Beyond the Horizon: A Call to Arms

Jeannette M. Wing
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

October 3, 2003

1 Introduction

This article is a call to arms to the research community. Today’s attacks exploit code-
level flaws such as buffer overruns and type invalid input. I would like the attention of
the research community to turn to tomorrow’s attacks—to think beyond buffer overruns,
beyond the level of code, beyond the horizon.

There are three reasons I make this call. First, while we will continue in the future to
see today’s kinds of code-level attacks, in principle we have the technology for fending them,
either by applying static and dynamic analysis tools or by coding in type-safe programming
languages. Thus, we have the technical solutions in hand to detect or prevent these attacks;
it is a “mere” matter of deploying them—in an effective, scalable, and practical way.

Second, the trends monitored by security watchdog organizations such as SEI/CERT,
MITRE/CVE, and Symantec suggest that attacks are getting more sophisticated. As we get
better at protecting our systems the enemy gets better at attacking them. This trend will
likely escalate since industry and government both have highlighted the growing importance
of security (e.g., Microsoft’s Trustworthy Computing Initiative and the creation of the
Department of Homeland Defense). Thus, we should be anticipating today what the buffer
overrun of tomorrow will be.

Finally, prevention is the most efficient defense. It eliminates classes of attack from the
get-go. We need to raise the bar in our own efforts to deploy systems that are more secure
by design and more reliably implemented than those we know how to design and implement
today. We need to continue to push against the limitations, be they technical or not, of
the state of the art in securing our systems. Rather than be attacked and then react, let’s
avoid the vulnerabilities in the first place.

While it is easy to focus our attention on fixing today’s problems, it is up to the research
community to look beyond the horizon. The technology we are deploying for fixing problems
now, e.g., program analysis algorithms and strongly-typed programming languages, is based

!This matter is not to downplay the challenge in deploying technology. I simply want to distinguish
between having the basic science needed and not having it.



on research that started over two decades ago. What are we doing today that will make a
difference for tomorrow?

There is no silver bullet. My call to arms is not just to experienced security researchers
to keep up their relentless efforts, but also to researchers whose experience and expertise
is not in security. I imagine sprinkling researchers in all areas of computer science and
related disciplines with some “security fairy dust.” We all need to share the responsibility
of making our systems secure; we cannot “leave it to the security guys,” especially not after
the fact; we know it is better to design and build with security in mind rather than to add it
in as an afterthought. Also, as with much research, technological breakthroughs will likely
come from those who can bring different and fresh perspectives to the table.

Below I outline a few suggestions for important research directions: software design,
usability, and privacy. For the first two, if we can make any progress, we have the potential
of having a high impact. I highlight the third research direction because I think it deserves
more attention from the scientific and technical communities, to complement the attention
it already receives from the policy and legal communities. Because of my own background
in software engineering, I will elaborate on the first research direction more than the other
two, but I believe all three deserve equal attention.

By no means should my highlighting these three areas suggest that they are the only
important ones. My appeal for help is to the entire research community, in all areas of
computer science and related disciplines.

2 Software Design and Security

My first call to arms is to the software engineering community. We need to revisit all phases
of the software lifecyle with security in mind: requirements, design, testing, validation,
measurement, and maintenence. I will limit my remarks here primarily to software design.

Looking at software design and security together has two potential benefits. First,
the security community will benefit from studying attacks at the design and architectural
levels of a system, not just the code level. Second, the software engineering community
will benefit since coming up with generic “design” principles (e.g., to evaluate when one
design is better than another) often yields results that are too abstract; however, coming
up with rules specifically for security has more likelihood of yielding results that can be
operationalized, and hence used in practice. Moreover, we may be able to apply variations
or generalizations of these specific rules to other non-functional properties.

2.1 Toward Compositional Security

Tomorrow’s attacks will exploit vulnerabilities at the design and architectural levels of
software, not just the data structure and procedure call level. Design or architectural mis-
matches are vulnerabilities that are potential weaknesses to exploit. Often these mismatches
are between a component and its operating environment, e.g., because the component makes
assumptions that are stronger than what the environment can uphold.



An old, but canonical example of an exploitable design vulnerability is the Domain
Name Service spoofing attack. The system component in question is the browser, which
operates in the environment of the DNS infrastructue. To enforce the policy that an applet
connect to the same server from which it originated the Netscape browser’s original check
used two DNS lookups on names. Let n2a be the many-to-many relation that maps names
to ip addresses, X be the name of the server from which the applet originated, and Y be
the name of the server to which the applet wishes to connect. If the lookup on both names
yields a nonempty intersection of ip addresses then the assumption is that X and Y are
“the same server” and we allow the connection. More succinctly,

if n2a(X)Nn2a(Y) #0
then 3z € n2a(X)3Jy € n2a(Y) such that connect(z, y).

The problem is that we establish a connection with any one of the ip addresses z in n2a(X);
thus, we could very well be connecting to a victim ip address that is in n2a(X) but does
not correspond to the actual originating server. The design vulnerability is that Netscape’s
intersection check is too weak: the existence of a non-empty intersection says nothing about
the machines z and y used in the actual connection; in particular, z € n2a(X) does not
imply z € n2a(X) N n2a(Y). The Netscape fix, by storing the actual ip address, 4, of
the originating server, eliminates the first lookup and changes the intersection check to a
membership check, 7 € n2a(Y), which if successful ensures that we connect to the originating
server.

The point is that the vulnerability occurs above the level of code: the check was correctly
implemented as specified. While the burden to patch the vulnerability was on Netscape,
we could also blame the architecture of the DNS infrastructure: it is too easy for someone
to run his or her own domain name resolver; it is too easy for the server with name n to
associate false n2a bindings for n to arbitrary ip addresses; it is too liberal, though arguably
needed for flexibility, to have n2a be a relation rather than a many-to-one function. We
could also blame Netscape for its design decision in using an erroneous weak intersection
check. Or, we could blame the ambiguity of the specification itself (what does “same server”
mean: same name or same ip address?).

A different kind of compositional attack is a collection several legitimate acts which
when combined together results in emergent abusive behavior. Even a single legitimate act
multiplied many times over, on the scale of the Internet, can turn into a malicious act. A
prevalent, simplistic example is a denial-of-service attack. Sending a packet to a host is
perfectly legitimate; it is the basis of communication. A multiplicity of sends can result in
flooding the receiving host, which then shuts down, denying any further service. Moreover,
multiplying this attack across a range of recipient hosts yields a simple distributed denial-
of-service attack. Trends reported by CERT show that denial-of-service attacks are on the
rise and already have overtaken buffer overrun attacks in number. Another simple example
of emergent abusive behavior is spam: the single legitimate behavior of sending an email
message multiplied many times over results in abusive behavior. A third example is making
repeated queries on small data sets. A slightly more sophisticated version of this class of



attack is to use the reach of trusted third parties such as Google, Amazon, or ebay to to gain
a multiplicative factor. These kinds of attacks are hard to define, let alone detect, because
it is not clear how many is too many; moreover, they can be subjective—what is spam to one
person may be perfectly acceptable to someone else. They can be costly to recover from,
especially if the good name of trusted third parties is involved. In the extreme, they can
cause people to forsake the benefits of a useful service to avoid potential annoyances. We
should expect to see more and more of this kind of attack in the future; we are at the tip
of the iceberg now.

Here is a general framework in which to study the problem of compositional security.
Let M; ... M, be n possibly different components, “+” be a composition operator, = be
a satisfies relation, and ¢ be some desired security property. Ideally, we would like the
following implication to hold:

MiEA)...AMyEd= M +...+M,E=¢

which says that if each component M; for 1 < ¢ < n satisfies a given property ¢ then the
composition of the n components also satisfies that property. A vulnerability arises if the
interfaces between any two components do not match; that is, the two components do not
compose according to the meaning of composition (+), e.g., an assumption made by one is
not discharged by the other. Emergent abusive behavior arises if n grows too large (and
presumably ¢ captures what “too large” means). What we need to understand are what
we can vary or relax in the formula above: different notions of composition (+), different
notions of satisfies (=), and different kinds of properties (¢). For example, fixing the first
two (4 and |=), we can ask for what kind of property does the formula hold? Or fixing the
second two (= and ¢), we can ask for what relaxed notion of composition can we guarantee
the given property holds in the composed system?

This suggested framework intentionally does not fix what a component is. It can be
small, e.g, a procedure or class, or more relevantly, large, e.g., a browser or database. It
can be static, e.g., a class interface, or dynamic, e.g., the execution of a procedure.

The challenge in achieving compositional security is that security is a global property,
yet the only way we know how to build big systems is to put smaller pieces together. When
we put small pieces together it is hard to predict the consequences of their composition.
Thus, we need to have ways that allow us to model, predict, and evaluate what effect putting
components together has on the security of the composed system.

2.2 Toward Security Design Principles

To increase the relative security of Windows Server 2003 with respect to its predecessors,
Microsoft developers abided by many design principles. The inspiration for many of these
principles, such as Defense in Depth and Principle of Least Privilege, comes from the security
community.

To illustrate the benefits of applying security principles to software design, consider
the security vulnerability reported in the Microsoft Security Bulletin MS03-007. Windows



Server 2003 is unaffected by this vulnerability, whereas earlier versions of Windows are. The
underlying vulnerability is due to an unchecked buffer in a core operating system component,
ntddl.d1ll. One way to exploit the vulnerability is to send an ill-formed WebDAV request
to a IIS 5.0 web server and thereby gain control over the web server.? Windows Server 2003
was protected because of a series of design decisions made at different abstraction layers, as
shown in Figure 1. At the innermost layer, the developers made the code more conservative
by performing input validation checks. But even if they had not, at the next layer, IIS 6.0
in Windows Server 2003 (as opposed to IIS 5.0 in Windows 2000) does not run by default.
But even if it were running by default, IIS 6.0 does not run WebDAV by default. But even
it did, the ill-formed URL needed to exploit the unchecked buffer would have to be greater
than 64 KB and the maximum URL length allowed by IIS 6.0 is 16 KB by default. But
even if the buffer were large enough, the process would halt, rather than run the malicious
code, because developers compiled their source code with the -GS switch, which has the
effect of inserting compile-time code to make it difficult to exploit unchecked input (e.g.,
making it difficult to alter the return address). Finally, even if there were an exploitable
buffer overrun, the potential scope of damage would have been limited since the process
would be running with only “network service” privileges, which are more restrictive than
“admin” privileges. Overall, the example illustrates the Principle of Defense in Depth, by
applying at each abstraction layer other design rules such Secure by Default and Principle
of Least Privilege. Moreover, it also nicely illustrates the application of software design
principles, e.g., Check Precondition, in the security context; here, an implementer following
robust programming practice will not assume a precondition holds, but check it explicitly
in case the caller had not established it.

These security design principles are well-known for designing secure systems, e.g., where
to place firewalls and intrusion detection systems. My call to the software engineering
community is to revisit these principles in the design of secure software.

3 Usability

Security is only as strong as the system’s weakest link. More often than not that weakest
link involves the system’s interaction with a human being. Whether the problem is with
choosing good passwords, hard-to-use user interfaces, complicated system installation and
patch management procedures, or social engineering attacks, the human link will always be
present.

My next call to arms is to the human-computer interaction community. We need to
design user interfaces to make security both less obtrusive to and less intrusive on the user.
As computing devices become ubiquitous, we need to hide security from the user but still
provide user control where appropriate. How much of security should we and can we make
transparent to the user?

2WebDAV is a distributed author and versioning protocol extension to http, allowing authorized users to
add and manage content on the web server remotely.



‘ Potential Problem ‘ Protection Mechanism ‘ Design Principles

The underlying d11 (ntd11.d11) Code was made more conservative Check Precondition

was not vulnerable because during the Security Push.

Even if it were vulnerable . .. IIS 6.0 is not running by default Secure by Default
on Windows Server 2003.

Even if it were running . .. I1S 6.0 does not have WebDAV Secure by Default
enabled by default.

Even if WebDAV had been enabled ... | The maximum URL length in Tighten Precondition,
IIS 6.0 is 16KB by default Secure by Default
(> 64 KB needed for the exploit).

Even if the buffer were large enough ... | The process halts rather than Tighten Postcondition,
executes malicious code due to Check Precondition

buffer-overrun detection code
inserted by the compiler.

Even if there were an It would have occurred in w3wp.exe Least Privilege

exploitable buffer overrun ... which is running as “network service”
(rather than “admin”).

Figure 1: Secure by Design: Windows Server 2003 Unaffected by MS03-007. Example from
David Aucsmith.

We also need behavioral scientists to help the computer scientists. Technologists need
to design systems to reduce their susceptibility to social engineering attacks. Also, as the
number and nature of attackers change in the future, we need to understand the psychology
of the attacker: from script kiddies to well-financed, politically motivated adversaries. As
biometrics become commonplace, we need to understand whether and how they help or
hinder security (perhaps by introducing new social engineering attacks). Similarly, help or
hinder privacy?

This usability problem occurs at all levels of the system: at the top, users who are not
computer savvy but interact with computers for work or for fun; in the middle, users who
are computer savvy but do not and should not have the time or interest to twiddle with
settings; at the bottom, system administrators who have the unappreciated and scary task
of installing the latest security patch without being able to predict the consequence of doing
S0.

We need to make it possible for normal human beings to use our computing systems
easily, but securely.

4 Privacy

My last call to arms is to the technical community in general. Much past research in privacy
addresses non-technical questions. I believe that privacy is the next big area related to
security for technologists to tackle.



There is no consensus among technologists on what privacy is, when it is violated, etc.,
let alone among technologists, governments, and the general public. Computer scientists in
this area will need to interact with policymakers, legal experts, and behavioral and social
scientists to get a comprehensive scope of the issues. As scientists, we need to be able to
answer: What technical problems are possible, impossible, or impractical to solve? What
must or should we leave for law and public policy to solve?

One technical viewpoint is that preserving privacy means protecting people from unau-
thorized uses of information. Confidentiality, defined as unauthorized access to information,
is thus just a subcase of privacy. Technical work on privacy has focused primarily on ensur-
ing confidentiality by analyzing information flow, e.g., within a state machine model of a
system or among modules in a program. For example, we can annotate program variables
with sensitivity labels (e.g., non-personal, personal, and sensitive) and apply static analysis
techniques to determine information leaks (e.g., assigning a sensitive value to a non-personal
variable).

While this code level work is a promising step in the right direction I again would like
to raise grander questions for the broader technical community to address. I would like the
theoretical community to design provably correct protocols that preserve privacy for some
formal meaning of privacy, to devise models and logics for reasoning about privacy, to un-
derstand what is or is not impossible to achieve given a particular formal model of privacy,
to understand more fundamentally what the exact relationship is between privacy and secu-
rity, and to understand the role of anonymity in privacy (when is it inherently needed and
what is the tradeoff between anonymity and forensics). T would like the software engineer-
ing community to think about software architectures and design principles for privacy. I
would like the systems community to think about privacy when designing the next network
protocol, distributed database, or operating system. I would like the artificial intelligence
community to think about privacy when using machine learning to do data mining and
data fusion across disjoint databases. How do we prevent unauthorized reidentification of
people when doing traffic and data analysis? I would like to see researchers in biometrics,
embedded systems, robotics, sensor nets, ubiquitous computing, and vision address privacy
concerns along with the design of their next-generation systems.

As a concrete goal, I would like to see some equivalent of Lampson’s access matrix for
privacy. Once we have a formal structure that can help us think about privacy from a
scientific viewpoint, then we can design mechanisms and policies for privacy, just as we
do for security (narrowly defined). We need a characterization of the direct and hidden
relations among users, their data, their control over data, and their control over subsequent
release and subsequent use of their data. Moreover, these relations change over time.

As another concrete goal to relate policy with technology, I would like to see how privacy
policies of “fair information practices” (notice, choice, access, security, redress) can be
codified or checked in software.

Privacy is getting a lot of attention in the press because of Terrorism Information Aware-
ness (TIA), Computer Assisted Passenger Prescreening System (CAPPS II), Radio Fre-
quency Identification (RFID) tags, identity theft, etc.. It will become even more important



as computing becomes more ingrained in our daily lives. It will be at the heart of our
democratic society, if electronic voting is to be trusted by society. Thus, it is a timely
opportunity for scientists to step up to the technical challenges privacy raises.

5 Closing Remarks

I view the security problem as a race—between the good guys and the bad guys. The good
guys are almost always trying to catch up or stay even with the bad guys. The security
problem is not going to go away anytime soon; it has been with us since Day One of the
computing age and no amount of money thrown at it will make it completely disappear.
The problem is on our radar screen today because of increased demand for security by
businesses and increased awareness by end users (usually in an unfortunate way—by having
to install a critical update for the latest security vulnerability).

My call to arms is to the good guys—to look beyond the horizon. While we continue to
slog through the buffer overrun problems of today, we need to be apace with the bad guys
who are all ready to operate at vulnerability levels higher than the code.

My call to arms is to the broad research community, in all areas of computer science as
well as related areas that are affected by computing or that can inform the technologists.
Working together, keeping our focus on and beyond the horizon, can help ensure we do not
fall too far behind in the security race.

Acknowledgments

Much of my thinking presented in this article was done while I spent a one-year sabbatical at
Microsoft Research in Redmond, WA. I would like to thank Jim Larus, Amitabh Srivastava,
Dan Ling, and Rick Rashid for hosting my visit. I would also like to thank all the attendees
of the UW-MSR-CMU Software Security Summer Institute ® for their lively discussions
which helped sharpen my thoughts. I heard many of the ideas and examples presented in
this article from some of these participants. In particular, I thank Tom Longstaff for his
statistics pointing out the growing DOS trend; Udi Manber for his introducing me to the
term emergent abusive behavior; Steve Lipner for presenting Mike Howard’s slides, which
includes Dave Aucsmith’s MS03-007 example; and Doug Tygar for his talk about privacy
architectures. Finally, I would like to thank Jon Pincus, my close working colleague at
Microsoft, for our endless conversations and technical discussions during my sabbatical.
Many of Jon’s ideas, especially on privacy, are reflected herein.

3http://research.microsoft.com/projects/SWSecInstitute/index.htm



