15-853:Algorithms in the Real World

String Searching I
- Tries, Patricia trees
- Suffix trees
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Exact string searching

Given a text T of length n and pattern P of length m

"Quickly” find an occurrence (or all occurrences) of P
inT

A Nadive solution:
Compare P with T[i...i+m] for all i --- O(nm) time

How about O(n+m) time? (Knuth Morris Pratt)

How about O(n) preprocessing time and
O(m) search time?
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Notation:
Capital letters for strings: A, B, S
Lower case letters for characters: a, b, c, x,y, ..
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TRIEs

Dictionary = {at, middle, miss, mist}
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TRIEs (searching)

Consider an alphabet 3, with |3] = k
Assume a total of n nodes in the trie.

Consider searching a string of length m to see if it is a
prefix of an element in the dictionary.

Search("mid",T)
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TRIEs (searching)

Consider an alphabet 3, with |3| = k
Total of n nodes in trie.

Consider searching a string of length m o see if it isa
prefix of an element in the dictionary.

Implementation choices:
- Array per node: O(nk) space, O(m) time search
- Tree per node: O(n) space, O(m log k) time search
- Hash children: O(n) space, O(m) time
can hash node pointer and child character

22
"‘i73 Table Lookup((22,e)) = 73
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PATRICIA Trees

PATRICIA: Practical Algorithm to Retrieve
Information Coded in Alphanumeric (1968)

Also called radix trees or compressed TRIEs
All nodes with single child are collapsed.

Dictionary = {at, middle, miss, mist}

Takes less space in practice

15-853 Page 7

Insertion

Inserting string S into a PATRICIA tfree
- Find longest common prefix
- Split edge if needed

- Add suffix Insert(“mote”,T)

Takes O(|S]) time
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Using Suffixes

If we want to search for any substring within a
string we can store all suffixes of the stringina
TRIE or PATRICIA tree.

S = mississippi
Dictionary =
{mississippi, ississippi, ssissippi, sissippi, issippi,
ssippi, sippi, ippi, ppi, pi, i}

Typically use special character ($) at the end of a
string to make sure every entry has its own leaf

15-853 Page 9

Suffix Trees

Patricia tree on all suffixes of a string.

S = "mississippi$"
mississippi$

ppi$ %

ssippi$ ssippi$
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Suffix Tree Space

How do we store a suffix tree in O(n) space?

mississippi$
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Suffix Tree Construction

Simple algorithm:
T = empty
fori=1ton

insert(S[i:n],T)

Takes O(n?) time.
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Suffix Tree Construction

mississippi$
mississippi$
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Suffix Tree Construction

ississippi$ o
mississippi$
ississippi
@)
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Suffix Tree Construction

ssissippi$
mississippi$
ississippi$— < ;sissippi$
©)

15-853 Page 15

Suffix Tree Construction

sissippi$
PP mississippi$
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Suffix Tree Construction

issippi$
PP mississippi$

ississippi

sissippi$

When we look up "issi" can we make looking up "ssi"
for the next step cheaper?
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Suffix Tree Construction

issippi$
PP mississippi$

ississippi

When we previously “looked up” “issi"
W W

iiii ppi$ didn't we then also look up "ssi", "si", "s"
— on later steps

——
15-853 Page 18

Suffix Links

For every internal node for a string "aS", keep a
pointer to the node for "S"

Why must it exist?

. mississippi$ o
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Suffix Links

For every internal node for a string "aS", keep a
pointer to the node for "S"

Why must it exist?

. mississippi$ o
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Suffix Links

Now if I have found "“issi” finding "ssi" is easy, and
then finding "si".

. mississippi$ o
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Suffix Tree Construction

mississippi$
insert  search
finger finger
0] ()

mississippi$

sissippi$
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Suffix Tree Construction

mississippi$
t t
I i J
Algorithm:
Repeat from i = 1 untili==n
1. Search from S[i:j-1] incrementing j until no match.
i.e. found S[i:j-1] in tree but not Sli:j]
2. If search is in the middle of an edge:
Then split edge at S[i:j-1] and add suffix S[j:n]
Else add new child to S[i:j-1] with suffix S[j:n]
3. Use parent’s suffix link to find S[i+1:j-1] and split edge here if
not already split.
4. TIf split edge in 2, add suffix link from S[i:j-1] to S[i+1:j-1]
5. i=i+1
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Almost Correct Analysis

Each increment of j takes O(1) time
- Just search one more character

Each increment of i takes O(1) time
- Just follow suffix link

Total time is O(n) since i and j are each incremented
O(n) times.

What is wrong?
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Suffix Tree Construction

mississippi$
t t

Algorithm: ! J
Repeat from i =1untili==n
1. Search from S[i:j-1] incrementing j until no match.
i.e. found S[i:j-1] in tree but not Sli:j]
2. If search is in the middle of an edge:
Then split edge at S[i:j-1] and add suffix S[j:n]
Else add new child to S[i:j-1] with suffix S[j:n]
3. Use parent's suffix link to find S[i+1:j-1] and split edge here if
not already split.
4. If split edge in 2, add suffix link from S[i:j-1] to S[i+1:j-1]
5. i=zi+1

15-853 Page 25

Following Suffix Links

1. Go to parent of edge that is being split
S[itk] for somei=<k<j
2. Follow link to S[i+1:k]
3. Search down for S[i+1:j-1]
This step might not be O(1) time
4. Now k = j (charge searching to incrementing k)
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Following Suffix Links

1. Go to parent of edge that is being split
S[itk] for someis<ks=j

2. Follow link to S[i+1:k]

3. Search down for S[i+1:j-1]
This step might not be O(1) time

A aA S[i:j]1= aAbcdBe
X — parent S[ik] = aA
. bedBf Sli+1:k] = A
d Edge being split
Re Suffixlink
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Following Suffix Links

Note that searching edge Be to find B takes
constant time even if B is long.

Why?
A aA S[i:j]1= aAbcdBe
— parent S[i:k] = aA
bcdBe S[i+l:k] = A
c
d Edge being split
Be Suffixlink
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The "Three Finger” Analysis

S=| |
t ot t
i ko

Note: there is no counter for k, it is the location

of the

next node up (inclusive) of S[i:j-1] in the search

Each increment of j takes O(1) time

Following suffix link to increment i takes O(1) time
Each “increment” of k to find S[i+1:j-1] takes O(1) time

TOTAL TIME = O(n)
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Suffix Tree Construction

mississippi$
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Suffix Tree Construction

mississippi$

mississippi$

issippi$ sissippi$
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Suffix Tree Construction

mississippi$

A\
ik J

mississippi$

ississippi

issippi$ sissippi$
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Suffix Tree Construction

mississippi$

N\
ik

mississippi$

issippi$ sissippi$
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Suffix Tree Construction

mississippi$

/N
ik J

mississippi$
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Suffix Tree Construction

mississippi$

mississippi$

issippi$ sissippi$
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Suffix Tree Construction

mississippi$

4

ik J

mississippi$

issippi$ sissippi$
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Suffix Tree Construction

mississippi$

/1

ik J

mississippi$

issippi$ sissippi$
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Suffix Tree Construction

mississippi$

/1A
k
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Suffix Tree Construction

mississippi$

VY
k

mississippi$

issippi$ sissippi$
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Suffix Tree Construction

mississippi$

VY
k
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Suffix Tree Construction

mississippi$

A\
ik J
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Suffix Tree Construction

mississippi$

4

ik J
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Summary

Really the only change over the ndive O(n?) algorithm
is the use of suffix links to speed up search when
inserting each suffix.

i.e. the key is linking S[i:j] to S[i+1:j] and just doing
this for internal nodes in the tree is sufficient.

Suffix trees have many applications beyond string
searching.
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Extending to multiple lists

Suppose we want to match a pattern with a
dictionary of k strings with a total length m.

Concatenate all the strings (interspersed with
special characters) and construct a common suffix
tree

Time taken = O(m + k)

Unnecessarily complicated free; needs special
characters
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Multiple lists - Better algorithm

First construct a suffix tree on the first string, then
insert suffixes of the second string and so on

Each leaf node should store values corresponding to
each string

O(m) as before
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Longest Common Substring

Find the longest string that is a substring of both S,
and S,

Construct a common suffix tree for both

Any node that has descendants labeled with S; and
S, indicates a common substring

The "deepest” such node is the required substring
Can be found in linear time by a tree traversal.
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Common substrings of M strings

Given M strings of total length n, find for every k,
the length |, of the longest string that is a
substring of at least k of the strings

Construct a common suffix tree labeling each leaf
with the string it came from

For every internal node, find the number of
distinctly labeled decendants

Report |, by a single tree traversal
O(Mn) time - not linear!
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Lempel-Ziv compression

Recall that at each stage, we output a pair (p;, |}) where
S[p; .. pi+li] = S[i .. i+l}]
Find all pairs (p;.l}) in linear time

Construct a suffix tree for S

Label each internal node with the minimum of labels of all
leaves below it - this is the first place in S where it
occurs. Call this label c,.

For every i, search for the string S[i .. m] stopping just
before c,.i. This gives us |, and p;.
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