
The Potential of Portfolio Analysis in Guiding Software
Decisions

S. Butler� P. Chalasaniy S. Jha� O. Raz� M. Shaw�

March 16, 1999

Abstract

Developing a complex software system involves de-
cisions about how to allocate a limited resource bud-
get among a collection of costly software alterna-
tives (such as technologies or analysis techniques)
that have uncertain future benefits. Very little quan-
titative guidance is currently available to make these
decisions. We suggest that these allocation problems
are naturally viewed in the powerful portfolio selec-
tion framework of financial investment theory. We
view each software activity as an investment oppor-
tunity (or security), the benefit from the activity as
the return on investment, and the allocation problem
as one of selecting the “optimal” portfolio of securi-
ties.

1 Introduction

With the rapidly growing complexity of software
systems, developers are increasingly facing the prob-
lem of allocating their limited resources (such as pro-
grammer time and wages, disk space, CPU time,
off-the-shelf software costs, etc.) among several
activities that contribute to a given goal (such as
testing/prototyping, verification, code restructuring,
analysis, validation), or among several overlapping
technologies (such as passwords, encryption, autho-
rization lists, physical isolation, firewalls, and activ-
ity monitors for security). To complicate matters,
these activities and technologies typically haveun-
certainfuture benefits.

�School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA

yDepartment of Computer Science, Arizona State University,
Tempe, AZ

Currently, decisions such as these are made on an
ad-hoc basis, using feature comparison, subjective
judgement, gut feel, persuasiveness of the salesman,
or tradition. The software developer may make a
good-faith effort to compare the alternatives, or even
to evaluate the future consequences of the alterna-
tives. However there is very little systematic guid-
ance available to software engineers.

Therefore, there is a critical need for rigorous
quantitative models of resource allocation problems
for software systems. In this paper we suggest that
it is natural to view these problems asportfolio se-
lection problems. That is, the various activities are
viewed as investment opportunities, and the devel-
oper systematically decides what portion of his re-
source pool, if any, to invest in each opportunity, in
such a way that a certain globally ”best” (in some ap-
propriate sense) allocation is achieved. This is analo-
gous to an investor deciding how much of his budget
to invest in each of a collection of stocks and other
securities. The return on investment foreach security
is a random variable (with an assumed distribution),
just like the benefit from investing in a software ac-
tivity.

It may seem as if one could just select the security
(or activity) that has the best expected future return,
and invest all the available budget in that security.
However this strategy ignores the important notion
of risk, i.e., the variance of the return on investment
in the stock. Investors may prefer to get smaller ex-
pected returns in exchange for lower variability of
the return, i.e., lower risk. Portfolio analysis quan-
tifies how investors can optimally make this tradeoff
between risk and expected return.

We envisage three possible benefits of viewing the
above types of software decision problems as a port-

1

Proceedings of the First Workshop on Economics Driven Software Engineering Research, IEEE Computer Society, May 1999.



folio selection problem: (a) It can be used to actually
guide the decisions in a specific software project, (b)
it can provide rough general design principles and
qualitative rules of thumb for such decisions, and (c)
it can be used to rationalize (or perhaps even refute)
guidelines that have been accepted in the software
community.

In this paper we elaborate on conventional port-
folio analysis; discuss the correspondence of the
portfolio selection problem to the software decision
problem; describe specific applications to the prob-
lems of choosing security technology and software
validation techniques, and assess the prospects of
this approach.

2 The Portfolio selection problem

In this section we briefly summarize the single pe-
riod portfolio optimization problem. For more de-
tails please see [JI87]. Assume that we haven as-
setsA1; � � � ; An. Let zi be the return per dollar on
the i-th investmentAi . Since the returnzi is not
assumed to be known a priori, it is a random vari-
able. In general,zi depends on future events and is
random because the future is uncertain. Thereturns
vectors~z is (z1; � � � ; zn), i.e., the vector of returns
for each investment. Suppose an investor hasB dol-
lars to invest. Let�i be the fraction of the wealth
invested in thei-th assetAi. An investment strategy
can be viewed as a vector~� = [�1; � � � ; �n]

T , which
is called aportfolio. We also have:

�i � 0 ;
nX

i=1

�i = 1

Notice that�i � 0 means that we do not allowshort
selling of assets, i.e., selling assets as opposed to
buying them. Short selling is allowed in security
markets, but does not seem applicable in our context.
The portfolio~� leads to the following random cash
flow:

Z~� = B~�T~z

= B

nX

i=1

�izi

We assume that the investor in question has an utility
functionu. We assume thatu is strictly increasing

and concave (the justification for this can be found
in utility theory [Fis70]). Utility function models the
preference of an investor. If we have two random
cash flowsz1 andz2 andE[u(z1)] � E[u(z2)], then
the investor prefersz1 over z2. In other words, the
investor prefers the cash flow with higher expected
utility. Many kind of investor preferences can be cap-
tured by utility functions (please see [Fis70]).

Given thereturns vector~z, initial wealthB, and an
utility functionu, the investor wants to find a portfo-
lio ~� that maximizes the expected utility of the ran-
dom cash-flowE[u(B~�T~z)] = E[u(BZ~�)] gener-
ated by the investment. (A vector with superscriptT

denotes its transpose). Formally, an investor wants
to solve the following constrained global optimiza-
tion problem:

max~� E[u(B~�T~z)]
�i � 0 ;

P
n
i=1 �i = 1

A good reference for portfolio optimization in dis-
crete time is [JI87]. Portfolio optimization in contin-
uous time is discussed in [Mer71].

3 Choosing a Combination of Soft-
ware Validation Techniques

Software developers must choose among a variety of
techniques for validating their software. We take as
an example the validation of a multi-threaded soft-
ware. Among the properties we might like to verify
are correctness, efficiency, fairness, safety and live-
ness. For this example, we focus on deadlock de-
tection, and we assume that some prior analysis has
identified random testing, boundary testing, model
checking, and static analysis as the set of candidate
techniques. In real life, we might consider other
techniques.

These techniques, differ in the following char-
acteristics: (a) the input they need, e.g: a formal
model of specifications, natural language specifica-
tions, source code, an executable, (b) the kind of re-
sources needed, e.g. time to set up analysis, human
expertise required to successfully deploy the tech-
nique, money investment to acquire the technique,
equipment (hardware, software, paper, etc.), (c) the
amount of each of these resources they demand, (d)

2



degree of confidence in the results, e.g: some confi-
dence of the absence of bugs or proof of the absence
of a problem, (e) applicability to different properties.

Our goal is to allocate a limited set of resources
(the budget) among the candidate techniques (vari-
ous assets) in order to end up with the greatest confi-
dence that our system is deadlock-free or free of bugs
of a certain class (the return). To choose which sub-
set of these techniques to use, and with what relative
emphasis, we need to characterize them uniformly.
To show how portfolio analysis might help here, we
sketch the modeling of this problem qualitatively and
informally. We make qualitative comparisons of the
amounts and kinds of resources needed and the de-
gree of confidence we have in the results. Table 3
summarizes this comparison.

Two of the candidate techniques – random testing
and boundary testing – are forms of traditional test-
ing. Random testing selects random test data values,
whereas boundary testing selects values that are di-
rectly on, above and beneath the edges of the legal
input and output values. Random testing does not
require any special skills. Boundary testing requires
some expertise in order to select effective boundary
cases.

The confidence level in test results increases with
the fraction of the system behaviors that is covered
by the tests. The nondeterminism of concurrent sys-
tems leads to combinatorial growth in system behav-
iors and hence in the number of test cases required
for a given level of coverage. The nondeterminism
also complicates the design of test cases targeted to
specific behaviors. In some cases, restrictions on the
way the code is written may enable a specific kind
of analysis; in these cases, accepting the restrictions
might also pay off in reduced risk, and also a sig-
nificant reduction in both the time spent on valida-
tion and the level of expertise needed to perform the
validation. For example, Eraser [SBN+97] is a tool
for dynamically detecting data races in lock-based
multi-threaded programs. In return for using locks as
the only mechanism for mutual exclusion, and using
the same lock for a particular shared variable, you
get data race detection for free.

Model checkers prove correctness (here, the ab-
sence of deadlocks) for finite models of a system by
performing exhaustive analysis of the large but fi-

nite state space. This translates to confidence in the
real system because many problems manifest them-
selves in small examples. Model checking requires
an abstraction of the system to be specified in a spe-
cial modeling language. Finding and specifying this
model requires special skills, and it is often time con-
suming. Some model checkers do not require the use
of an abstraction, e.g Verisoft [God97] but are less
powerful in their verification ability (Verisoft does
not handle liveness properties, and can ensure re-
sults up to a certain depth only). These model check-
ers still require special skills, but they eliminate the
model creation task. The exhaustive analysis ensures
correct results for the finite abstraction, but translat-
ing this to the real system depends heavily on the
accuracy of the model or on our assessment of the
probability of deeper path executions.

Static analysis techniques such as slicing and data
flow analysis examine the text of a program and au-
tomatically extract information about its dynamic be-
havior. These techniques are well established for se-
quential programs and are current research for con-
current programs. For specific restricted classes of
concurrent programs, static analysis can already be
useful [God97]. static analysis approaches are able
to evaluate all potential execution paths for certain
classes of problems, it may be possible to use static
analysis to demonstrate the absence of such prob-
lems [NCO98]. Setting up a static analysis currently
requires a high level of specific expertise, but the re-
ward is complete confidence in the results in case
of successfully demonstrating the absence of a fault.
Since the static model is overly conservative, our
confidence level in case of failure to demonstrate the
absence of a fault is very small. In such a case we
need to further deploy some form of dynamic analy-
sis. That is, using static analysis incurs a risk that the
effort will be redundant because we discover that we
need to perform dynamic analysis as well.

The available techniques can and should be com-
bined, but some combinations make more sense than
others. We concentrate here on the first-order differ-
ences. A more extensive exploration must consider
technical qualities of the interaction among tech-
niques: For example, some techniques are comple-
mentary (e.g static checking and model checking),
while in other cases one technique may subsume an-

3



Technique requirements for time to set degree of confidence restrictions on
special skills up analysis in the results code implementation

Random testing minimal high fairly low none
boundary testing low high fairly low none
Model checking very high high very high none
static analysis high ? very high some restrictions

Eraser to adhere to low high use only locks for
programming restrictions mutual exclusion. Same lock

for a particular shared variable.

Table 1: Comparing validation and verification techniques for deadlock detection.

other (e.g in some cases random testing may not add
much value to thorough directed testing).

A portfolio-analytic model. The above problem
of deciding how much resources to invest in each val-
idation technique can be cast as a problem in port-
folio selection, as follows. We have a budgetB of
total resources which we want to distribute among
various validation techniques. There aren validation
techniques at our disposal. For each technique we
need to first quantify its (possibly uncertain)benefit-
to-cost ratio, i.e., the benefit per unit resource in-
vestment. The benefit is a numerical representation
of the level of confidence achieved by applying the
technique, and can be modeled as a random variable
with a certain distribution. The cost will reflect any
special skills, or special formatting of input, or sig-
nificant set-up time, or special restrictions required
on the coding. This allows us to treat each technique
just like a security in the portfolio problem. Now let
us assume that we have some (strictly increasing and
concave) utility function that maps a level of confi-
dence to a real number. Then our problem can be
stated as: find the distribution of resources among
validation techniques that results in maximum ex-
pected utility. Clearly the form of the utility func-
tion is crucial to the outcome of this analysis. For
instance if the utility function is linear the optimal
policy is to simply invest all resources in the tech-
nique that has the highest expected benefit-to-cost ra-
tio. For non-linear utilities the optimal policy could
turn out to be one that distributes a positive amount
of resources among more than one technique. The
selection of the utility function and the estimation of
the probabilities involved in the uncertain benefits,

are difficult problems. These are usually arrived at
through a series of questions posed to the people in-
volved in the project.

4 Selecting a Security Portfolio

In designing a large system, various technologies
are available. We illustrate how portfolio analysis
might help us choose among competing technolo-
gies. Given a set of threats, the objective of the se-
curity portfolio is to select the best combination of
security components within a limited budget. Since
no single security component can provide protection
against all possible threats, developers integrate vari-
ous software designs and security technologies in an
attempt to reduce the systems vulnerability to inter-
nal and external threats. Ideally, the software devel-
oper would like to evaluate candidate sets of secu-
rity designs and technologies to determine whether
any combination satisfies the requirement and, if so,
to select the combination that provides the least risk
within the specified budget. As in financial port-
folios, security portfolios represent a distribution of
wealth across different components that offer various
degrees of effectiveness (or rates of return). Software
engineers select a set of security technologies based
on the threats discovered during the risk assessment.
Threats represent potential attacks to the system be-
cause attackers may be able to exploit vulnerabili-
ties. Vulnerabilities are weaknesses in the system
that could allow someone to gain unauthorized ac-
cess to system resources or deny authorized users
access to system resources. Risk assessment iden-

4



tifies the system threats and vulnerabilities. Security
components are chosen because they offer counter-
measures against one or more threats. Software en-
gineers consider the cost of the component, its effec-
tiveness against specific threats, its breadth of cover-
age (number of threats addressed), and the value of
the resource protected. Access controlillustrates the
dilemma for the software engineer. The most com-
mon access control to computer systems is a pass-
word. Passwords are relatively easy and inexpensive
to implement, but not considered nearly as effective
as Smart cards. Smart cards offer stronger protection
but are more difficult to administer and cost more.
As the strength of the security increases so does the
cost. Suppose, for example, that a software engi-
neer has a fixed dollar budget for system security
including access control and intrusion detection. If
Smart cards are chosen, there may not be enough dol-
lars for a highly effective intrusion detection system.
Alternatively, if simple password protection is cho-
sen, then there could be sufficient dollars available
to purchase an intrusion detection system and an au-
tomated back-up and recovery system. Which com-
bination provides the best security? Portfolio analy-
sis suggests a way for software engineers to compare
alternative combinations of security solutions.

5 Directions for future work

While modeling the problem of allocating resources
to testing and verification activities, we have to make
limiting assumptions. Strictly speaking, these as-
sumptions are not valid, but it would be interesting
to know how these limiting assumptions affect the
quality of decisions. The fact remains that making
the connection to the well developed area of portfolio
optimization allows us to bring sophisticated tech-
niques to the area of software management. How-
ever, most of the portfolio optimization has been de-
veloped in the area of securities markets (e.g., stocks,
bonds). Securities markets are generally veryliquid,
i.e., one can trade among assets freely. This is as-
sumption is not quite valid in the context of software
management decisions. For example, one cannot ex-
change programmers freely, i.e., a programmer with
expertise in user-interfaces cannot be replaced (with-
out any cost) by a programmer with expertise in the

area of databases. This assumption clearly does not
always hold, and we plan to investigate how to han-
dle non-linear relationships between effort and ben-
efit. Another area of interest would be gathering of
metrics to quantify uncertainty. For example, how
does one estimate the level of assurance for various
level of investments. Finally, we want to explore
the possibility of integrating portfolio optimization
based decision making capabilities into software life-
cycles. For explanation of topics mentioned in this
section readers should refer to [Kem97, Boe81].

References

[Boe81] B.W. Boehm. Software Engineering Eco-
nomics. Englewood Cliffs, NJ, Prentice-Hall,
1981.

[Fis70] P. Fishburn.Utility Theory for Decision Mak-
ing. New York, Wiley, 1970.

[God97] Patrice Godefroid. Model checking for pro-
gramming languages using VeriSoft. InCon-
ference Record of POPL ’97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 174–186,
Paris, France, 15–17 January 1997.

[JI87] Jr. J.E. Ingersoll.Theory of Financial Deci-
sion Making. Rowman and Littlefield, To-
towa, NJ, 1987.

[Kem97] C.F. Kemerer.Software Project Management:
readings and cases. Irwin, McGraw-Hill,
1997.

[Mer71] R.C. Merton. Optimum consumption and
portfolio rules in a continuous time model.J.
Econ. Theory, 3:373–413, 1971.

[NCO98] Gleb Naumovich, Lori A. Clarke, and Leon J.
Osterweil. Efficient composite data flow anal-
ysis applied to concurrent programs.ACM
SIGPLAN Notices, 33(7):51–58, July 1998.

[SBN+97] Stefan Savage, Michael Burrows, Greg Nel-
son, Patrick Sobalvarro, and Thomas Ander-
son. Eraser: A dynamic data race detector
for multi-threaded programs. InOperating
System Review: Proceedings of the Sixteenth
ACM Symposium on Operating System Prin-
ciples, volume 31, pages 27–37, St. Malo,
France, October 1997. ACM Press.

5


