

Viewing Messages as Polynomials

 $\begin{array}{l} A \ (n, k, n-k+1) \ code: \\ Consider \ the \ polynomial \ of \ degree \ k-1 \\ p(x) = a_{k-1} \ x^{k-1} + \cdots + a_1 \ x + a_0 \\ \underline{Message}: \ (a_{k-1}, \ \ldots, \ a_1, \ a_0) \\ \underline{Codeword}: \ (p(1), \ p(2), \ \ldots, \ p(n)) \\ To \ keep \ the \ p(i) \ fixed \ size, \ we \ use \ a_i \in GF(p^r) \\ To \ make \ the \ i \ distinct, \ n < p^r \end{array}$

Unisolvence Theorem: Any subset of size k of (p(1), p(2), ..., p(n)) is enough to (uniquely) reconstruct p(x) using polynomial interpolation, e.g., LaGrange's Formula.

15-853

Page2

Reed-Solomon Codes in the Real World

(204,188,17)₂₅₆ : ITU J.83(A)²
(128,122,7)₂₅₆ : ITU J.83(B)
(255,223,33)₂₅₆ : Common in Practice

Note that they are all byte based (i.e., symbols are from GF(2⁸)).

Decoding rate on 1.8GHz Pentium 4:

(255,251) = 89Mbps
(255,223) = 18Mbps

Dozens of companies sell hardware cores that operate 10x faster (or more)

(204,188) = 320Mbps (Altera decoder)

Page6

<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

RS and "burst" errors

15-853

Let's compare to Hamming Codes (which are "optimal").

	code bits	check bits
RS (255, 253, 3) ₂₅₆	2040	16
Hamming (2 ¹¹ -1, 2 ¹¹ -11-1, 3) ₂	2047	11

They can both correct 1 error, but not 2 random errors.

- The Hamming code does this with fewer check bits However, RS can fix 8 contiguous bit errors in one byte

15-853

- Much better than lower bound for 8 arbitrary errors

 $\log\left(1 + \binom{n}{1} + \dots + \binom{n}{8}\right) > 8\log(n-7) \approx 88 \text{ check bits}$

Page8

GF(2³ α = x) with ir is a gene	reducible p erator	olynomia	l: x ³ + x +	1
Γ	α	x	010	2	
[α ²	x ²	100	3	
[α ³	x + 1	011	4	
	α^4	x ² + x	110	5	
	α^5	x ² + x + 1	111	6	
	α6	x ² + 1	101	7	
	α7	1	001	1	
Will	use this	as an exam	ple.	!	1
			15-853		Pag

DFT Example $\alpha = x \text{ is } 7^{\text{th}} \text{ root of unity in } GF(2^3)/x^3 + x + 1$ (i.e., multiplicative group, which excludes additive inverse) Recall $\alpha = 2^{\circ}, \alpha^2 = 3^{\circ}, \dots, \alpha^7 = 1 = 1^{\circ}$				
$T = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 \\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & & & \\ 1 & \alpha^3 & \alpha^6 & & & & \\ 1 & \alpha^4 & \ddots & & & \\ 1 & \alpha^5 & & & & & \\ 1 & \alpha^6 & & & & & \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2^2 & 2^3 & 2^4 & 2^5 & 2^6 \\ 1 & 3 & 3^2 & 3^3 & & & \\ 1 & 4 & 4^2 & & & \\ 1 & 5 & \ddots & & & \\ 1 & 6 & & & & & \\ 1 & 7 & & & 7^6 \end{pmatrix}$				
Should be clear that $c = T \cdot (m_0, m_1, \dots, m_{k-1}, 0, \dots)^T$ is the same as evaluating $p(x) = m_0 + m_1 x + \dots + m_{k-1} x^{k-1}$ at n points. Page11				

