
Algorithms in the Real World (15-853), Fall 04
Assignment #4

Due December 1. Do 5 of the 6 problems.

Problem 1: 10pt
Recall that in the preprocessing step of the KMP algorithm for string matching, we compute values
l(i) for a string S. In the following we assume sequences are indexed starting at 1. l(i) is defined
to be 1 plus the length of the longest suffix of S[2..i − 1] that matches a prefix of S. We define
l(1) = 0.
For example, for the string abcadabd, l is given by (0, 1, 1, 1, 2, 1, 2, 3).
The following is incomplete code for computing l(i). The variable i tracks the current position for
which we are computing l(i). j tracks the position of the character that we match against i − 1.
Fill in the two missing lines.

l[1] = 0;
j = 0;
for (i = 2; i <= n; i++) {

while ((j > 0) && (s[i-1] != s[j]))
j = _________ ;

j = j + 1;
l[i] = _________ ;

}

Argue (briefly and cleanly) that the total number of iterations of the while loop across all iterations
of the for loop is bounded by n. The runtime of the routine is hence O(n).

Problem 2: 10pt
Given two strings S1 and S2 and a text T , you want to find whether there is an occurrence of S1

and S2 interwoven in T , possibly with spaces. For example, the strings abac and bbc occur inter-
woven in cabcbabcca. Give an efficient algorithm for this problem (i.e. one that is polynomial
in the size of the inputs).

Problem 3: 10pt
Consider the following gap model – each insertion or deletion costs a unit. However, if there are
more than k consecutive insertions, or k consecutive deletions, they cost only k units. Give an
algorithm that finds the minimum edit distance under this cost model in time O(nm). Note that
the time should not depend on k. (Do not worry about space efficiency).

Problem 4: 10pt
The shortest superstring problem is the problem of finding the shortest string that contains all given
strings as its substrings. Formally, given a set of m strings S1, · · · , Sm, find the shortest string T

such that each Si is a substring of T .
Reduce this problem to a Traveling Salesman Problem. The reduction needs to take polynomial
time (in n =

∑
m

i=1 |Si|). For extra credit prove that the shortest superstring problem is NP-hard.

1



Problem 5: 10pt
The main heuristic behind FAST and BLAST is that of finding small exact matches and using
them to compose larger approximate matches. This heuristic is partially justified by the following
lemma.

Lemma 1 Suppose that a1, . . . , at and b1, . . . , bt can be aligned with at most l mismatches (i.e.,
a′

i
6= b′

i
), then for k ≤ b t

l+1
c, a1, . . . , at and b1, . . . , bt share at least t − (l + 1)k + 1 k-tuples

(possibly overlapping).

Prove the lemma, and show how it can be used to rapidly search all sequences in a database which
can be aligned with a given query.

Problem 6: 10pt
Describe how Hirshberg’s linear space algorithm can be used for local alignment if all you care
about is the one alignment with maximum score.

2


