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15-853:Algorithms in the Real World 

Error Correcting Codes II 

– Cyclic Codes 

– Reed-Solomon Codes 
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Viewing Messages as Polynomials 

A (n, k, n-k+1) code: 
Consider the polynomial of degree k-1 

p(x) = ak-1 x
k-1 +  + a1 x + a0 

Message:  (ak-1, …, a1, a0)  
Codeword: (p(1), p(2), …, p(n)) 

To keep the p(i) fixed size, we use ai  GF(pr) 
To make the i distinct,  n < pr 

Unisolvence Theorem:  Any subset of size k of (p(1), 
p(2), …, p(n)) is enough to (uniquely) reconstruct 
p(x) using polynomial interpolation, e.g., LaGrange’s 
Formula. 
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Polynomial-Based Code 

A (n, k, 2s +1) code: 

k 2s 

Can detect 2s errors 

Can correct s errors 

Generally can correct  erasures and  errors if  
 + 2   2s 

n 
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Correcting Errors 

Correcting s errors: 

1. Find k + s symbols that agree on a polynomial p(x). 
These must exist since originally k + 2s symbols 
agreed and only s are in error 

2. There are no k + s symbols that agree on the 
wrong polynomial p’(x) 

- Any subset of k symbols will define p’(x) 

- Since at most s out of the k+s symbols are in 
error, p’(x) = p(x) 
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A Systematic Code 

Systematic polynomial-based code  

p(x) = ak-1 x
k-1 +  + a1 x + a0 

Message:  (ak-1, …, a1, a0)  

Codeword: (ak-1, …, a1, a0, p(1), p(2), …, p(2s)) 

This has the advantage that if we know there are no 
errors, it is trivial to decode. 

The version of RS used in practice uses something 
slightly different than p(1), p(2), … 

This will allow us to use the “Parity Check” ideas 
from linear codes (i.e., HcT = 0?) to quickly test 
for errors. 
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Reed-Solomon Codes in the Real World 

(204,188,17)256  : ITU J.83(A)2 

(128,122,7)256 : ITU J.83(B) 
(255,223,33)256 : Common in Practice 

– Note that they are all byte based  
(i.e., symbols are from GF(28)). 

Decoding rate on 1.8GHz Pentium 4: 
– (255,251) = 89Mbps 
– (255,223) = 18Mbps 

Dozens of companies sell hardware cores that 
operate 10x faster (or more) 
–  (204,188) = 320Mbps (Altera decoder) 
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Applications of Reed-Solomon Codes 

• Storage: CDs, DVDs, “hard drives”, 

• Wireless: Cell phones, wireless links 

• Sateline and Space: TV, Mars rover, … 

• Digital Television: DVD, MPEG2 layover 

• High Speed Modems: ADSL, DSL, .. 

Good at handling burst errors. 

Other codes are better for random errors. 

– e.g., Gallager codes, Turbo codes 
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RS and “burst” errors 

They can both correct 1 error, but not 2 random errors. 
– The Hamming code does this with fewer check bits 

However, RS can fix 8 contiguous bit errors in one byte 
– Much better than lower bound for 8 arbitrary errors 

code bits check bits 

RS (255, 253, 3)256 2040 16 

Hamming (211-1, 211-11-1, 3)2 2047 11 

Let’s compare to Hamming Codes (which are “optimal”). 
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Galois Field 

GF(23) with irreducible polynomial: x3 + x + 1 

 = x is a generator 

 x 010 2 
2 x2 100 3 
3 x + 1 011 4 
4 x2 + x 110 5 
5 x2 + x + 1 111 6 
6 x2 + 1 101 7 
7 1 001 1 

Will use this as an example. 
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Discrete Fourier Transform (DFT) 
Another View of polynomial-based codes 

 is a primitive nth root of unity ( n = 1) – a generator 

Inverse DFT: 

Evaluate polynomial mk-1x
k-1 +  + m1x + m0 

at n distinct roots of unity, 1, , 2, 3, , n-1 
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DFT Example 
= x is 7th root of unity in GF(23)/x3 + x + 1 

(i.e., multiplicative group, which excludes additive inverse) 

Recall  = “2”, 2 = “3”, … , 7 = 1 = “1” 

Should be clear that c = T • (m0,m1,…,mk-1,0,…)T  
is the same as evaluating p(x) = m0 + m1x + … + mk-1x

k-1  
at n points. 
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function fft(a,w,add,mult) = 

if #a == 1 then return a 

Else 

  w’ = [w0,w2,…,wn-1] 

  e = fft([a0,a2,…,an-2],w’) 

  o = fft([a1,a3,...,an-1],w’) 

  return [e0+o0w0, e1+o1w1,…,en/2-1+on/2-1wn/2-1, 
          e0+o0wn/2, e1+o1wn/2+1,…, en/2-1+on/2-1wn-1] 
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Decoding 

Why is it hard? 

Brute Force: try  k+2s choose k + s possibilities and 
solve for each. 
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Efficient Decoding 

I don’t plan to go into the Reed-Solomon decoding 
algorithm, other than to mention the steps. 

Syndrome 
Calculator 

Error 
Polynomial 

Berlekamp 
Massy 

Error 
Locations 

Chien 
Search 

Error  
Magnitudes 

Forney 
Algorithm 

Error 
Corrector 

c m 

This is the hard part.  CD players 
use this algorithm. 
(Can also use Euclid’s algorithm.) 


