
Algorithms and Applications (15-499) Solutions for Assignment # 4

Problem 1

The missing lines are j = l[j] and l[i] = j.
In the i-th iteration, we already know that S[i− l[i−1] · · · i−2] matches with S[1 · · · l[i−1]−1].

We start with j = l[i−1]. If S[j] = S[i−1], then we know that l[i] = j+1 because S[i−j · · · i−1] =
S[1 · · · j]. Otherwise, we need to search for a smaller prefix that matches a suffix of S[1 · · · i − 1].
Now, the next smaller prefix that matches a suffix of s[1 · · · i − 2] is s[1 · · · l[j] − 1], because the
latter matches a suffix of s[1 · · · j − 1]. Thus we set j = l[j] and repeat the whole process. So, the
missing statement in the while loop is j = l[j], and the other missing statement should be l[i] = j.

In each iteration of the while loop, the value of j decreases by at least 1, because l[j] is strictly
less than j by definition. Moreover, in the entire algorithm, j gets incremented only n times - once
in each iteration. Since the value of j never goes below 0 , this implies that the while loop is used
at most n times across all iterations of the for loop.

Problem 2

A treap is created by assigning random priorities to nodes in the tree. Number the nodes of the
binary tree in in-order. Then, in order for a corresponding treap to be isomorphic to the tree T , the
random priorities should be selected such that the priority assigned to every node is the maximum
among priorities of all nodes in the subtree rooted at it.

Now, we can prove the statement by induction on the depth of the tree. The base case of n = 1
is simple. The tree is the single node, and the corresponding treap is isomorphic to this node with
probability 1.

Consider the inductive step. Let the number of nodes in the tree be s, and the number of
nodes in the left and right subtrees be TL and TR respectively. Then, the corresponding treap is
isomorphic to this tree if and only if the root gets maximum priority among all the s nodes, and
the treaps corresponding to the left and right subtrees are isomorphic to the respective subtrees.
The first happens with probability 1

s
. From the inductive hypothesis, we have that the other two

happen with probability
∏

i∈TL

1

si
and

∏
i∈TR

1

si
respectively.

The three are independent events. Thus we get that the treap is isomorphic to T with probability
1

s

∏
i∈TL

1

si

∏
i∈TR

1

si
=

∏
i∈T

1

si
.

Problem 3

In order to support queries on incoming and outgoing links, as explained in class, we set up a
document by document matrix, that contains the following entries. Lij = 1 if document i points
to document j, and 0 otherwise. Then, we set up a document by term matrix with entries Wij = 1
if document i contains term j and 0 otherwise.

Now, the matrix M obtained by appending L, LT and W is an m by 2m+n matrix that contains
information about incoming and outgoing links and terms in documents. We can now perform a
“truncated” SVD of this matrix by computing Mk = UkΣkV

T
k , the closest matrix of rank k to M .

The query is computed by simply constructing the corresponding matrix for documents in the set
S.

1


