 1; 2 and some scalar feature� (� must have dimensionality1 to ensure that
~J really isapproximate). Herew 2 R is the parameter being learnt. For the greedy policy obtained
from ~J to be optimal,~J must value state2 above state1. For the purposes of this illustration choose
�(1) = 2; �(2) = 1, so that for~J(2) > ~J(1), w must be negative.

Temporal Differencelearning (orTD(�)) is one of the most popular techniques for training
approximate value functions (Sutton & Barto, 1998). It has been shown that for linear functions,
TD(1) converges to a parameterw� minimizing the expected squared loss under the stationary
distribution (Tsitsikilis & Van-Roy, 1997):

w� = argminw

2X
i=1

�i [w�(i) � J�(i)]
2 : (41)

Substituting the previous expressions for�1; �2; � andJ� under the optimal policy and solving
for w�, yieldsw� = 3+�

9(1��) . Hencew� > 0 for all values of� 2 [0; 1), which is the wrong
sign. So we have a situation where the optimal policy is implementable as a greedy policy based
on an approximate value function in the class (just choose anyw < 0), yetTD(1) observing the
optimal policy will converge to a value function whose corresponding greedy policy implements the
suboptimal policy.

A geometrical illustration of why this occurs is shown in Figure 2. In this figure, points on the
graph represent the values of the states. The scales of the state 1 and state 2 axes are weighted byp
�(1) and

p
�(2) respectively. In this way, the squared euclidean distance on the graph between

two pointsJ and ~J corresponds to the expectation under the stationary distribution of the squared
difference between values:


hp�(1)J(1);

p
�(2)J(2)

i
�
hp

�(1) ~J(1);
p
�(2) ~J(2)

i


2 = E�

�
J(X) � ~J(X)

�2
:

For any value function in the shaded region, the corresponding greedy policy is optimal, since
those value functions rank state 2 above state 1. The bold line represents the set of all realizable
approximate value functions(w�(1); w�(2)). The solution to (41) is then the approximate value
function found by projecting the point corresponding to the true value function[(J�(1); J�(2)] onto
this line. This is illustrated in the figure for� = 3=5. The projection is suboptimal because weighted
mean-squared distance in value-function space does not take account of the policy boundary.

Appendix B. Proof of Theorem 6

The proof needs the following topological lemma. For definitions see, for example, (Dudley, 1989,
pp. 24–25).
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Figure 2: Plot of value-function space for the two-state system. Note that the scale of each axis has
been weighted by the square root of the stationary probability of the corresponding state
under the optimal policy. The solution found by TD(1) is simply the projection of the true
value function onto the set of approximate value functions.

Lemma 7. Let (X;T ) be a topological space that is Hausdorff, separable, and first-countable.
LetB be the Borel�-algebra generated byT . Then the measurable space(X;B) has a sequence
S1;S2; : : : � B of sets that satisfies the following conditions:

1. EachSi is a partition ofX (that is,X =
SfS : S 2 Sig and any two distinct elements ofSi

have empty intersection).

2. For all x 2 X, fxg 2 B and

1\
i=1

fS 2 Si : x 2 Sg = fxg:

Proof. SinceX is separable, it has a countable dense subsetS = fx1; x2; : : :g. SinceX is first-
countable, each of thesexi has a countable neighbourhood base,Ni. Now, construct the partitions
Si using the countable setN =

S1
i=1Ni as follows. LetS0 = X and, fori = 1; 2; : : :, define

Si = fS \Ni : S 2 Si�1g [ fS \ (X �Ni) : S 2 Si�1g :
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Clearly, eachSi is a measurable partition ofX. SinceX is Hausdorff, for each pairx; x0 of distinct
points fromX, there is a pair of disjoint open setsA andA0 such thatx 2 A andx0 2 A0. SinceS
is dense, there is a pairs; s0 from S with s 2 A ands0 2 A0. Also,N contains neighbourhoodsNs

andNs0 with Ns � A andNs0 � A0. SoNs andNs0 are disjoint. Thus, for sufficiently largei, x
andx0 fall in distinct elements of the partitionSi. Since this is true for any pairx; x0, it follows that

1\
i=1

fS 2 Si : x 2 Sg � fxg:

The reverse inclusion is trivial. The measurability of all singletonsfxg follows from the measura-
bility of Sx :=

S
ifS 2 Si : S \ fxg = �g and the fact thatfxg = X � Sx.

We shall use Lemma 7 together with the following result to show that we can approximate
expectations of certain random variables using a single sample path of the Markov chain.

Lemma 8. Let(X;B) be a measurable space satisfying the conditions of Lemma 7, and letS1;S2; : : :
be a suitable sequence of partitions as in that lemma. Let� be a probability measure defined on this
space. Letf be an absolutely integrable function onX. For an eventS, define

f(S) =

R
S f d�

�(S)
:

For eachx 2 X andk = 1; 2; : : :, let Sk(x) be the unique element ofSk containingx. Then for
almost allx in X,

lim
k!1

f(Sk(x)) = f(x):

Proof. Clearly, the signed finite measure� defined by

�(E) =

Z
E
fd� (42)

is absolutely continuous with respect to�, and Equation (42) definesf as the Radon-Nikodym
derivative of� with respect to�. This derivative can also be defined as

d�

d�
(x) = lim

k!1

�(Sk(x))

�(Sk(x))
:

See, for example, (Shilov & Gurevich, 1966, Section 10.2). By the Radon-Nikodym Theorem (Dud-
ley, 1989, Theorem 5.5.4, p. 134), these two expressions are equal a.e. (�).

Proof. (Theorem 6.)From the definitions,

r�� = �0rPJ�

=

nX
i=1

nX
j=1

�(i)rpij(�)J�(j): (43)

For everyy, � is absolutely continuous with respect to the reference measure�, hence for anyi and
j we can write

pij(�) =

Z
Y

Z
U
pij(u)

d�(�; y)

d�
(u) d�(u) d�(i)(y):
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Since� and� do not depend on� andd�(�; y)=d� is absolutely integrable, we can differentiate
under the integral to obtain

rpij(�) =
Z
Y

Z
U
pij(u)rd�(�; y)

d�
(u) d�(u) d�(i)(y):

To avoid cluttering the notation, we shall use� to denote the distribution�(�; y) on U , and� to
denote the distribution�(i) onY. With this notation, we have

rpij(�) =
Z
Y

Z
U
pij

rd�
d�
d�
d�

d� d�:

Now, let� be the probability measure onY � U generated by� and�. We can write (43) as

r�� =
X
i;j

�(i)J�(j)

Z
Y�U

pij
rd�

d�
d�
d�

d�:

Using the notation of Lemma 8, we define

pij(S) =

R
S pij d�

�(S)
;

r(S) =
1

�(S)

Z
S

rd�
d�
d�
d�

d�;

for a measurable setS � Y � U . Notice that, for a giveni, j, andS,

pij(S) = Pr (Xt+1 = j jXt = i; (y; u) 2 S )

r(S) = E

 
rd�

d�
d�
d�

�����Xt = i; (Yt; Ut) 2 S

!
:

Let S1;S2; : : : be a sequence of partitions ofY � U as in Lemma 7, and letSk(y; u) denote the
element ofSk containing(y; u). Using Lemma 8, we have

Z
Y�U

pij
rd�

d�
d�
d�

d� =

Z
Y�U

lim
k!1

pij (Sk(y; u)) r (Sk(y; u)) d�(y; u)

= lim
k!1

X
S2Sk

Z
S
pij(S)r(S) d�;
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where we have used Assumption 6 and the Lebesgue dominated convergence theorem to interchange
the integral and the limit. Hence,

r�� = lim
k!1

X
i;j

X
S2Sk

�(i)�(S)pij(S)J�(j)r(S)

= lim
k!1

X
i;j;S

Pr(Xt = i) Pr((Yt; Ut) 2 S) Pr (Xt+1 = j jXt = i; (Yt; Ut) 2 S )

E (J(t+ 1)jXt+1 = j)E

 
rd�

d�
d�
d�

�����Xt = i; (Yt; Ut) 2 S

!

= lim
k!1

X
i;j;S

E

"
�i(Xt)�S(Yt; Ut)�j(Xt+1)J(t+ 1)

rd�
d�
d�
d�

#
;

where probabilities and expectations are with respect to the stationary distribution� of Xt, and the
distributions onYt; Ut. Now, the random process inside the expectation is asymptotically stationary
and ergodic. From the ergodic theorem, we have (almost surely)

r�� = lim
k!1

lim
T!1

1

T

X
i;j;S

T�1X
t=0

�i(Xt)�S(Yt; Ut)�j(Xt+1)J(t+ 1)
rd�

d�
d�
d�

:

It is easy to see that the double limit also exists when the order is reversed, so

r�� = lim
T!1

1

T

T�1X
t=0

lim
k!1

X
i;j;S

�i(Xt)�S(Yt; Ut)�j(Xt+1)J(t+ 1)
rd�

d�
d�
d�

= lim
T!1

1

T

T�1X
t=0

rd�(�;Yt)
d� (Ut)

d�(�;Yt)
d� (Ut)

J(t+ 1):

The same argument as in the proof of Theorem 4 shows that the tails ofJ(t + 1) can be ignored
when �����r

d�(�;Yt)
d� (Ut)

d�(�;Yt)
d� (Ut)

�����
andjr(Xt)j are uniformly bounded. It follows that�T ! �0rPJ� w.p.1, as required.
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