15-853:Algorithms in the Real World

String Searching I
- Tries, Patricia trees
- Suffix trees

15-853 Page 1

Exact string searching

Given a text T of length n and pattern P of length m

"Quickly” find an occurrence (or all occurrences) of P
inT

A Nadive solution:
Compare P with T[i...i+m] for all i --- O(nm) time

How about O(n+m) time? (Knuth Morris Pratt)

How about O(n) preprocessing time and
O(m) search time?

15-853 Page 2

Notation:
Capital letters for strings: A, B, S
Lower case letters for characters: a, b, c, x,y, ..

15-853 Page 3

TRIEs

Dictionary = {at, middle, miss, mist}

15-853 Page 4

TRIEs (searching)

Consider an alphabet 3, with |3] = k
Assume a total of n nodes in the trie.

Consider searching a string of length m to see if it is a
prefix of an element in the dictionary.

Search("mid",T)

15-853 Page 5

TRIEs (searching)

Consider an alphabet 3, with |3| = k
Total of n nodes in trie.

Consider searching a string of length m o see if it isa
prefix of an element in the dictionary.

Implementation choices:
- Array per node: O(nk) space, O(m) time search
- Tree per node: O(n) space, O(m log k) time search
- Hash children: O(n) space, O(m) time
can hash node pointer and child character

22
"‘i73 Table Lookup((22,e)) = 73

15-853 Page 6

PATRICIA Trees

PATRICIA: Practical Algorithm to Retrieve
Information Coded in Alphanumeric (1968)

Also called radix trees or compressed TRIEs
All nodes with single child are collapsed.

Dictionary = {at, middle, miss, mist}

Takes less space in practice

15-853 Page 7

Insertion

Inserting string S into a PATRICIA tfree
- Find longest common prefix
- Split edge if needed

- Add suffix Insert(“mote”,T)

Takes O(|S]) time

15-853 Page 8

Using Suffixes

If we want to search for any substring within a
string we can store all suffixes of the stringina
TRIE or PATRICIA tree.

S = mississippi
Dictionary =
{mississippi, ississippi, ssissippi, sissippi, issippi,
ssippi, sippi, ippi, ppi, pi, i}

Typically use special character ($) at the end of a
string to make sure every entry has its own leaf

15-853 Page 9

Suffix Trees

Patricia tree on all suffixes of a string.

S = "mississippi$"
mississippi$

ppi$ %

ssippi$ ssippi$

15-853 Page 10

Suffix Tree Space

How do we store a suffix tree in O(n) space?

mississippi$

15-853 Page 11

Suffix Tree Construction

Simple algorithm:
T = empty
fori=1ton

insert(S[i:n],T)

Takes O(n?) time.

15-853 Page 12

Suffix Tree Construction

mississippi$
mississippi$

15-853 Page 13

Suffix Tree Construction

ississippi$ o
mississippi$
ississippi
@)
15-853 Page 14

Suffix Tree Construction

ssissippi$
mississippi$
ississippi$— < ;sissippi$
©)

15-853 Page 15

Suffix Tree Construction

sissippi$
PP mississippi$

15-853 Page 16

Suffix Tree Construction

issippi$
PP mississippi$

ississippi

sissippi$

When we look up "issi" can we make looking up "ssi"
for the next step cheaper?

15-853 Page 17

Suffix Tree Construction

issippi$
PP mississippi$

ississippi

When we previously “looked up” “issi"
W W

iiii ppi$ didn't we then also look up "ssi", "si", "s"
— on later steps

——
15-853 Page 18

Suffix Links

For every internal node for a string "aS", keep a
pointer to the node for "S"

Why must it exist?

. mississippi$ o

15-853 Page 19

Suffix Links

For every internal node for a string "aS", keep a
pointer to the node for "S"

Why must it exist?

. mississippi$ o

15-853 Page 20

Suffix Links

Now if I have found "“issi” finding "ssi" is easy, and
then finding "si".

. mississippi$ o

15-853 Page 21

Suffix Tree Construction

mississippi$
insert search
finger finger
0] ()

mississippi$

sissippi$

15-853 Page 22

Suffix Tree Construction

mississippi$
t t
I i J
Algorithm:
Repeat from i = 1 untili==n
1. Search from S[i:j-1] incrementing j until no match.
i.e. found S[i:j-1] in tree but not Sli:j]
2. If search is in the middle of an edge:
Then split edge at S[i:j-1] and add suffix S[j:n]
Else add new child to S[i:j-1] with suffix S[j:n]
3. Use parent’s suffix link to find S[i+1:j-1] and split edge here if
not already split.
4. TIf split edge in 2, add suffix link from S[i:j-1] to S[i+1:j-1]
5. i=i+1

15-853 Page 23

Almost Correct Analysis

Each increment of j takes O(1) time
- Just search one more character

Each increment of i takes O(1) time
- Just follow suffix link

Total time is O(n) since i and j are each incremented
O(n) times.

What is wrong?

15-853 Page 24

Suffix Tree Construction

mississippi$
t t

Algorithm: ! J
Repeat from i =1untili==n
1. Search from S[i:j-1] incrementing j until no match.
i.e. found S[i:j-1] in tree but not Sli:j]
2. If search is in the middle of an edge:
Then split edge at S[i:j-1] and add suffix S[j:n]
Else add new child to S[i:j-1] with suffix S[j:n]
3. Use parent's suffix link to find S[i+1:j-1] and split edge here if
not already split.
4. If split edge in 2, add suffix link from S[i:j-1] to S[i+1:j-1]
5. i=zi+1

15-853 Page 25

Following Suffix Links

1. Go to parent of edge that is being split
S[itk] for somei=<k<j
2. Follow link to S[i+1:k]
3. Search down for S[i+1:j-1]
This step might not be O(1) time
4. Now k = j (charge searching to incrementing k)

15-853 Page 26

Following Suffix Links

1. Go to parent of edge that is being split
S[itk] for someis<ks=j

2. Follow link to S[i+1:k]

3. Search down for S[i+1:j-1]
This step might not be O(1) time

A aA S[i:j]1= aAbcdBe
X — parent S[ik] = aA
. bedBf Sli+1:k] = A
d Edge being split
Re Suffixlink
15-853 Page 27

Following Suffix Links

Note that searching edge Be to find B takes
constant time even if B is long.

Why?
A aA S[i:j]1= aAbcdBe
— parent S[i:k] = aA
bcdBe S[i+l:k] = A
c
d Edge being split
Be Suffixlink

15-853 Page 28

The "Three Finger” Analysis

S=| |
t ot t
i ko

Note: there is no counter for k, it is the location

of the

next node up (inclusive) of S[i:j-1] in the search

Each increment of j takes O(1) time

Following suffix link to increment i takes O(1) time
Each “increment” of k to find S[i+1:j-1] takes O(1) time

TOTAL TIME = O(n)

15-853

Page 29

Suffix Tree Construction

mississippi$

15-853 Page 30

Suffix Tree Construction

mississippi$

mississippi$

issippi$ sissippi$

15-853

Page 31

Suffix Tree Construction

mississippi$

A\
ik J

mississippi$

ississippi

issippi$ sissippi$

15-853 Page 32

Suffix Tree Construction

mississippi$

N\
ik

mississippi$

issippi$ sissippi$

15-853 Page 33

Suffix Tree Construction

mississippi$

/N
ik J

mississippi$

15-853 Page 34

Suffix Tree Construction

mississippi$

mississippi$

issippi$ sissippi$

15-853 Page 35

Suffix Tree Construction

mississippi$

4

ik J

mississippi$

issippi$ sissippi$

15-853 Page 36

Suffix Tree Construction

mississippi$

/1

ik J

mississippi$

issippi$ sissippi$

15-853 Page 37

Suffix Tree Construction

mississippi$

/1A
k

15-853 Page 38

Suffix Tree Construction

mississippi$

VY
k

mississippi$

issippi$ sissippi$

15-853 Page 39

Suffix Tree Construction

mississippi$

VY
k

15-853 Page 40

10

Suffix Tree Construction

mississippi$

A\
ik J

15-853 Page 41

Suffix Tree Construction

mississippi$

4

ik J

15-853 Page 42

Summary

Really the only change over the ndive O(n?) algorithm
is the use of suffix links to speed up search when
inserting each suffix.

i.e. the key is linking S[i:j] to S[i+1:j] and just doing
this for internal nodes in the tree is sufficient.

Suffix trees have many applications beyond string
searching.

15-853 Page 43

Extending to multiple lists

Suppose we want to match a pattern with a
dictionary of k strings with a total length m.

Concatenate all the strings (interspersed with
special characters) and construct a common suffix
tree

Time taken = O(m + k)

Unnecessarily complicated free; needs special
characters

15-853 Page 44

11

Multiple lists - Better algorithm

First construct a suffix tree on the first string, then
insert suffixes of the second string and so on

Each leaf node should store values corresponding to
each string

O(m) as before

15-853 Page 45

Longest Common Substring

Find the longest string that is a substring of both S,
and S,

Construct a common suffix tree for both

Any node that has descendants labeled with S; and
S, indicates a common substring

The "deepest” such node is the required substring
Can be found in linear time by a tree traversal.

15-853 Page 46

Common substrings of M strings

Given M strings of total length n, find for every k,
the length |, of the longest string that is a
substring of at least k of the strings

Construct a common suffix tree labeling each leaf
with the string it came from

For every internal node, find the number of
distinctly labeled decendants

Report |, by a single tree traversal
O(Mn) time - not linear!

15-853 Page 47

Lempel-Ziv compression

Recall that at each stage, we output a pair (p;, |}) where
S[p; .. pi+li] = S[i .. i+l}]
Find all pairs (p;.l}) in linear time

Construct a suffix tree for S

Label each internal node with the minimum of labels of all
leaves below it - this is the first place in S where it
occurs. Call this label c,.

For every i, search for the string S[i .. m] stopping just
before c,.i. This gives us |, and p;.

15-853 Page 48

12

