
1

15-853 Page1

15-853:Algorithms in the Real World

Error Correcting Codes II

– Cyclic Codes

– Reed-Solomon Codes

15-853 Page2

Viewing Messages as Polynomials

A (n, k, n-k+1) code:
Consider the polynomial of degree k-1

p(x) = ak-1 x
k-1 + + a1 x + a0

Message: (ak-1, …, a1, a0)
Codeword: (p(1), p(2), …, p(n))

To keep the p(i) fixed size, we use ai GF(pr)
To make the i distinct, n < pr

Unisolvence Theorem: Any subset of size k of (p(1),
p(2), …, p(n)) is enough to (uniquely) reconstruct
p(x) using polynomial interpolation, e.g., LaGrange’s
Formula.

15-853 Page3

Polynomial-Based Code

A (n, k, 2s +1) code:

k 2s

Can detect 2s errors

Can correct s errors

Generally can correct erasures and errors if
 + 2 2s

n

15-853 Page4

Correcting Errors

Correcting s errors:

1. Find k + s symbols that agree on a polynomial p(x).
These must exist since originally k + 2s symbols
agreed and only s are in error

2. There are no k + s symbols that agree on the
wrong polynomial p’(x)

- Any subset of k symbols will define p’(x)

- Since at most s out of the k+s symbols are in
error, p’(x) = p(x)

2

15-853 Page5

A Systematic Code

Systematic polynomial-based code

p(x) = ak-1 x
k-1 + + a1 x + a0

Message: (ak-1, …, a1, a0)

Codeword: (ak-1, …, a1, a0, p(1), p(2), …, p(2s))

This has the advantage that if we know there are no
errors, it is trivial to decode.

The version of RS used in practice uses something
slightly different than p(1), p(2), …

This will allow us to use the “Parity Check” ideas
from linear codes (i.e., HcT = 0?) to quickly test
for errors.

15-853 Page6

Reed-Solomon Codes in the Real World

(204,188,17)256 : ITU J.83(A)2

(128,122,7)256 : ITU J.83(B)
(255,223,33)256 : Common in Practice

– Note that they are all byte based
(i.e., symbols are from GF(28)).

Decoding rate on 1.8GHz Pentium 4:
– (255,251) = 89Mbps
– (255,223) = 18Mbps

Dozens of companies sell hardware cores that
operate 10x faster (or more)
– (204,188) = 320Mbps (Altera decoder)

15-853 Page7

Applications of Reed-Solomon Codes

• Storage: CDs, DVDs, “hard drives”,

• Wireless: Cell phones, wireless links

• Sateline and Space: TV, Mars rover, …

• Digital Television: DVD, MPEG2 layover

• High Speed Modems: ADSL, DSL, ..

Good at handling burst errors.

Other codes are better for random errors.

– e.g., Gallager codes, Turbo codes

15-853 Page8

RS and “burst” errors

They can both correct 1 error, but not 2 random errors.
– The Hamming code does this with fewer check bits

However, RS can fix 8 contiguous bit errors in one byte
– Much better than lower bound for 8 arbitrary errors

code bits check bits

RS (255, 253, 3)256 2040 16

Hamming (211-1, 211-11-1, 3)2 2047 11

Let’s compare to Hamming Codes (which are “optimal”).

3

15-853 Page9

Galois Field

GF(23) with irreducible polynomial: x3 + x + 1

 = x is a generator

 x 010 2
2 x2 100 3
3 x + 1 011 4
4 x2 + x 110 5
5 x2 + x + 1 111 6
6 x2 + 1 101 7
7 1 001 1

Will use this as an example.

15-853 Page10

Discrete Fourier Transform (DFT)
Another View of polynomial-based codes

 is a primitive nth root of unity (n = 1) – a generator

Inverse DFT:

Evaluate polynomial mk-1x
k-1 + + m1x + m0

at n distinct roots of unity, 1, , 2, 3, , n-1

15-853 Page11

DFT Example
= x is 7th root of unity in GF(23)/x3 + x + 1

(i.e., multiplicative group, which excludes additive inverse)

Recall = “2”, 2 = “3”, … , 7 = 1 = “1”

Should be clear that c = T • (m0,m1,…,mk-1,0,…)T
is the same as evaluating p(x) = m0 + m1x + … + mk-1x

k-1
at n points.

15-853 Page12

4

function fft(a,w,add,mult) =

if #a == 1 then return a

Else

 w’ = [w0,w2,…,wn-1]

 e = fft([a0,a2,…,an-2],w’)

 o = fft([a1,a3,...,an-1],w’)

 return [e0+o0w0, e1+o1w1,…,en/2-1+on/2-1wn/2-1,
 e0+o0wn/2, e1+o1wn/2+1,…, en/2-1+on/2-1wn-1]

15-853 Page13 15-853 Page14

Decoding

Why is it hard?

Brute Force: try k+2s choose k + s possibilities and
solve for each.

15-853 Page29

Efficient Decoding

I don’t plan to go into the Reed-Solomon decoding
algorithm, other than to mention the steps.

Syndrome
Calculator

Error
Polynomial

Berlekamp
Massy

Error
Locations

Chien
Search

Error
Magnitudes

Forney
Algorithm

Error
Corrector

c m

This is the hard part. CD players
use this algorithm.
(Can also use Euclid’s algorithm.)

