An Introduction to Physically Based M odeling:

Rigid Body Simulation |—Unconstrained Rigid Body
Dynamics

David Baraff
Roboatics Institute
Carnegie Mellon University

Please note: Thisdocument is[11997 by David Baraff. Thischapter may befreely
duplicated and distributed so long asno considerationisreceived inreturn, and this
copyright notice remains intact.



Rigid Body Simulation

David Baraff
Robotics Institute
Carnegie Mellon University

I ntroduction

This portion of the course notes deals with the problem of rigid body dynamics. To help get you
started simulating rigid body motion, we've provided code fragments that implement most of the
concepts discussed in these notes. Thissegment of the course notesisdivided into two parts. Thefirst
part covers the motion of rigid bodies that are completely unconstrained in their allowable motion;
that is, smulations that aren’t concerned about collisions between rigid bodies. Given any external
forces acting on arigid body, we'll show how to simulate the motion of the body in response to these
forces. The mathematical derivations in these notes are meant to be fairly informal and intuitive.

The second part of the notes tackles the problem of constrained motion that arises when we
regard bodies as solid, and need to disallow inter-penetration. We enforce these non-penetration
constraints by computing appropriate contact forces between contacting bodies. Given values for
these contact forces, simulation proceeds exactly as in the unconstrained case: we simply apply all
the forcesto the bodies and let the simulation unfold as though the motions of bodies are completely
unconstrained. 1f we have computed the contact forces correctly, the resulting motion of the bodies
will be free from inter-penetration. The computation of these contact forces is the most demanding
component of the entire simulation processt

1Collision detection (i.e. determining the points of contact between bodies) runs a close second though!

D1



Part |. Unconstrained Rigid Body Dynamics

1 Simulation Basics

This portion of the course notes isgeared towards afull implementation of rigid body motion. Inthis
section, we'll show the basic structure for simulating the motion of arigid body. In section 2, we'll
define the terms, concepts, and equations we need to implement arigid body simulator. Following
this, we'll give some code to actually implement the equations we need. Derivations for some of the
concepts and equations we will be using will be left to appendix A.

Theonly thing you need to be familiar with at this point are the basic concepts (but not the numer-
ical details) of solving ordinary differential equations. If you're not familiar with this topic, you're
in luck: just turn back to the beginning of these course notes, and read the section on “ Differential
Equation Basics.” You also might want to read the next section on “Particle Dynamics’ as well,
although we' re about to repeat some of that material here anyway.

Simulating the motion of arigid body is amost the same as simulating the motion of a particle,
so let’s start with particle smulation. Theway we simulate aparticle isasfollows. Welet afunction
X(t) denote the particle’s location in world space (the space all particles or bodies occupy during
simulation) at timet. The function v(t) = X(t) = %x(t) gives the velocity of the particle at timet.
The state of aparticle at timet isthe particle’s position and velocity. We generalize this concept by
defining a state vector Y (t) for asystem: for asingle particle,

Y(t) = < ;‘8 ) . (1-1)

When we're talking about an actual implementation, we have to “flatten” out Y (t) into an array.
For asingle particle, Y (t) can be described as an array of six numbers: typicaly, we'd let the first
three elements of the array represent x(t), and the last three elements represent v(t). Later, when we
talk about state vectors Y (t) that contain matrices as well as vectors, the same sort of operation is
donetoflatten Y (t) into an array. Of course, we'll also have to reverse this process and turn an array
of numbers back into astate vector Y (t). Thisall comes down to pretty simple bookkeeping though,
so henceforth, we'll assume that we know how to convert any sort of state vector Y (t) to an array
(of the appropriate length) and vice versa. (For a simple example involving particles, look through
the “Particle System Dynamics’ section of these notes.)

For a system with n particles, we enlarge Y (1) to be

X1 (1)
v1(t)
Y(t) = ; (1-2)
Xn(1)
vn(t)

SIGGRAPH '97 COURSE NOTES D2 PHYSICALLY BASED MODELING



where x; (t) and v (t) are the position and velocity of theith particle. Working with n particlesisno
harder than working with one particle, so we'll let Y (t) be the state vector for a single particle for
now (and when we get to it later, asingle rigid body).

To actually simulate the motion of our particle, we need to know one more thing—the force
acting on the particle at timet. We'll define F (t) as the force acting on our particle at timet. The
function F(t) isthe sum of all the forces acting on the particle: gravity, wind, spring forces, etc. If
the particle has mass m, then the change of Y over timeis given by

d d X(t) v(t)

ar V= a( u(t) ) - ( F(t)/m ) ' (1-3)
Given any value of Y (1), equation (1-3) describes how Y (t) isinstantaneously changing at timet.
A simulation starts with some initial conditions for Y (0), (i.e. values for x(0) and v(0)) and then
uses anumerical equation solver to track the change or “flow” of Y over time, for aslong aswe're
interested in. If all wewant to know isthe particle's |ocation one second from now, we ask the solver
to compute Y (1), assuming that time units are in seconds. If we' re going to animate the motion of
the particle, we' d want to compute Y (35), Y () and so on.

The numerical method used by the solver is relatively unimportant with respect to our actual
implementation. Let's look at how we'd actually interact with a numerical solver, in a C++-like
language. Assume we have access to anumerical solver, which we'll generically write asafunction
named ode. Typically, ode has the following specification:

typedef void (*dydt_func) (double t, double y[], double ydot[]);

void ode (double yO[], double yend[], int len, double tO,
double t1, dydt_func dydt);

We pass an initial state vector to ode as an array y0. The solver ode knows nothing about the
inherent structure of y0. Since solvers can handle problems of arbitrary dimension, we also have to
pass the length 1len of y0. (For a system of n particles, we'd obviously have 1en = 6n.) We aso
pass the solver the starting and ending times of the simulation, t0 and t1. The solver’s goal isto
compute the state vector at timet1 and return it in the array yend.

We also pass a function dydt to ode. Given an array y that encodes a state vector Y (t) and a
timet, dydt must compute and return %Y (t) inthe array ydot. (Thereason we must passt to dydt
isthat we may have time-varying forces acting in our system. Inthat case, dydt would have to know
“what timeit is’ to determine the value of those forces.) In tracing the flow of Y (t) from t0 to t1,
the solver ode is alowed to call dydt as often as it likes. Given that we have such a routine ode,
the only work we need to do isto code up the routine dydt which we'll give as a parameter to ode.

Simulating rigid bodies follows exactly the same mold as simulating particles. The only differ-
enceisthat the state vector Y (t) for arigid body holds moreinformation, and the derivativegitY t)is
alittle more complicated. However, we'll use exactly the same paradigm of tracking the movement
of arigid body using a solver ode, which we'll supply with afunction dydt.

2 Rigid Body Concepts

The goa of this section is to develop an analogue to equation (1-3), for rigid bodies. The final
differential equation wedevelopisgiveninsection 2.11. In order to do thisthough, we need to define

SIGGRAPH '97 COURSE NOTES D3 PHYSICALLY BASED MODELING



alot of concepts first and relations first. Some of the longer derivations are found in appendix A. In
the next section, we'll show how to write the function dydt needed by the numerical solver ode to
compute the derivative %Y (t) developed in this section.

2.1 Position and Orientation

The location of a particle in space at timet can be described as a vector x(t), which describes the
trandation of the particle from the origin. Rigid bodies are more complicated, in that in addition to
trangdlating them, we can al so rotate them. To locate arigid body in world space, we'll use a vector
X(t), which describes the translation of the body. We must also describe the rotation of the body,
which we'll do (for now) in terms of a 3 x 3 rotation matrix R(t). We will cal x(t) and R(t) the
spatial variablesof arigid body.

A rigid body, unlike aparticle, occupies avolume of space and has aparticular shape. Because a
rigid body can undergo only rotation and translation, we define the shape of arigid body in terms of
afixed and unchanging space called body space Given a geometric description of the body in body
space, we use x(t) and R(t) to transform the body-space description into world space (figure 1). In
order to simplify some equations we'll be using, we'll require that our description of the rigid body
in body space be such that the center of massof the body lies at the origin, (0, 0, 0). We'll define the
center of mass more precisely later, but for now, the center of mass can be thought of asapoint inthe
rigid body that lies at the geometric center of the body. In describing the body’s shape, we require
that this geometric center lieat (0, 0, 0) in body space. If we agree that R(t) specifies arotation of
the body about the center of mass, then a fixed vector r in body space will be rotated to the world-
space vector R(t)r at timet. Likewise, if py isan arbitrary point on the rigid body, in body space,
then the world-space location p(t) of p is the result of first rotating p about the origin and then
trandating it:

P(t) = R(t) po + x(1). (2-1)

Since the center of mass of the body lies at the origin, the world-space location of the center of
mass is always given directly by x(t). Thislets us attach avery physical meaning to x(t) by saying
that x(t) isthe location of the center of massin world space at timet. We can also attach a physical
meaning to R(t). Consider the x axis in body spacei.e. the vector (1, 0, 0). Attimet, this vector

has direction
1
Rt)| O
0

in world space. If we write out the components of R(t) as

Fxx  Tyx  Tzx
RO=|{ y Ny fy |, (2-2)

Fxz Tyz Tz

1 I'xx
RO| 0 | =] ry (2-3)
0 M'xz

SIGGRAPH '97 COURSE NOTES D4 PHYSICALLY BASED MODELING

then



body space world space y'

y
A

z A Z

R Yy y p(t)

0 /
/ X'
X / VA
/

Figure 1: The center of massistransformed to the point x(t) in world space, at timet. Thefixed x, v,
and z axes of the body in body space transform to thevectorsx= R(t)X, Y = R(t)yand Z = R(t)z
The fixed point py in body space is transformed to the point p(t) = R(t) p + X(t).

which isthe first column of R(t). The physical meaning of R(t) isthat R(t)’sfirst column givesthe
direction that the rigid body’s x axis points in, when transformed to world space at timet. Similarly,
the second and third columns of R(t),

ryx Izx
My and M2y
ryZ r.ZZ
are the directions of the y and z axes of the rigid body in world space at timet (figure 2).

2.2 Linear Velocity

For simplicity, we'll call x(t) and R(t) the position and orientation of the body at timet. The next
thing we need to do is define how the position and orientation change over time. This means we
need expressions for X(t) and R(t). Since x(t) is the position of the center of massin world space,
X(t) isthe velocity of the center of massin world space. We'll define thelinear velocity v(t) asthis
velocity:

u(t) = X(t). (2-4)

If weimagine that the orientation of the body isfixed, then the only movement the body can undergo
isapure trandation. The quantity v(t) givesthe velocity of this trandlation.

2.3 Angular Veocity

In addition to translating, arigid body can also spin. Imagine however that we freeze the position of
the center of massin space. Any movement of the points of the body must therefore be due to the

SIGGRAPH '97 COURSE NOTES D5 PHYSICALLY BASED MODELING



world space y

RO =[xy Z]

Figure 2: Physical interpretation of the orientation matrix R(t). At timet, the columns of R(t) are
the world-space directions that the body-space X, y, and z axes transform to.

body spinning about some axisthat passes through the center of mass. (Otherwise the center of mass
would itself be moving). We can describe that spin asavector w(t). Thedirection of w(t) givesthe
direction of the axis about which the body is spinning (figure 3). The magnitude of w(t), |w(t)|, tells
how fast the body is spinning. |w(t)| has the dimensions of revolutiong/time; thus, |w(t)| relates the
angle through which the body will rotate over agiven period of time, if the angular velocity remains
constant. The quantity w(t) is called the angular velocity.

For Iinear velocity, x(t) and v(t) are related by v(t) = %x(t). How are R(t) and w(t) related?
(Clearly, R(t) cannot be w(t), since R(t) isamatrix, and w(t) isavector.) To answer this question,
let’s remind ourselves of the physical meaning of R(t). We know that the columns of R(t) tell us
the directions of the transformed x, y and z body axes at timet. That means that the columns ofR(t)
must describe the velocity with which the x, y, and z axes are being transformed. To discover the
relationship between w(t) and R(t), let’s examine how the change of an arbitrary vector in arigid
body isrelated to the angular velocity w(t).

Figure 4 shows arigid body with angular velocity w(t). Consider avector r (t) at timet specified
inworld space. Suppose that we consider this vector fixed to the body; that is, r (t) moves along with
the rigid body through world space. Sincer(t) isadirection, it isindependent of any trandational
effects; in particular, r(t) isindependent of v(t). To study r (t), we decompose r (t) into vectors a
and b, where a is paralléel to w(t) and b is perpendicular to w(t). Suppose the rigid body were to
maintain a constant angular velocity, so that thetip of r (t) traces out acircle centered onthew(t) axis
(figure 4). Theradius of thiscircleis |b|. Since the tip of the vector r (1) isinstantaneously moving
along this circle, the instantaneous change of r (t) is perpendicular to both b and w(t). Since the tip
of r(t) ismoving in acircle of radius b, the instantaneous velocity of r(t) has magnitude |b||w(1)].
Since b and w(t) are perpendicular, their cross product has magnitude

|l (t) x b] = Jo(t)] [b]. (2-5)

SIGGRAPH '97 COURSE NOTES D6 PHYSICALLY BASED MODELING



(\) a(t)

v(t)

iy

Figure 3: Linear velocity v(t) and angular velocity w(t) of arigid body.
Putting this together, we can write f (t) = w(t) x (b). However, sincer (t) = a+ b and aisparalel
to w(t), we have w(t) x a = 0 and thus
F(t) = wt) x b=w(t) x b+ o) x a=w(t) x (b+a). (2-6)
Thus, we can simply express the rate of change of a vector as
F(t) = w(t) xr(). (2-7)

Let’s put al this together now. At time t, we know that the direction of the x axis of the rigid
body in world space is the first column of R(t), whichis

I'xx
er .
I'xz

Attimet, the derivative of thefirst column of R(t) isjust the rate of change of this vector: using the
cross product rule we just discovered, this change is

I'xx
w(t) x Iy | -
I'xz

The same obviously holds for the other two columns of R(t). This meansthat we can write
) I'XX ryX rZX
I'xz lyz I'zz

SIGGRAPH '97 COURSE NOTES D7 PHYSICALLY BASED MODELING



w(t)

w(t)x b

Figure 4: Therate of change of arotating vector. Asthetip of r (t) spinsabout the w(t) axis, it traces
out acircle of diameter |b|. The speed of thetip of r(t) is |w(t)||b].

This istoo cumbersome an expression to tote around though. To simplify things, we'll use the
following trick. If a and b are 3-vectors, then a x b is the vector

ayb, — bya,
—ayb; + byay
ayby — byay

Given the vector a, let us define & to be the matrix

0 -a ay
ay 0 —ay
—ay ay 0
Then?
0 -a;, ay by ayb, — bya,
a*b = aZ O _ax by == _axbz + bxaz =ax b (2_9)
—ay ay 0 b, ayby — byay

Using the “s” notation, we can rewrite R(t) more simply as

) Ixx lyx Izx
I'xz lyz Iz

2This looks a little too “magical” at first. Did someone discover this identity accidentally? Is it a relation that just
happens to work? This construct can be derived by considering what's known asinfinitesimal rotations. The interested
reader might wish to read chapter 4.8 of Goldstein[10] for amore complete derivation of thea matrix.

SIGGRAPH '97 COURSE NOTES D8 PHYSICALLY BASED MODELING



By the rules of matrix multiplication, we can factor thisinto

. IMxx Iyx I'zx
Ixz ryZ I'zz
whichisamatrix-matrix multiplication. But sincethe matrix ontheright is R(t) itself, we get smply
that
R(t) = w(t)*R(t). (2-12)

This, at last, gives us the relation we wanted between R(t) and w(t). Note the correspondence
between f (t) = w(t) x r(t) for avector, and R(t) = w(t)*R(t) for the rotation matrix.
24 Massof a Body

In order to work out some derivations, we' |l need to (conceptually) perform some integrations over
the volume of our rigid body. To make these derivations simpler, we' re going to temporarily imagine
that arigid body is made up of alarge number of small particles. The particles are indexed from
1to N. The mass of the ith particle is m, and each particle has a (constant) location fy; in body
space. The location of the ith particle in world space at timet, denoted (1), is therefore given by
the formula

ri(t) = R()rg; + X(t). (2-13)

The total mass of the body, M, isthe sum

N
M=>"m. (2-14)
i=1
(Henceforth, summations are assumed to be summed from 1 to N with index variablei.)

2.5 Velocity of a Particle

Thevelocity f; (t) of theith particle is obtained by differentiating equation (2—13): using the relation
R(t) = w*R(t), we obtain

ri(t) = 0" R()ro; + v(t). (2-15)
We can rewrite this as

Fi() = 0" RMOro; + v(t)
= o) (RMro; + X() —x(t)) +v(t) (2-16)
= o))" (ri(t) — x(1) + v(t)

using the definition of r;(t) from equation (2—-13). Recall from the definition of the “x” operator that
w(t)*a = w(t) x afor any vector a. Using this, we can simply write

Fi (1) = w(t) x (ri(t) — x(1)) + v(t). (2-17)

Note that this separates the velocity of a point on arigid body into two components (figure 5): a
linear component v(t), and an angular component w x (f (t) — X(t)).

SIGGRAPH '97 COURSE NOTES D9 PHYSICALLY BASED MODELING



w(t)

ﬁ

y v J
aw(t) x (ri(t) — x())
/ Z
X v(t) + co(t) x (ri(t) — x(t)) AK

Figure 5: The velocity of theith point of arigid body in world space. The velocity of r(t) can be
decomposed into alinear term v(t) and an angular term w(t) x (£(t) — x(t)).

2.6 Center of Mass

Our definition of the center of massis going to enable usto likewise separate the dynamics of bodies
into linear and angular components. The center of massof abody inworld spaceisdefined to be

>omiri(t)
M

where M is the mass of the body (i.e. the sum of the individual masses ). When we say that we
are using a center of mass coordinate system, we mean that in body space,

0
Y Mirg; A
M_O_(g). (2-19)

(2-18)

Note that thisimpliesthat )~ miro; = 0 as well.
We have spoken of x(t) as being the location of the center of mass at timet. Isthis true? Yes:
sincetheith particle haspositionr, (t) = R(t)ro; + X(t) at timet, the center of massattimetis

Ymir(t) Y mi(RMOro +x(1) RO mirgi+ > mx(t) > my
M = M = M = X(1) M= X(1).
Additionally, the relation
D omirit) = x() =Y m(Rt)rg; + x(t) — x(1)) = R(t) Y~ mirg; =0 (2-20)

isalso very useful.

SIGGRAPH '97 COURSE NOTES D10 PHYSICALLY BASED MODELING



5i(t) = (ri®) — x(t)) x Fi(t)

vl

4

el

X

Figure 6: Thetorque 7 (t) due to aforce F(t) acting at r;(t) on arigid body.

2.7 Forceand Torque

When we imagine aforce acting on arigid body due to some external influence (e.g. gravity, wind,
contact forces), we imagine that the force acts on a particular particle of the body. (Remember that
our particle model isconceptual only. We can have aforce act at any geometrical location on or inside
the body, because we can always imagine that there happens to be a particle at that exact location.)
Thelocation of the particle the force acts on defines the location at which the force acts. Wewill let
F; (t) denote the total force from external forces acting on theith particle at timet. Also, we define
the external torgue 7 (t) acting on theith particle as

i (D) = (ri(t) — x(®) x FK(t). (2-21)

Torqgue differs from force in that the torque on a particle depends on the location r(t) of the
particle, relative to the center of mass x(t). We can intuitively think of the direction of () as
being the axis the body would spin about dueto F(t), if the center of masswere held firmly in place

(figure 6).
The total externa force F(t) acting on the body is the sum of the F(t):
F(ty=> R (2-22)
while the total external torque is defined similarly as
M) =Y nt)=)Y_ (i) —x1)x K. (2-23)

Note that F(t) conveys no information about where the various forces acted on the body; however,
7(t) does tell us something about the distribution of the forces F(t) over the body.

SIGGRAPH '97 COURSE NOTES D11 PHYSICALLY BASED MODELING



2.8 Linear Momentum

The linear momentum p of a particle with mass mand velocity v is defined as
p = m. (2-24)

Thetotal linear momentum P(t) of arigid body isthe sum of the products of the mass and velocity
of each particle:

P(t) = miri(t). (2-25)

From equation (2-17), the velocity fi(t) of the ith particleisfj(t) = v(t) + w(t) x (rj(t) — X(t)).
Thus, the total linear momentum of the body is

P(t) =) mifi(t)
=Y (mu® +me® x ri® - X)) (2-26)
=Y mu) +olt) x Y m (rit) — xb).

Because we are using a center of mass coordinate system, we can apply equation (2-20) and ob-
tain

P =Y mu(t) = (Z mi> v(t) = Mu(b). (2-27)

This gives us the nice result that the total linear momentum of our rigid body is the same asif the
body was simply a particle with mass M and velocity v(t). Because of this, we have asimple trans-
formation between P(t) and v(t): P(t) = Mu(t) and v(t) = P(t)/M. Since M isaconstant,

. P(t)

=—". 2-2
o(t) = — (2-28)
The concept of linear momentum lets us express the effect of the total force F(t) on arigid body

quite simply. Appendix A derives the relation

P(t) = F(t) (2-29)

which saysthat the changein linear momentum is equivalent to the total force acting on abody. Note
that P(t) tells us nothing about the rotational velocity of a body, which is good, because F(t) aso
conveys nothing about the change of rotational velocity of a body!

Since the relationship between P(t) and v(t) issimple, we will be using P(t) as astate variable
for our rigid body, instead of v(t). We could of course let v(t) be a state variable, and use the
relation

. F®

v(t) = ViR (2-30)
However, using P(t) instead of v(t) asastate variable will be more consistent with the way we will
be dealing with angular velocity and acceleration.

SIGGRAPH '97 COURSE NOTES D12 PHYSICALLY BASED MODELING



2.9 Angular Momentum

Whilethe concept of linear momentum is pretty intuitive (P(t) = Mu(t)), the concept of angular mo-
mentum (for arigid body) isnot. The only reason that one even bothers with the angular momentum
of arigid body isthat it lets you write smpler equations than you would get if you stuck with angular
velocity. With that in mind, it's probably best not to worry about attaching an intuitive physical
explanation to angular momentum—all in al, it's a most unintuitive concept. Angular momentum
ends up simplifying equations because it is conserved in nature, while angular velocity is not: if you
have a body floating through space with no torque acting on it, the body’s angular momentum is
constant. Thisis not true for abody’s angular velocity though: even if the angular momentum of a
body is constant, the body’s angular velocity may not be! Consequently, a body’s angular velocity
can vary even when no force acts on the body. Because of this, it ends up being smpler to choose
angular momentum as a state variable over angular velocity.

For linear momentum, we havetherelation P(t) = Mu(t). Similarly, we define the total angular
momentum L (t) of arigid body by the equation L(t) = I (t)w(t), where | (t) isa3 x 3 matrix (tech-
nically arank-two tensor) called theinertia tensor, which we will describe momentarily. Theinertia
tensor | (t) describes how the massin abody isdistributed relative to the body’s center of mass. The
tensor | (t) depends on the orientation of abody, but does not depend on the body’s trandlation. Note
that for both the angular and the linear case, momentum isalinear function of velocity—it’s just that
in the angular case the scaling factor is a matrix, while it's simply a scalar in the linear case. Note
also that L(t) isindependent of any trandational effects, while P(t) isindependent of any rotational
effects.

Therelationship between L (t) and thetotal torque (t) isvery simple: appendix A derives

L) = z(b), (2-31)

analogous to the relation P(t) = F(t).

210 Thelnertia Tensor

The inertia tensor | (t) is the scaling factor between angular momentum L(t) and angular veloc-
ity w(t). At agiven timet, let r] be the displacement of the ith particle from x(t) by defining
ri =ri(t) — x(t). Thetensor I (t) isexpressed in terms of r as the symmetric matrix

(p/2 y pr2 ! r! et
mi(riy+riy)  —mirf,ri, —mir{,r{,
_ el /2 2 -
[(t) = E —Miriri, M+ —mirgr, (2-32)
S - (p12 12
—IMili Ly _mlrizriy ml(rix-i_riy)

For an actual implementation, we replace the finite sums with integrals over abody’s volumein
world space. The mass terms m are replaced by a density function. At first glance, it seems that
we would need to evaluate these integrals to find 1 (t) whenever the orientation R(t) changes. This
would be prohibitively expensive to do during a simulation unless the body’s shape was so simple
(for example, a sphere or cube) that that the integrals could be evaluated symbolically.

Fortunately, by using body-space coordinates we can cheaply compute the inertia tensor for any
orientation R(t) interms of aprecomputed integral in body-space coordinates. (Thisintegral istyp-
ically computed before the simulation begins and should be regarded as one of the input parameters

SIGGRAPH '97 COURSE NOTES D13 PHYSICALLY BASED MODELING



describing aphysical property of thebody.) Using thefact that {Tr{ = {2+ {2 + {2, wecan rewrite
| (t) asthe difference

/2 el oy el gl
100 Miryy M i, mirg,r,
T 2
I(t):E mriri] 01 0 | —| mrir, mry mrr (2-33)
Y e, 12
001 Mirfi,  Miri i, mirj;

Taking the outer product multiplication of r with itself, that is

/2 " /!
/ / / / rix rixriy rixriz
T Fix lix r|y liz 2

rer T / _ " / Iyt

rri- =1 Ty =1 Niyfix Ty Tidfiz (2-34)
/
i !yt /oyl /2
z Fizlix rizriy liz

and letting 1 denote the 3 x 3 identity matrix, we can express | (t) simply as

L) =Y m(rH1—rirT) (2-35)

How does this help?
Sincer;(t) = R(t)ro; + x(t) whererg; isaconstant, r; = R(t)rg;. Then, since RORMT =1,

©) =Y m(tHi-rir")
=Y m((RMro (RO — (R®Io) (RHIro) ™)
=Y mirof ROTRM®I1— RM®Irorrg! RHT)
=Y mi((roro)1 — RHyrairgf RMT).

(2-36)

Sincerg; ro; isascaar, we can rearrange things by writing
I(t) =) mi((rof o)1 — R(WIoirof R(HT)
=Y mi(RM)(ro{ o) RO TL = ROIgifof ROT) (2-37)
=Rt (D m((rolron1—roire)) ROT.
If we define Ipoqy as the matrix
lbody = Z mi((roj roi)1 — roiroj ) (2-38)
then from the previous eguation we have
I (t) = R(t) lpogyR() " (2-39)

Since lpoqy isspecified inbody-space, itis constant over the simulation. Thus, by precomputing hogy
for abody before the simulation begins, we can easily compute | (t) from hoqy and the orientation
matrix R(t). Section 5.1 derives the body-space inertia tensor for arectangular object in terms of an
integral over the body’s volume in body space.

SIGGRAPH '97 COURSE NOTES D14 PHYSICALLY BASED MODELING



Also, the inverse of | (t) isgiven by the formula

172(t) = (R® lpoayRDT) ™
_ (R(t)T)illb_o%ij(t)_l (2-40)
— R Ipesy RO

since, for rotation matrices, R(t)" = R(t)~! and (R(t)T)T = R(t). Clearly, 'Eoldy is also a constant
during the simulation.

211 Rigid Body Equations of Motion

Finally, we have covered all the concepts we need to define the state vector Y (t)! For arigid body,
we will define Y (t) as

X(t)
R(t)
P()
L(t)

Y(t) = (2-41)

Thus, the state of arigid body isits position and orientation (describing spatial information), and its
linear and angular momentum (describing velacity information). The mass M of the body and body-
space inertiatensor lyoqy are constants, which we assume we know when the simulation begins. At
any given time, the auxiliary quantities I (t), w(t) and v(t) are computed by

P(t)

v() = =, I(t) = RO logyRM)T  and  w(t) = 1) 1LO). (2-42)

The derivative $Y (t) is

X(t) o(t)
dy.. d| R | | o® R
V=% P [T Fo | (&43)

L(t) ()

The next section gives an implementation for the function dydt that comput%%Y(t).

One final note: rather than represent the orientation of the body as a matrix R(t) in Y (1), itis
better to use quaternions Section 4 discusses using quaternionsin place of rotation matrices. Briefly,
aguaternion is atype of four element vector that can be used to represent a rotation. If we replace
R(t) in Y (t) with a quaternion q(t), we can treat R(t) as an auxiliary variable that is computed
directly from q(t), just as w(t) is computed from L(t). Section 4 derives a formula analogous to
R(t) = w(t)*R(t), that expresses ¢(t) in terms of q(t) and w(t).

; d
3 Computing Y (t)
Lets consider an implementation of the function dydt for rigid bodies. The code iswritten in C++,

and we'll assume that we have datatypes (classes) called matrix and triple which implement,
respectively, 3 x 3 matrices and points in 3-space. Using these datatypes, we'll represent arigid

SIGGRAPH '97 COURSE NOTES D15 PHYSICALLY BASED MODELING



body by the structure

struct RigidBody {

};

/* Constant quantities */
double mass; /*
matrix Ibody, /*

Ibodyinv; /*

/* State variables */

mass M x/

lbody */

I&%y (inverse of lpogy) */

triple x; /* X(t) */
matrix R; /* R(t) */
triple P, /* Pt) */
L; /*x L(t) */
/* Derived quantities (auxiliary variables) */
matrix Iinv; /x 171(1t) */
triple v, /* v(t) */
omega; /* () *x/
/* Computed quantities */
triple force, /*x F(t) */
torque; /* T(t) */

and assume a global array of bodies

RigidBody Bodies[NBODIES];

The constant quantities mass, Ibody and Ibodyinv are assumed to have been calculated for
each member of the array Bodies, before simulation begins. Also, the initial conditions for each
rigid body are specified by assigning values to the state variables x, R, P and L of each member of
Bodies. Theimplementation in this section represents orientation with arotation matrix; section 4
describes the changes necessary to represent orientation by a quaternion.

We communicate with the differential equation solver ode by passing arrays of real numbers.
Several bookkeeping routines are required:

/* Copy the state information into an array */
void State_to_Array(RigidBody *rb, double *y)

{

SIGGRAPH '97 COURSE NOTES

*xy++ = rb->x[0];
xy++ = rb—>x[1];
xy++ = rb->x[2];

for(int i = 0; i < 3; i++)

/* X component of position */

/* etc.

*/

/* copy rotation matrix */
for(int j = 0; j < 3; j++)
xy++ = rb->R[i,j];

D16

PHYSICALLY BASED MODELING



xy++ = rb->P[0];
xy++ = rb->P[1];
xy++ = rb->P[2];

*y++ = rb->L[0];
xy++ = rb->L[1];
xy++ = rb->L[2];

and

/* Copy information from an array into the state variables */
void Array_to_State(RigidBody *rb, double *y)

{
rb->x[0] = *y++;
rb->x[1] = *y++;
rb->x[2] = *y++;
for(int i = 0; 1 < 3; i++)
for(int j = 0; j < 3; j++)
rb->R[i,j] = *y++;
rb->P[0] = *y++;
rb->P[1] = *y++;
rb->P[2] = *y++;
rb->L[0] = *y++;
rb->L[1] = *y++;
rb->L[2] = *y++;
/* Compute auxiliary variables... */
/* v(t)=% */
rb->v = rb->P / mass;
/% 171t = R lpos ROT*/
rb->Iinv = R * Ibodyinv * Transpose(R);
/* o) =1"1LE) */
rb->omega = rb->Iinv * rb->L;
}

Notethat Array_to_State isresponsible for computing values for the auxiliary variables Iinv, v
and omega. WEe' |l assume that the appropriate arithmetic operations have been defined between real
numbers, triple’sandmatrix’s, and that Transpose returns the transpose of a matrix.

SIGGRAPH '97 COURSE NOTES D17 PHYSICALLY BASED MODELING



Examining these routines, we seethat each rigid body’s state isrepresented by 3+ 9+ 3+ 3 =18
numbers. Transfers between all the members of Bodies and an array y of size 18 - NBODIES are
implemented as

#define STATE_SIZE 18

void Array_to_Bodies(double y[])

{
for(int i = 0; i < NBODIES; i++)
Array_to_State(&Bodies[i], &y[i * STATE_SIZE]);

and

void Bodies_to_Array(double y[])

{
for(int i = 0; i < NBODIES; i++)
State_to_Array(&Bodies[i], &y[i * STATE_SIZE]);

Now we can implement dydt. Let’s assume that the routine

void Compute_Force_and_Torque(double t, RigidBody *rb);
computes the force F(t) and torque z(t) acting on the rigid body *rb at time t, and stores F(t)
and z(t) in rb->force and rb->torque respectively. Compute_Force_and_Torque takes into
account all forces and torques. gravity, wind, interaction with other bodies etc. Using this routine,

we'll define dydt as

void dydt(double t, double y[], double ydot[])

{
/* put data in y[] into Bodies[] */
Array_to_Bodies(y);
for(int i = 0; i < NBODIES; i++)
{
Compute_Force_and_Torque(t, &Bodies[i]);
ddt_State_to_Array(&Bodies[i],
&ydot [i * STATE_SIZE]);
}
}

The numerical solver ode calls calls dydt and is responsible for allocating enough space for the
arraysy, and ydot (STATE_SIZE - NBODIES worth for each). The function which doesthe real work
of computing %Y(t) and storing it in the array ydot isddt_State_to_Array:

SIGGRAPH '97 COURSE NOTES D18 PHYSICALLY BASED MODELING



void ddt_State_to_Array(RigidBody *rb, double *ydot)

{
/* copy %X(t) =v(t) into ydot */
xydot++ = rb->v[0];
xydot++ = rb->v[1];
xydot++ = rb->v[2];
/* Compute R(t) = w(t)*R(t) */
matrix Rdot = Star(rb->omega) * rb->R;
/* copy R(t) into array */
for(int 1 = 0; 1 < 3; i++)
for(int j = 0; j < 3; j++)
xydot++ = Rdot[i,j];
xydot++ = rb->force[0]; /* TP =F(t) */
xydot++ = rb->force[1];
xydot++ = rb->force[2];
xydot++ = rb->torquel[0]; /* %L&t)::rﬂ) x/
xydot++ = rb->torquel[1];
xydot++ = rb->torquel[2];
}

The routine Star, used to calculate R(t) is defined as
matrix  Star(triple a);

and returns the matrix

0 —al2] a[1]
al[2] 0 -—aflo]
—al1] a[o0] 0

Given al of the above, actually performing a simulation is simple. Assume that the state vari-
ablesof all NBODIES rigid bodiesareinitialized by aroutine InitStates. We'll have our simulation
run for 10 seconds, calling aroutine DisplayBodies every %th of asecond to display the bodies:

void RunSimulation()

{
double yO[STATE_SIZE * NBODIES],
yfinal [STATE_SIZE * NBODIES];

InitStates();
Bodies_to_Array(yfinal);

SIGGRAPH '97 COURSE NOTES D19 PHYSICALLY BASED MODELING



for(double t = 0; t < 10.0; t += 1./30.)

{
/* copy yfinal back to yO */
for(int i = 0; i < STATE_SIZE * NBODIES; i++)
yO[i] = yfinallil;
ode(y0, yfinal, STATE_SIZE * NBODIES,
t, t+1./30., dydt);
/* copy %Y(t+3—10) into state variables */
Array_to_Bodies(yfinal);
DisplayBodies();
}

4 Quaternionsvs. Rotation Matrices

There is a better way to represent the orientation of arigid body than using a 3 x 3 rotation matrix.
For a number of reasons, unit quaternions atype of four element vector normalized to unit length,
are a better choice than rotation matrices[16].

For rigid body simulation, the most important reason to avoid using rotation matrices is because
of numerical drift. Suppose that we keep track of the orientation of a rigid body according to the
formula

R(t) = w(t)*R(t).

As we update R(t) using this formula (that is, as we integrate this equation), we will inevitably
encounter drift. Numerical error will build up in the coefficients of R(t) so that R(t) will no longer
be precisely arotation matrix. Graphically, the effect would be that applying R(t) to a body would
cause a skewing effect.

This problem can be alleviated by representing rotations with unit quaternions. Since quater-
nions have only four parameters, there is only one extra variable being used to describe the three
freedoms of therotation. In contrast, arotation matrix uses nine parameters to describe three degrees
of freedom; therefore, the degree of redundancy is noticeably lower for quaternions than rotation
matrices. As aresult, quaternions experience far less drift than rotation matrices. If it does become
necessary to account for drift in aquaternion, it is because the quaternion haslost its unit magnitudé.
This is easily correctable by renormalizing the quaternion to unit length. Because of these two
properties, it is desirable to represent the orientation of a body directly as a unit quaternion q(t).
We will still express angular velocity asavector w(t). The orientation matrix R(t), which is heeded
to compute | ~1(t), will be computed as an auxiliary variable from q(t).

We will write a quaternion s+ vy + vyj + v-K asthe pair

[s, v].

3Any quaternion of unit length corresponds to a rotation, so quaternions deviate from representing rotations only if
they lose their unit length. These notes will deal with that problem in avery simplistic way.

SIGGRAPH '97 COURSE NOTES D20 PHYSICALLY BASED MODELING



Using this notation, quaternion multiplication is

[s1, vi][S2, v2] = [S1S2 — v1 - V2, S1v2 + SHvg + v1 X Vo). (4-1)

A rotation of 6 radians about a unit axis u is represented by the unit quaternion

[cos(8/2), sin(8/2)u].

In using quaternions to represent rotations, if @ and gy indicate rotations, then g, represents the
composite rotation of ¢; followed by g.* In a moment, we'll show how to change the routines of
section 3 to handl e the quaternion representation for orientation. Before we can make these changes
though, we'll need aformulafor (t). Appendix B derives the formula

a) = 2e)q(t). (4-2)

where the multiplication w(t)q(t) isashorthand for multiplication between the quaternions [0, w(t)]
and q(t). Note the similarity between equation (4-2) and

R(t) = w()*R(1).
To actually use a quaternion representation, we' Il need to redefine the typeRigidBody:

struct RigidBody {
/* Constant quantities */

double mass; /* mass M x/
matrix Ibody, /* lpogy */
Ibodyinv; /* I&%y (inverse of lpogy) */

/* State variables */

triple x; /* X(t) */
quaternion q; /* q(t) =/
triple P, /* P(t) */
L; /* L(t) */
/* Derived quantities (auxiliary variables) */
matrix Tinv, /x 171(t) */
R; /* R(t) */
triple v, /* v(t) */
omega; /* o(t) */

/* Computed quantities */
triple force, /x F(t) */
torque; /* T(t) */
};

4This is according to the convention that the rotation of a point p by a quaternion g is qpq!. Be warned! Thisis
oppositethe convention for rotation in the original paper Shoemake[16], but it isin correspondence with some more recent
versions of Shoemake's article. Writing a composite rotation as ¢,q; paralels our matrix notation for composition of
rotations.

SIGGRAPH '97 COURSE NOTES D21 PHYSICALLY BASED MODELING



Next, in the routine State_to_Array, we'll replace the double loop

for(int i = 0; i < 3; i++) /* copy rotation matrix */
for(int j = 0; j < 3; j++)
xy++ = rb->R[1i,j];

with
/*
Assume that a quaternion is represented in
terms of elements ‘r’ for the real part,
and ‘i’, ‘j’, and ‘k’ for the vector part.
*/

*y++ = rb->q.r;
*y++ = rb->q.1i;
*y++ = rb->q.j;
*y++ = rb->q.k;

A similar change is made in Array_to_State. AlSO, since Array_to_State is responsible for
computing the auxiliary variable I7(t), which depends on R(t), Array_to_State must also com-
pute R(t) as an auxiliary variable: in the section

/* Compute auxiliary variables... */

/* v(t)=% */
rb->v = rb->P / mass;

/% 171t = RO lpos, ROT*/
rb->Iinv = R * Ibodyinv * Transpose(R);

/* o) = 17TR)LE) */
rb->omega = rb->Iinv * rb->L;
we add the line

rb->R = quaternion_to_matrix(normalize(rb->q));

prior to computing rb->Iinv. The routine normalize returns q divided by its length; this unit
length quaternion returned by normalize isthen passed to quaternion_to_matrix whichreturns
a 3 x 3rotation matrix. Given a quaternion q = [s, v], quaternion_to_matrix returns the ma
trix

1—-2v§—-2v§ 2ugvy — 2Sv;  2vxvz + 2Svy

2vyvy + 250, l——2v§——2v§ 2vyv; — 2Svy

2ugv; — 2Svy  2vyvz + 2Svy 1——2v§——2v§

In case you need to convert from arotation matrix to a quaternion,

SIGGRAPH '97 COURSE NOTES D22 PHYSICALLY BASED MODELING



quaternion matrix_to_quaternion(const matrix &m)
{

quaternion q;
double tr, s;

tr = m[0,0] + m[1,1] + m[2,2];

if (tr >= 0)
{
s = sqrt(tr + 1);
q.r = 0.5 * s;
s = 0.5/ s;
q.i = (m[2,1] - m[1,2]) * s;
q.j = (m[0,2] - m[2,0]) * s;
q.k = (m[1,0] - m[0,1]) * s;
}
else
{
int 1 = 0;

if(m[1,1] > m[0,0])

i=1;

if (m[2,2] > m[i,i))
i=2;

switch (i)

{

case O:
s = sqrt((m[0,0] - (m[1,1] + m[2,2])) + 1);
q.i = 0.5 % s;
s = 0.5/ s;
q.j = (m[0,1] + m[1,0]) * s;
q.k = (m[2,0] + m[0,2]) * s;
qg.r = (m[2,1] - m[1,2]) * s;
break;

case 1:
s = sqrt((m[1,1] - (m[2,2] + m[0,0])) + 1);
q.j = 0.5 * s;
s =0.5/ s;
qg.k = (m[1,2] + m[2,1]) * s;
q.i = (m[0,1] + m[1,0]) * s;
qg.r = (m[0,2] - m[2,0]) * s;
break;

case 2:

s = sqrt((m[2,2] - (m[0,0] + m[1,11)) + 1);

SIGGRAPH '97 COURSE NOTES D23 PHYSICALLY BASED MODELING



q.k = 0.5 * s;
s = 0.5/ s;
q.i = (m[2,0] + m[0,2]) * s;
q.j = (m[1,2] + m[2,1]) * s;
q.r = (m[1,0] - m[0,1]) * s;
}
}
return q;

}

Thematrix mis structured so thatm[0,0],m[0,1] andm[0, 2] form thefirst row (not column) of m.
TheroutinesArray_to_Bodies andBodies_to_Array don’t need any changes at all, but note

that the constant STATE_SIZE changes from 18 to 13, since a quaternion requires five less elements

than arotation matrix. The only other change we need isinddt_State_to_Array. Instead of

matrix Rdot = Star(rb->omega) * rb->R;

/* copy R(t) into array */
for(int 1 = 0; 1 < 3; i++)
for(int j = 0; j < 3; j++)
*xydot++ = Rdot[i,j];

we'll use

quaternion gdot = .5 * (rb->omega * rb->q);
*ydot++ = qdot.r;
*ydot++ = qdot.1i;
*ydot++ = qdot.j;
*ydot++ = qdot.k;

We're assuming here that the multiplication between the triple rb->omega and the quaternion
rb->q is defined to return the quaternion product

[0, rb->omegalq.

5 Examples

5.1 Inertia Tensor of a Block

Let uscalculate theinertiatensor lyoqy Of the rectangular block infigure 7. Theblock has dimensions
Xo X Yo X Zg. Asrequired, the center of mass of the block is at the origin. Thus, the extent of the
block isfrom — to 22 along the x axis, and similarly for the y and z axes. To calculate the inertia
tensor, we must treat the sums in equation (2—-32) as integrals over the volume of the block. Let us
assume that the block has constant unit density. This means that the density function p(x, Y, 2) is
aways one. Since the block has volume » Yoz, the mass M of the block is M = xy0z. Then, in

SIGGRAPH '97 COURSE NOTES D24 PHYSICALLY BASED MODELING



T% Yo ~%0 /
U2 ' 2 ' 210

Figure 7: A rectangular block of constant unit density, with center of mass at (0,0,0).

body space,
/,o(x,y,z)(y2+zz)dxdydz=/ / / y? 4+ Zdxdydz

X0 Yo
2 2
|xx:
X0 J Yo
2 2

:/2 :y22+§

I
P
ERN
NS
<o
N
_I_
NN
o
X
o
<

(5-1)

%, Bw

X0
=7 axo | ZYoXo _ XoYoZo M
o T 15 + 5 +2) = 1,5+ %)

g 12 2~ 12
2

Similarly, lyy = %403 + 23) and 1, = 3% (x¢ + y3). Now, the off-diagonal terms, such as ly,

are
oY% % oY% %
I —/2/2/2 (X z)(xy)dxdydz—/Z/2 /zxydxdydz—O (5-2)
S REYSIE )

SIGGRAPH '97 COURSE NOTES D25 PHYSICALLY BASED MODELING



y
/Z
|
X(t)

— ~

e oA
ﬂ (-3,0-2) (3,0-2) *

7

Figure 8: A block acted on by two equal forces F at two different points.

(and similarly for the others) because the integrals are all symmetric. Thus, the inertia tensor of the

block is
v Yet+tzsd 0 0
lbody = 75 0 xX+zZ 0 : (5-3)

0 0 X+V3

5.2 A Uniform ForceField

Suppose a uniform force acts on each particle of a body. For example, we typically describe a
gravitational field asexerting aforce mg on each particle of arigid body, where g isavector pointing
downwards. The net force Fy acting due to gravity on the body thenis

Fg=) _mg= Mg (5-4)
which yields an acceleration of Mg _ g of the center of mass, as expected. What is the torque due
to the gravitational field? The net torque is the sum

> - x1) xmg= (Y mr®) - x1)) x g=0 (5-5)

by equation (2-20). We see from this that a uniform gravitational field can have no effect on the
angular momentum of a body. Furthermore, the gravitational field can be treated as a single force
Mg acting on the body at its center of mass.

5.3 Rotation Free Movement of a Body

Now, let us consider some forces acting on the block of figure 8. Suppose that an external force
F = (0,0, f) actson the body at points x(t) + (—3, 0, —2) and x(t) + (3, 0, —2). Wewould expect

SIGGRAPH '97 COURSE NOTES D26 PHYSICALLY BASED MODELING



that this would cause the body to accelerate linearly, without accelerating angularly. The net force
acting on the body is (0, 0, 2 ), so the acceleration of the center of massis

2f
M

along the z axis. The torque due to the force acting at x(t) + (—3,0, —2) is

-3 -3
(xt)+| o ph—-xtHyxF=| 0 |xF
—2 —2

while the torque due to the force acting at x(t) + (3, 0, —2) is

3 3
((x(t) + 0 ])—xt)xF= 0| xF.
-2 -2

Thetotal torque t istherefore

-3 3 -3 3 0
T= 0 | xF+ 0 | xF= 0|+ 0 )xF= 0 | xF.
-2 -2 -2 -2 -2
But this gives
0 0
T= 0 X 0 =0.
-2 f

As expected then, the forces acting on the block impart no angular acceleration to the block.

5.4 Trandation Free Movement of a Body

Suppose how that an external force i = (0, 0, ) actsonthebody at point x(t) 4+ (—3, 0, —2) and an
external force F, = (0, 0, — f) acts on the body at point x(t) + (3, 0, 2) (figure9). Since k = — F,
the net force acting on the block is R + F», = 0, so there is no acceleration of the center of mass. On
the other hand, the net torqueis

SIGGRAPH '97 COURSE NOTES D27 PHYSICALLY BASED MODELING



y
/ |

|
X0 o

~ X

~

— ~
— ~

A A
A (-30,-2) (30-2) o
= - /

Figure 9: A block acted on by two opposite forces i and F, = —Fy, at two different points.

_3
((X(t)+( 0))X(t))><F1+
)
3 _3 0 3 0
xt+| 0o h=xtnyxk=[ o|x| o|+| o]x 0 (5-6)
2 2 f 2 _f
0 0 0
= 3t | +| 3t | = &f |.
0 0 0

Thus, the net torque is (0, 6 f, 0), which is parald to the y axis. The fina result is that the forces
acting on the block cause it to angularly accelerate about the y axis.

5.5 Forcevs. Torque Puzzle

In considering the effect of aforce acting at a point on a body, it sometimes seems that the force is
being considered twice. That is, if aforce F actson abody at apoint r + x(t) in space, then we first
consider F as accelerating the center of mass, and then consider F asimparting a spin to the body.

This givesrise to what at first seems a paradox: Consider the long horizontal block of figure 10
which isinitially at rest. Suppose that a force F acts on the block at the center of mass for some
period of time, say, ten seconds. Since the force acts at the center of mass, no torgue is exerted on
the body. After ten seconds, the body will have acquired some linear velocity v. The body will not
have acquired any angular velocity; thus the kinetic energy of the block will be} M|vl2.

Now suppose that the sameforce F isapplied off-center to the body as shown in figure 11. Since
the force acting on the body is the same, the acceleration of the center of massis the same. Thus,

SIGGRAPH '97 COURSE NOTES D28 PHYSICALLY BASED MODELING



F F

—> | @ (tensecondslater) @ ——p | @ | —p
%
Energy: Energy:
0 EMVTV

Figure 10: A rectangular block acted on by aforce through its center of mass.

® (ten seconds later)
F
—> ([ ©
Energy:
0

Figure 11: A block acted on by aforce, off-center of the center of mass.

SIGGRAPH '97 COURSE NOTES D29 PHYSICALLY BASED MODELING



after ten seconds, the body will again have linear velocity v. However, after ten seconds, the body
will have picked up some angular velocity w, sincethe force F, acting off center, now exertsatorque
on the body. Since the kinetic energy is (see appendix C)

%M|v|2+ %lea)

the kinetic energy of the block is higher than when the force acted through the center of mass. But
if identical forces pushed the block in both cases, how can the energy of the block be different?
Hint: Energy, or work, isthe integral of force over distance.

SIGGRAPH '97 COURSE NOTES D30 PHYSICALLY BASED MODELING



o (ten seconds later)

Energy: Energy: 1
0 > Mv v+ > W lw

Figure 12: The path the force acts over islonger than in figure 10. As aresult, the force does more
work, imparting alarger kinetic energy to the block.

Figure 12 shows why the force acting off center results in a higher kinetic energy. The kinetic
energy of the block is equivalent to the work done by the force. The work done by the force is the
integral of theforce over the path traveled in applying that force. Infigure 11, where theforce acts off
the center of mass, consider the path traced out by the point where the force is applied. This path is
clearly longer than the path taken by the center of massin figure 10. Thus, when the force is applied
off center, more work is done because the point p at which the force is applied traces out a longer
path then when the force is applied at the center of mass.

SIGGRAPH '97 COURSE NOTES D31 PHYSICALLY BASED MODELING



