
Unification and Anti-Unification in the Calculus of Constructions

Frank Pfenning
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Internet: fp@cs.cmu.edu

Abstract

We present algorithms for unification and anti-
unification in the Calculus of Constructions, where oc-
currences of free variables (the variables subject to in-
stantiation) are restricted to higher-order patterns, a
notion investigated for the simply-typed λ-calculus by
Miller. Most general unifiers and least common anti-
instances are shown to exist and are unique up to a
simple equivalence. The unification algorithm is used
for logic program execution and type and term recon-
struction in the current implementation of Elf and has
shown itself to be practical. The main application of
the anti-unification algorithm we have in mind is that
of proof generalization.

1 Introduction

Higher-order logic with an embedded simply-typed λ-
calculus has been used as the basis for a number of the-
orem provers (for example [1, 19]) and the program-
ming language λProlog [16]. Central to these systems
is an implementation of Huet’s pre-unification algo-
rithm for the simply-typed λ-calculus [12] which has
shown itself to be very useful in practice, despite the
undecidability of higher-order unification [8]. How-
ever, the non-determinism, more so than the undecid-
ability, presents some problems with full higher-order
unification as the basis for proof development envi-
ronments and logic programming languages. This has
lead to search for a restriction on the occurrences of
variables in simply-typed λ-terms such that the unifi-
cation problem becomes deterministic and decidable.
Such a class was discovered by Miller [15] and ap-
plied by Nipkow [17] to higher-order rewriting and by
the author [21] to the simplification of constraints and
type reconstruction in Elf. Though our class is more
general, since it is situated in the Calculus of Con-
structions, we follow Nipkow and call such restricted
terms here higher-order patterns. This concept is de-
veloped in Section 3.

Higher-order logic lacks an internal notion of proof.
Thus, in circumstances where proofs are important as
objects of study (say, for program extraction, proof
transformation, or proof generalization, to give but
three examples), benefits may be derived from using a
richer type theory, such as offered by the LF Logical
Framework [10] or the more general Calculus of Con-
structions [3]. A number of program development and
theorem proving environments have been constructed
on the basis of such type theories (see, for example,
[6, 18, 20]).

In order to give sophisticated assistance for proof de-
velopment and management in these frameworks, pre-
unification algorithms for LF have been developed in-
dependently by Elliott [7] and Pym [23]. The draw-
backs of non-determinism and undecidability were in-
herited by these algorithms from the simply-typed
case.

A combination of the ideas of Miller and Elliott for a
deterministic, though incomplete algorithm for the LF
Logical Framework is presented by the author in [21].
This forms the basis for the programming language
Elf and has shown itself very effective in practice. In
Section 4 we present a generalization of this algorithm
to the full Calculus of Constructions.

One of the fundamental operations on proofs is that of
generalization: we abstract away from the particulars
of a proof to obtain a more general one. Generaliza-
tion from one proof (or explanation-based generaliza-
tion, in the terminology of the Artificial Intelligence
literature) has been investigated by Hagiya [9] in the
setting of type theory, and by Dietzen and the author
in setting of λProlog [4]. Our extension to the Cal-
culus of Constructions yields an algorithm for finding
the least general generalization (or anti-unifier) of two
proofs, which may be a more general proof schema.
The restriction to patterns in this context is a restric-
tion to the language in which we are allowed to express

the generalization. Without this restriction, minimal
generalizations are usually not interesting, since they
can be instantiated to little else aside from the origi-
nal two terms. Moreover, many incomparable (in the
substitution ordering) generalizations may exist.

In this paper we outline a comprehensive theory of
unification and anti-unification for patterns in the Cal-
culus of Constructions. In this calculus, greatest com-
mon instances (most general unifiers) and least com-
mon anti-instances (least general anti-unifiers) exist
and are unique up to a simple equivalence relation.
We present algorithms to effectively compute these.
In the resulting order structure (under the instantia-
tion ordering), every pair of patterns which has a lower
bound, has a greatest lower bound, and every pair of
patterns which has an upper bound, has a greatest
upper bound. However, unlike in the first-order situa-
tion, not every pair of patterns has an upper bound.

2 The Calculus of Constructions

We began the work described herein in the context of
the LF Logical Framework [10] and we still consider
Elf [20, 21] as the primary vehicle for the applications
of the results presented in this paper. But they may
also be useful in the context of a Mathematical Vernac-
ular [5] or a program development environment based
on the Calculus of Constructions (CC) [18, 6]. For
this reason, and also because it streamlines the pre-
sentation, we chose the Calculus of Constructions as
the formalism for the presentation of the ideas.

There are currently a number of closely related for-
mulations of the Calculus of Constructions. The
choice of formalization is mainly a matter of econ-
omy of presentation of the inference rules and the
various algorithms. The formulation we use here is
taken from [11], but closely related formulations ap-
pear throughout the literature.

We use M,N for terms in general and u, v and x, y, z
for variables, where the occurrences of u in [u:M]N
and {u:M}N are binding occurrences. We also as-
sume an fixed signature Σ assigning types to con-
stants, which are denoted by c. We use h as a notation
for either a variable or a constant. We have

κ ::= Prop | Type kinds
M ::= c | x | κ | {x:M}N

| [x:M]N | (M N) terms
Γ ::= · | Γ [x:M] contexts
Σ ::= · | Σ [c:M] signatures

Following [3] we call {x:M}N a product; [x:M]N is λ-
abstraction. Unfortunately this terminology does not

exactly match up with what is used in the LF log-
ical framework, where Type is used instead of Prop,
and Type would be called Kind (if it were made ex-
plicit). We write ∆ ∪̇Γ for the result of appending the
variable disjoint contexts ∆ and Γ. Given a context
Γ = [u1:A1] . . . [up:Ap] and a term M we write (λΓ)M
for the term [u1:A1] . . . [up:Ap]M . We explicitly in-
clude constants in our formulation for a purely tech-
nical reason: we need to distinguish those identifiers
which may appear in instantiation terms (constants)
from those which may not (bound variables). Miller’s
mixed prefixes offer a slightly more general alternative,
but it would further complicate the presentation.

We allow A → B as an abbreviation for {x:A}B if
x does not occur free in B. We sometimes omit the
parentheses surrounding applications in which case ap-
plication is written simply as juxtaposition and asso-
ciates to the left. Juxtaposition binds tighter than
“→”, which associates to the right. Abstraction and
product also associate to the right and bind less tightly
than “→”. The equality in the metalanguage is “=”.

The inference system (see Figure 1) defines two main
judgments: “∆ ` Γ valid” means that Γ is a valid con-
text in the valid context ∆, and “Γ ` M : A” means
thatM is a valid term of type A in the valid context Γ.
We use A,B, . . . for types, that is, terms of type Prop
or Type. We say that A and B are consistent if they
are both of type Prop or both of type Type. In gen-
eral, we consider α-convertible terms to be identical,
and [N/x]M is the notation for substituting N for x
in M , renaming bound variable names as necessary to
avoid name clashes. We assume in the inference sys-
tem that Σ and Γ assign unique types to constants and
variables, respectively. We write dom(Σ) and dom(Γ)
for the set of constants and variables declared in Σ
and Γ, and Σ(c) and Γ(x) for the types assigned to c
and x in Σ and Γ, respectively. We also assume that
the fixed signature Σ is valid (in the obvious sense),
but omit the corresponding judgment and rules.

We consider β and η-conversion (∼=) in the “full” form
(see [3, Page 102]). η-conversion plays an important
role, because the various algorithms we give are de-
fined on canonical forms (or long βη-normal forms).
This notion is defined formally through the inference
system in Figure 2. The main judgment is Γ `M ⇒ A
(read: M is canonical of type A in context Γ). To our
knowledge, it has not been shown that every term in
the Calculus of Constructions is equivalent to a unique
canonical form—we will take this as a working hypoth-
esis as in [5]. For the restriction of this system to the
LF type theory, this has recently been proved indepen-
dently by Coquand [2] and Salvesen [25]. It is possible

2

· valid

Γ ` A : κ

Γ[x:A] valid

Σ(c) = A Γ valid

Γ ` c : A

Γ(x) = A Γ valid

Γ ` x : A

Γ valid

Γ ` Prop : Type

Γ[x:A] ` B : κ

Γ ` {x:A}B : κ

Γ[x:A] `M : B

Γ ` [x:A]M : {x:A}B

Γ `M : {x:A}B Γ ` N : A

Γ `M N : [N/x]B

Γ `M : A Γ ` A ∼= B Γ ` B : κ

Γ `M : B

Figure 1: The Calculus of Constructions

that the work here may be adapted to a language in
which η-conversion is not assumed, but the additional
complexity does not seem to be warranted, as in prac-
tice, the system with η-conversion is preferable.

The calculus shares the basic properties of the LF type
theory such as strong normalization and decidability
of type-checking. We tacitly use these properties in
the development below. A term is atomic if it has the
form Prop or hM1 . . .Mm for a constant or variable h.
We use the letter C to range over atomic terms.

We define the notion of a canonical form through the
inference system in Figure 2. The main judgment is
Γ `M ⇒ A (read: M is canonical of type A in context
Γ).

3 Higher-Order Patterns

In the theory of first-order unification and anti-
unification [22, 24, 13, 14], the authors construct a
semi-lattice of terms with free variables, ordered under
instantiation of these variables. Here we are dealing
with a typed language, so we need to consider terms
in a context which assigns types to the free variables.
Similarly, substitutions will have to be typed.

In this section, we give the basic definitions which al-
low us to present the algorithms for unification and
anti-unification.

A valid cterm is a pair 〈∆,M〉 such that ∆ `M ⇒ A
(which implies that ∆ ` M : A and M in canonical
form). We consider α-convertible cterms as identical,
where the notion of α-conversion includes renaming

variables in ∆ and applying appropriate renaming in
the tail of ∆ and M . Note that 〈∆,Type〉 is not a
valid cterm.

A central notion in the development of both, unifica-
tion and anti-unification, is the notion of a partial per-
mutation. Given natural numbers n and p, a partial
permutation φ from n into p is an injective mapping
from {1, . . . , n} into {1, . . . , p}, that is, φ(i) = φ(i′)
implies i = i′.

For the remainder of the paper, we let ∆ range over
contexts giving types to variables which may be in-
stantiated by substitutions. The next step is to cap-
ture the equivalence relation “up to renaming of free
variables” which is used in first-order unification. Be-
cause of dependencies, variables in ∆ cannot be re-
ordered arbitrarily. Moreover, variables in ∆ which do
not appear in M or elsewhere in ∆ may be dropped
and yield an equivalent cterm in the substitution or-
dering.

Let φ be a partial permutation from n into p. Then
we define

φ〈[u1:A1] . . . [up:Ap],M〉
= 〈[uφ(1):Aφ(1)] . . . [uφ(n):Aφ(n)],M〉

and, if the right-hand side is valid, call it a pattern re-
naming of the left-hand side. Let ∼= be the equivalence
relation on valid cterms generated by α-conversion and
pattern renaming.

Given ∆ = [u1:A1] . . . [up:Ap]. A valid substitu-
tion θ with domain ∆ and codomain ∆′ is a tuple

3

Γ valid

Γ ` Prop⇒ Type

Γ ` A⇒ κ′ Γ[x:A] ` B ⇒ κ

Γ ` {x:A}B ⇒ κ

Γ ` A⇒ κ′ Γ[x:A] `M ⇒ B

Γ ` [x:A]M ⇒ {x:A}B

Γ ` hM1 . . .Mn : D Γ `M1 ⇒ A1 . . . Γ `Mn ⇒ An

Γ ` hM1 . . .Mn ⇒ D

where D is atomic or Type

Figure 2: Canonical Forms

〈M1, . . . ,Mp〉 such that for 1 ≤ i ≤ p

∆′ `Mi : [Mi−1/ui−1] . . . [M1/u1]Ai.

A substitution with domain ∆ and codomain ∆′ can
be applied to a cterm of the form 〈∆,M〉, yielding
〈∆′, [Mp/up] . . . [M1/u1]M〉. It is easy to verify that
valid substitutions, when applied to valid cterms, yield
valid cterms. Composition of substitutions is defined
in the obvious manner. For each valid context ∆ there
exists an identity substitution δ∆. We omit the super-
script ∆ when it can easily be inferred.

Since we assume that variables in a context have dis-
tinct names, we sometimes use a named notation for
substitutions. Let ∆ be [x1:A1] . . . [xi:Ai] . . . [xp:Ap]
and let θ be a substitution from ∆ to ∆′ of
the form 〈x1, . . . ,M, . . .xp〉 where ∆′ has the form
[x1:A1] . . . [y1:B1] . . . [yq:Bq] . . . [xp:[M/xi]Ap]. In this
case we may write θ as [xi←M].

A cterm 〈∆′,M ′〉 is an instance of 〈∆,M〉 if there
exists a valid substitution θ with domain ∆ and
codomain ∆′ such that θ〈∆,M〉 = 〈∆′,M ′〉. We write
〈∆′,M ′〉 ≤ 〈∆,M〉.
In the first-order case, we can consider a term with
free variables as a representation of all of its ground
instances. This is not possible here, since many terms
do not have any ground instances. Since it is undecid-
able if a given type is inhabited, this would make the
equivalence relation on cterms undecidable.

In general, unification is undecidable already in the
simply-typed λ-calculus [8]. Thus, some restriction
must be placed on the occurrences of free variables
(those in ∆) in order to obtain a class of cterms for
which unification is decidable and most general uni-
fiers exist. A very natural class has been discovered
by Miller [15] as the basis for the logic programming

language Lλ. This class has been applied to higher-
order rewriting by Nipkow [17]. A generalization use-
ful in the programming language Elf based on the LF
Logical Framework is given by the author in [21]. It
is used in Elf for term reconstruction and proof search
(in the manner of constraint logic programming). The
practical experience for the implementation of type
reconstruction for Elf and the Calculus of Construc-
tions provides strong evidence for the utility of this
class of terms. Following Nipkow, we call cterms in
this class higher-order patterns or patterns, for short.
The main judgment defining higher-order patterns is
∆; Γ ` M Pat. It is defined on canonical forms M
and is shown in Figure 3. A cterm 〈∆,M〉 is a higher-
order pattern if ∆; · `M Pat. We will sometimes call
M a pattern if ∆ and Γ are fixed.

In the definition, φ is a partial permutation from n into
p. Strictly speaking, the arguments to x in the last
rule should be converted to their canonical forms (for
example, when the arguments are of function type).
Here and for the remainder of this paper, we will take
the liberty of leaving such conversions implicit. For
the remainder of this paper we deal primarily with
valid patterns. We refer to a pattern of the form
x uφ(1) . . .uφ(n) as a generalized variable or Gvar.

It is easy to see that given two valid patterns 〈∆,M〉
and 〈∆′,M ′〉, if 〈∆,M〉 ∼= 〈∆′,M ′〉 then 〈∆,M〉 ≤
〈∆′,M ′〉 and 〈∆′,M ′〉 ≤ 〈∆,M〉. The implication in
the other direction does not hold, but we will give an
exact characterization of equivalence in Theorem 2.

4 Unification

We now develop a notion which is analogous to most-
general unifiers for higher-order patterns. For techni-
cal reasons, this is expressed as the greatest common
instance of two higher-order patterns, though the uni-

4

∆; Γ ` A Pat ∆; Γ[u:A] `M Pat

∆; Γ ` [u:A]M Pat

∆; Γ ` A Pat ∆; Γ[u:A] ` B Pat

∆; Γ ` {u:A}B Pat

∆; Γ `M1 Pat . . . ∆; Γ `Mm Pat

∆; Γ ` cM1 . . .Mm Pat

∆; Γ `M1 Pat . . . ∆; Γ `Mm Pat u in dom(Γ)

∆; Γ ` uM1 . . .Mm Pat

∆; Γ ` Prop Pat

Γ = [u1:A1] . . . [up:Ap] x in dom(∆)

∆; Γ ` x uφ(1) . . .uφ(n) Pat

Figure 3: Valid Higher-Order Patterns

fying substitution (the most general unifier) is also
explicitly calculated. Miller [15] develops a closely re-
lated notion for the simply-typed λ-calculus. His pre-
sentation is untyped, which already suggests that the
algorithm does not rely on specific properties of sim-
ple types and may generalize even to an impredicative
setting such as the Calculus of Constructions.

A common instance for valid patterns 〈∆′,M ′〉 and
〈∆′′,M ′′〉 is any valid pattern 〈∆,M〉 such that
〈∆,M〉 ≤ 〈∆′,M ′〉 and 〈∆,M〉 ≤ 〈∆′′,M ′′〉. 〈∆,M〉
is a greatest common instance if it is a greatest lower
bound with respect to ≤: for any common instance
〈∆∗,M∗〉, 〈∆∗,M∗〉 ≤ 〈∆,M〉. We refer to the prob-
lem of finding a greatest common instance as unifica-
tion.

We now present a unification algorithm for patterns
which finds a greatest common instance. The algo-
rithm is presented as an inference system, written in
such a way that it has a direct operational interpreta-
tion.

We define the judgment

∆∗; Γ `θ M ′ uM ′′ = 〈∆,M〉

with the idea that, if given 〈∆′,M ′〉 and 〈∆′′,M ′′〉 and
a deduction of

∆′ ∪̇∆′′; · `θ M ′ uM ′′ = 〈∆,M〉

then 〈∆,M〉 is a greatest common instance of 〈∆′,M ′〉
and 〈∆′′,M ′′〉. θ will be the unifying substitution
(with domain ∆′ ∪̇∆′′ and codomain ∆).

For the remainder of this section, we assume that Γ
has the form [u1:A1] . . . [up:Ap]. We refer to a variable
in Γ as a Uvar (short for universal variable). Recall
that (λ[u1:A1] . . . [up:Ap])M = [u1:A1] . . . [up:Ap]M .
In order to implement the idea above, we preserve the
following invariants in the inference system:

1. θ〈∆∗, (λΓ)M ′〉 = 〈∆, (λΓ)M〉,

2. θ〈∆∗, (λΓ)M ′′〉 = 〈∆, (λΓ)M〉,

3. ∆ ∪̇Γ `M : A,

4. ∆∗ ∪̇Γ `M ′ : A,

5. ∆∗ ∪̇Γ `M ′′ : A.

Operationally, during the execution of the algorithm,
we assume we are given ∆∗, Γ, M ′ and M ′′ and we
construct θ, ∆ and M . The requirement on M ′ and
M ′′ to have the same type and be well-typed is cru-
cial here, since it guarantees the existence of canonical
forms for M ′ and M ′′. However, it is not restrictive:
Given any two valid patterns, we first unify their types
and then the terms after applying the substitution (see
Theorem 1). Such a well-typedness requirement can-
not be maintained when considering unification for LF
(or the Calculus of Constructions) without the restric-
tion to patterns, where a complicated “acceptability”
condition must be substituted instead (see [7]).

To obtain some intuition about the unification of
higher-order patterns, consider the following unifica-
tion problems. Types are not important to understand
these examples (assume that all Uvars are of some base
type i and restore the types of the remaining variables
and constants accordingly).

[x]; [u1][u2] ` x u1 u2 u u1 = 〈·, u1〉
[x]; [u1][u2] ` x u1 u2 u c u2 = 〈·, c u2〉
[x]; [u1][u2][u3] ` x u2 u3 u1 u x u1 u3 u2 = 〈[z], z u3〉
[x1][x2]; [u1][u2][u3] ` x1 u3 u1 u x2 u2 u3 = 〈[z], z u3〉

Consider also these two simple examples which show
that greatest common instances may not exist if the

5

restriction to patterns is relaxed. Of course, our infer-
ence system does not treat such terms, so the asser-
tions are hypothetical.

[x][y]; [u] ` c (x u u) (x a b)u c u y = 〈·, c u a〉
[x][y]; [u] ` c (x u u) (x a b)u c u y = 〈·, c u b〉

[x][y]; · ` c (x a) (x b)u c a y = 〈·, c a b〉
[x][y]; · ` c (x a) (x b)u c a y = 〈·, c a a〉

Lam-Lam This is the rule responsible for unifying
two λ-expressions. It will always be applicable for any
two valid unifiable expressions of product type, since
we maintain the invariant that the terms to be unified
have the same type, and since the canonical form of a
term of product type will be a λ-abstraction.

∆∗; Γ[u:A] `θ M ′ uM ′′ = 〈∆,M〉

∆∗; Γ `θ [u:A]M ′ u [u:A]M ′′ = 〈∆, [u:A]M〉

Prod-Prod When unifying products we have to first
unify the corresponding types and pass the substitu-
tion along in the manner of the Rigid-Rigid rule below.
We also require that A′ and A′′ be consistent, that is,
both be of the same type (either Prop or Type).

∆∗; Γ `θ1 A′ uA′′ = 〈∆1, A〉
∆1; Γ[u:A] `θ2 θ1M

′ u θ1M
′′ = 〈∆,M〉

∆∗; Γ `θ {u:A′}M ′ u {u:A′′}M ′′ = 〈∆, {u:A∗}M〉

where θ = θ2 ◦θ1 is a substitution from ∆∗ into ∆ and
A∗ = θ2A.

Rigid-Rigid The terminology is borrowed from
Huet [12]. This has two analogous subcases: it may be
that we are unifying two atomic terms beginning with
constants or with variables in dom(Γ). Thus h stands
either for a constant c or a Uvar. The algorithm will
fail in this case if it encounters a situation where the
two heads are different or have a different number of
arguments.

∆∗; Γ `θ1 M ′1 uM ′′1 = 〈∆1,M1〉
. . .

∆m−1; Γ `θm θm−1M ′m u θm−1M ′′m = 〈∆m,Mm〉

∆∗; Γ `θm hM ′1 . . .M ′m u hM ′′1 . . .M ′′m
= 〈∆m, hM

∗
1 . . .M∗m〉

where θj = θj ◦ · · · ◦ θ1 for 1 ≤ j ≤ m is a substitution
from ∆∗ into ∆j and M∗j = (θj+1 ◦ · · · ◦ θm)Mj . The
method of unifying the later arguments to h given the
unifiers for the earlier ones is important for the op-
erational reading of the rules, since it is this order

which guarantees the invariant that the terms being
unified have the same type. If m = 0 then θ0 = δ∆∗ ,
the identity substitution on ∆∗. We also include in
Rigid-Rigid the case where h = Prop. Note that we
have no case for unifying Type, since 〈Γ,Type〉 is not
a valid cterm.

Gvar-Const Rather than performing the substitu-
tion all at once, we will incrementally “imitate” (in
the sense of Huet) the term on the right-hand side.
The rule below applies only if x does not occur free in
cM1 . . .Mm—otherwise the two terms are not unifi-
able. For this condition to be correct, we need the
requirement that the terms be in canonical form. For
example, x and ([u] [v] v)x are unifiable.

∆0; Γ `θ1 x1 uφ(1) . . .uφ(n) uM ′′1 = 〈∆1,M1〉
. . .

∆m−1; Γ `θm xm uφ(1) . . .uφ(n) u θm−1M ′′m
= 〈∆m,Mm〉

∆∗; Γ `θm x uφ(1) . . .uφ(n) u cM ′′1 . . .M ′′m
= 〈∆m, cM

∗
1 . . .M∗m〉

where ∆0 is ∆∗ where [x] has been replaced by
[x1] . . . [xm] at appropriate types. Furthermore,

θ0 = [x← [uφ(1):Aφ(1)] . . . [uφ(n):Aφ(n)]
c (x1 uφ(1) . . .uφ(n)) . . . (xm uφ(1) . . .uφ(n))]

(considered as a substitution from ∆∗ to ∆0) and θj =
θj ◦· · ·θ1 ◦θ0 and M∗j = (θj+1 ◦· · ·◦θm)Mj . The types
omitted above are fully determined by the type of the
constant c and the types assigned by Γ and ∆∗. We
also include here the case that the right-hand side is
Prop.

Gvar-Uvar In this case we perform a “projection”
(in the sense of Huet), if the Uvar at the head of the
term is one of the arguments of x and x does not occur
in the right-hand side. If this condition is not satisfied,
unification will fail. Thus, for some 1 ≤ i ≤ n

∆0; Γ `θ1 x1 uφ(1) . . .uφ(n) uM ′′1 = 〈∆1,M1〉
. . .

∆m−1; Γ `θm xm uφ(1) . . .uφ(n) u θm−1M ′′m
= 〈∆m,Mm〉

∆∗; Γ `θm x uφ(1) . . .uφ(n) u uφ(i)M
′′
1 . . .M ′′m

= 〈∆m, uφ(i)M
∗
1 . . .M∗m〉

where ∆0 is ∆∗ where [x] has been replaced by
[x1] . . . [xm] at appropriate types, where

θ0 = [x← [uφ(1):Aφ(1)] . . . [uφ(n):Aφ(n)]
uφ(i) (x1 uφ(1) . . .uφ(n)) . . . (xm uφ(1) . . .uφ(n))]

6

(considered as a substitution from ∆∗ to ∆0), and
where θj = θj◦· · ·◦θ1◦θ0 andM∗j = (θj+1◦· · ·◦θm)Mj .
The types omitted above are fully determined by the
types assigned in Γ and ∆∗.

Gvar-Gvar-Same In Huet’s algorithm this case is
simply postponed as unifiable. Here we collect the
arguments on which the two terms agree.

∆∗; Γ `θ x uφ(1) . . .uφ(n) u x uψ(1) . . .uψ(n)

= 〈∆′, z uρ(1) . . .uρ(l)〉

where ∆′ is ∆∗ where [x] has been replaced by [z] and
θ = [x ← [uφ(1):Aφ(1)] . . . [uφ(n):Aφ(n)] z uρ(1) . . .uρ(l)]
and ρ is a partial permutation satisfying that φ(i) =
ψ(i) iff there is a k such that ρ(k) = φ(i). ρ always
exists and is unique up to permutation.

Gvar-Gvar-Diff To unify two different generalized
variables, we have to collect the common arguments.

∆∗; Γ `θ x uφ(1) . . .uφ(n) u y uψ(1) . . .uψ(m)

= 〈∆′, z uρ(1) . . .uρ(l)〉

where ∆′ is ∆∗ where the leftmost among [x] and [y]
has been replaced by [z] and the rightmost has been
deleted. θ substitutes

x← [uφ(1)] . . . [uφ(n)] z uρ(1) . . .uρ(l), and
y ← [uψ(1)] . . . [uψ(m)] z uρ(1) . . .uρ(l).

ρ is a partial permutation satisfying that φ(i) = ψ(j)
iff there is a k such that ρ(k) = φ(i). Here, too, ρ
always exists and is unique up to permutation.

Theorem 1 (Greatest Common Instance) Given
valid patterns 〈∆′,M ′〉 and 〈∆′′,M ′′〉. If

1. ∆′ `M ′ : A′ and ∆′′ `M ′′ : A′′, and

2. Either

• A and A′ are consistent (of the same type)
and ∆′ ∪̇∆′′; · `θ∗ A′ uA′′ = 〈∆∗, A〉, or

• A′ = A′′ = Type, θ∗ = δ, ∆∗ = ∆′ ∪̇∆′′ and

3. ∆∗; · `θ θ∗M ′ u θ∗M ′′ = 〈∆,M〉

then 〈∆,M〉 is a greatest common instance of 〈∆′,M ′〉
and 〈∆′′,M ′′〉 with the unifying substitution θ ◦ θ∗.
Moreover, there is an effective algorithm which com-
putes a greatest common instance 〈∆,M〉 if it exists
and fails otherwise.

The proof is delicate and tedious, but not difficult, fol-
lowing the standard patterns (see, for example, Lassez
et al. [14]). Given the invariants maintained in the de-
ductive system, the main difficulty is in showing that
the partial permutations ρ we construct cover all pos-
sible instances (for the basic idea of this proof, see
Miller [15]).

It is easy to see that the operational interpretation of
this system will always terminate (either with failure,
if no deduction can be constructed) or with a greatest
common instance and a most general unifier.

Examining the deductive system shows that the only
non-determinism arises in the choice of the permuta-
tion ρ in the Gvar-Gvar cases. This observation gives
rise to a characterization of equivalence.

Let 〈∆,M〉 be a pattern and assume ∆ is of the form
∆1 [x:{u1:A1} . . .{un:An}A] ∆2 and that φ is a per-
mutation from n into n. Then let

N = [u1] . . . [un] x
′ uφ(1) . . .uφ(n),

∆′ = ∆1 [x′:{uφ(1)} . . . {uφ(n)}A] [N/x]∆2,
θ = [x← N]

where θ is a substitution from ∆ into ∆′. We refer to
θ as a permuting substitution and say that θ〈∆,M〉 =
〈∆′,M ′〉 is a pattern permutation of 〈∆,M〉. This is
not to be confused with the weaker notion of pattern
renaming (∼=) defined earlier.

Theorem 2 Let ≡ be the least equivalence relation
on patterns which includes pattern renaming (∼=) and
pattern permutation. Then 〈∆,M〉 ≤ 〈∆′,M ′〉 and
〈∆′,M ′〉 ≤ 〈∆,M〉 iff 〈∆,M〉 ≡ 〈∆′,M ′〉.

As an example, consider

〈[x:i→ i→ i→ i], [u1:i][u2:i][u3:i] x u3 u1 u2〉
≡ 〈[x′:i→ i→ i→ i], [u1:i][u2:i][u3:i] x

′ u2 u3 u1〉

It is easy to see that these two are equivalent under
the instantiation ordering.

5 Anti-Unification

A common anti-instance for valid patterns 〈∆′,M ′〉
and 〈∆′′,M ′′〉 is any valid pattern 〈∆,M〉 such that
〈∆′,M ′〉 ≤ 〈∆,M〉 and 〈∆′′,M ′′〉 ≤ 〈∆,M〉. 〈∆,M〉
is a least common anti-instance if for any common
anti-instance 〈∆∗,M∗〉, 〈∆,M〉 ≤ 〈∆∗,M∗〉. We refer
to the problem of finding a least common anti-instance
as anti-unification.

For first-order terms, any variable x serves as the top
element of the semi-lattice formed by the instantia-
tion ordering, since a variable can be instantiated to

7

an arbitrary term. In the Calculus of Constructions,
there are pairs of patterns which have no upper bound.
Consider, for example, Prop t (Prop → Prop). Since
we have no variables of type Type, there is no variable
or other term which can be instantiated to both of
these terms.

The central ingredient in the elegant formulation of
first-order anti-unification by Huet [13] is a global
function Φ which maps pairs of terms to variables.
Consider f(a, a)t f(b, b) = f(x, x) if Φ(a, b) = x. The
function is used to guarantee that the same disagree-
ments are mapped to the same variable (x, in this
example). We were not able to find a corresponding
formulation in this setting, due to the nature of the
type dependencies. Thus we return to a formulation
similar to algorithms presented by Plotkin [22] and
Reynolds [24].

In our setting, there are several complicating factors.
We discuss each of them in turn. We assume that we
are considering a subproblem of anti-unifying 〈∆′,M ′〉
and 〈∆′′,M ′′〉, and we fix ∆′ and ∆′′. In the process of
traversing M ′ and M ′′ to find disagreements, we build
up local contexts Γ, Γ′ and Γ′′ (similar to the way this
is required for unification) and anti-unify the subterms
of M ′ and M ′′ as 〈Γ′, N ′〉 and 〈Γ′′, N ′′〉 within their
local context.

The first of the complications is the presence of vari-
able binders in the terms. For example, given con-
stants a:i and f :i→ i→ i, consider

[u:i] f u u t [u:i] f a u = [u:i] f (xu)u

where the variable x has type i → i. Observe that
[u:i] f x u is not a solution here, since it cannot be
instantiated to the first term. On the other hand,

[u:i] f b u t [u:i] f a u = [u:i] f x u

since u does not appear in a or b.

Thus, when N andN ′ differ at the top-level, 〈Γ′, N ′〉t
〈Γ′′, N ′′〉 = x uφ(1) . . .uφ(n) for some partial permuta-
tion φ from n into p, where Γ = [u1:A1] . . . [up:Ap].
In order to be an upper bound, uφ(1) . . .uφ(n) must
include at least all the variables of Γ′ and Γ′′ which
are free in N ′ and N ′′. The suspicion arises that one
would collect exactly those uk which appear either in
N ′ or N ′′. However, this is not quite possible, due to
the presence of types—the second complication. Con-
sider

[u1:o][u2:true(u1)][u3:true(u1)] u2

t [u1:o][u2:true(u1)][u3:true(u1)] u3

= [u1:o][u2:true(u1)][u3:true(u1)] x u1 u2 u3

where true : o→ Prop. Here, the argument u1 to x is
required so that the variable x can be typed (with the
type {u1:o}{u2:true(u1)}{u3:true(u1)} true(u1)).

The third complication is the possibility of permuting
the arguments to a generalized variable in order to
obtain a more specific solution. Consider

[u:i][v:i] f (f (g u) v) (f (g v)u)
t [u:i][v:i] f (g v (g u)) (g u (g v))
= [u:i][v:i] f (x u v) (x v u)

Note that we can use the same variable x even
though the two disagreements (f (g u) v) t (g v (g u))
and (f (g v)u)t(g u (g v)) are different! The key obser-
vation here is that the two disagreements, each consid-
ered in the context [u:i][v:i] are permutations of each
other. This allows the generalization to capture cer-
tain symmetries.

The main judgment is

∆′; ∆′′; ∆; ∆∗; Γ `θ
∗,θ∗∗

θ′,θ′′ M = 〈Γ′,M ′〉 t 〈Γ′′,M ′′〉 @ A

with the intent that, if

∆′; ∆′′; ∆; ·; · `δ,δθ′,θ′′ M = 〈·,M ′〉 t 〈·,M ′′〉 @ A

then 〈∆,M〉 is a least common anti-instance of
〈∆′,M ′〉 and 〈∆′′,M ′′〉 and ∆ ` M : A. Our rules
preserve the following invariants (for some A′ and A′′)

1. θ′〈∆, (λΓ)M〉 = 〈∆′, (λΓ′)M ′〉,

2. θ′′〈∆, (λΓ)M〉 = 〈∆′′, (λΓ′′)M ′′〉,

3. θ∗〈∆∗, (λΓ)A〉 = 〈∆′, (λΓ′)A′〉,

4. θ∗∗〈∆∗, (λΓ)A〉 = 〈∆′′, (λΓ′′)A′′〉,

5. ∆′ ∪̇Γ′ `M ′ : A′ and ∆′′ ∪̇Γ′′ `M ′′ : A′′,

6. ∆ ∪̇Γ `M : A.

In the operational reading of these rules, ∆∗, Γ, θ∗,
θ∗∗, Γ′, M ′, and Γ′′ and M ′′ are inputs, and ∆, M ,
and θ′ and θ′′ are outputs. A is also considered an
input, which is not a restriction (see Theorem 3).

Operationally, ∆∗ is the domain of the substitutions
θ∗ and θ∗∗: it contains types for all the variables which
had to be introduced during the anti-unification so far.
∆∗ will be an initial prefix of the final result ∆.

In the presentation of the rules in Figure 4, we sup-
press ∆′ and ∆′′, since they remain constant through-
out the inferences. We also assume throughout that Γ
has the form [u1:A1] . . . [up:Ap].

8

∆; ∆∗; Γ[u:A] `θ
∗,θ∗∗

θ′,θ′′ M = 〈Γ′[u:A′],M ′〉 t 〈Γ′′[u:A′′],M ′′〉 @ B
Lam-Lam

∆; ∆∗; Γ `θ
∗,θ∗∗

θ′,θ′′ [u:A]M = 〈Γ′, [u:A′]M ′〉 t 〈Γ′′, [u:A′′]M ′′〉 @ {u:A}B

∆1; ∆
∗; Γ `θ

∗,θ∗∗

θ′1,θ
′′
1
A = 〈Γ′, A′〉 t 〈Γ′′, A′′〉 @ κ′

∆; ∆1; Γ[u:A] `θ
′
1,θ
′′
1

θ′,θ′′ B = 〈Γ′, B′〉 t 〈Γ′′, B′′〉 @ κ
Prod-Prod-Same

∆; ∆∗; Γ `θ
∗,θ∗∗

θ′,θ′′ {u:A}B = 〈Γ′, {u:A′}B′〉 t 〈Γ′′, {u:A′′}B′′〉 @ κ

∆1; ∆
∗; Γ `θ

∗,θ∗∗

θ′1,θ
′′
1
M1 = 〈Γ′,M ′1〉 t 〈Γ′′,M ′′1 〉 @ A1

. . .

∆m; ∆m−1; Γ `
θ′m−1,θ

′′
m−1

θ′m,θ
′′
m

Mm = 〈Γ′,M ′m〉 t 〈Γ′′,M ′′m〉 @ Am
Atom-Atom-Same

∆m; ∆∗; Γ `θ
∗,θ∗∗

θ′m,θ
′′
m
hM1 . . .Mm = 〈Γ′, hM ′1 . . .M ′m〉 t 〈Γ′′, hM ′′1 . . .M ′′m〉 @ A

Diff-Old
∆∗; ∆∗; Γ `θ

∗,θ∗∗

θ∗,θ∗∗ x uφ(1) . . .uφ(n) = 〈Γ′,M ′〉 t 〈Γ′′,M ′′〉 @ C

where C is atomic, x in dom(∆∗) and φ satisfies
(θ∗x)uφ(1) . . .uφ(n) = M ′, and

(θ∗∗x)uφ(1) . . .uφ(n) = M ′′.

Diff-New
∆; ∆∗; Γ `θ

∗,θ∗∗

θ′,θ′′ x uφ(1) . . .uφ(n) = 〈Γ′,M ′〉 t 〈Γ′′,M ′′〉 @ C

where C is atomic (which excludes Type) and

∆ = ∆∗ [x:{uφ(1):Aφ(1)} . . .{uφ(n):Aφ(n)}C]
θ′ = θ∗, [uφ(1):Aφ(1)] . . . [uφ(n):Aφ(n)]M

′

θ′′ = θ∗∗, [uφ(1):Aφ(1)] . . . [uφ(n):Aφ(n)]M
′′.

Figure 4: Rules for Anti-Unification

Lam-Lam The main observation here is that we do
not have to anti-unify the types: the invariants guar-
antee that A serves as a least common anti-instance.

Prod-Prod-Same If both M ′ and M ′′ are products,
we proceed in the same way as for abstractions, except
that we also first need to anti-unify the types. For
this rule to apply, we also require that A′ and A′′ be
consistent—otherwise anti-unification fails.

Atom-Atom-Same When unifying two atomic
terms with equal head we have to proceed from left
to right, anti-unifying the corresponding arguments
and building up the substitutions θ′ and θ′′ and the
context ∆.

Here the types Ai are determined by the type of h and

the terms M1, . . .Mi−1. This case is intended to cover
the cases where h is Prop, a constant c or a variable
bound in Γ, Γ′, and Γ′′ (by the invariants, they bind
the same variables, though possibly at different types).

Diff-Old This case applies when we encounter a dis-
agreement we have seen already (which will have been
recorded in θ∗ and θ∗∗). See earlier motivating exam-
ples for a note on the need to check modulo a partial
permutation.

Diff-New For this case we require, that none of the
other cases apply. Here we need to create a new vari-
able and give it just enough arguments so that the
resulting term can be instantiated to both M ′ and
M ′′ and is well-typed. If C is not atomic then anti-

9

unification fails.

[uφ(1):Aφ(1)] . . . [uφ(n):Aφ(n)]M
′ is the substitution

term for x in θ′, which otherwise behaves like θ∗. The
partial permutation φ must be a smallest permutation
such that there exists an i such that φ(i) = k iff uk
occurs in M ′ or in M ′′ and such that xuφ(1) . . .uφ(n)

is well-typed in ∆ ∪̇Γ. Such a partial permutation al-
ways exists under the stated conditions on C above
and is unique up to permutation.

Theorem 3 (Least Common Anti-Instance) Given
valid patterns 〈∆′,M ′〉 and 〈∆′′,M ′′〉. If

1. ∆′ `M ′ : A′ and ∆′′ `M ′′ : A′′, and

2. either

A′ and A′′ are consistent (both of type κ) and

∆′; ∆′′; ∆∗; ·; · `δ,δθ∗,θ∗∗ A = 〈·, A′〉 t 〈·, A′′〉 @ κ, or

A′ = A′′ = Type = A, θ∗ = θ∗∗ = δ,∆∗ = ·, and

3. ∆′; ∆′′; ∆; ∆∗; · `θ
∗,θ∗∗

θ′,θ′′ M = 〈·,M ′〉t〈·,M ′′〉 @ A

then 〈∆,M〉 is a least common anti-instance of
〈∆′,M ′〉 and 〈∆′′,M ′′〉. Moreover, there is an effec-
tive algorithm which computes a least common anti-
instance 〈∆,M〉 if it exists and fails otherwise.

The proof follows patterns similar to the one given
by Reynolds [24], though significantly more intricate
in the details, due the presence of binding operators
and types. Key here is a lemma that the invariants
stated at the beginning are preserved. Termination of
the operational version of the algorithm can easily be
seen.

6 Examples of Anti-Unification

The examples below are mostly situated in the LF
subcalculus of the Calculus of Constructions [10]. We
show those parts of a full axiomatization of first-order
logic in LF which are necessary for our examples in
Figure 5. The logical connectives are written in infix
notation.

In the examples below, both ∆′ and ∆′′ are always
empty, since (free) variables in the patterns to be anti-
unified do not play an interesting role: they behave
essentially as if they were constants. The first set of
simple examples can be found in Figure 6.

We omit the types of the generalization variables from
here on, since they can easily be filled in.

o : Prop
i : Prop

zero : i
succ : i→ i

∧ : o→ o→ o
⊃ : o→ o→ o

true : o→ Prop

andi : {p:o}{q:o} true(p)→ true(q)
→ true(p ∧ q)

andel : {p:o}{q:o} true(p ∧ q)→ true(p)
ander : {p:o}{q:o} true(p ∧ q)→ true(q)

impliesi : {p:o}{q:o} (true(p)→ true(q))
→ true(p ⊃ q)

impliese : {p:o}{q:o} true(p ⊃ q)→ true(p)
→ true(q)

Figure 5: Example Signature

[u:i][v:i] f u v
t [u:i][v:i] f v u
= [u:i][v:i] f (x u v) (x v u)

[u:i][v:i][w:i] g (f uw) (f v w) (f v u)
t [u:i][v:i][w:i] g (h v u) (hu v) (hw v)
= [u:i][v:i][w:i] g (x u v w) (x v uw) (x v wu)

[u:i][v:i] f(g u v) ([w:i] g w v)
t [u:i][v:i] f(h v u) ([w:i] h v w)
= [u:i][v:i] f(x v u) ([w:i] x v w)

The next example exhibits a phenomenon which can
arise due to the presence of explict type abstraction
and application. The terms in this example are not
presented in canonical form.

[u:{v:Prop}(v → v)] u ({v:Prop}(v → v))u
t [u:{v:Prop}(v → v)] u
= [u:{v:Prop}(v → v)] x u

The remaining examples are two simple proof gener-
alizations. In the first one, x3 and x4 must be chosen
differently, since they must be typed differently.

7 Conclusion and Further Work

The unification algorithm we present has been imple-
mented (with some optimizations) in its full generality

10

i t i→ i = x where ∆ = [x:Prop]
zero t succ = y where ∆ = [x:Prop][y:x]

i t zero undefined
Prop t Prop→ Prop undefined

[f] f zero zero t [f] f (succ zero) (succ zero) = [f]f x x where ∆ = [x:i]

Figure 6: Examples of Anti-Unification

[p:o][u:true(p ⊃ p)][v:true(p)] impliesep p u v
t [p:o][u:true(p)][v:true(p ⊃ p)] impliesep p v u
= [p:o][u:true(x1 p)][v:true(x2 p)] impliesep p (x3 p u v) (x4 p u v)

[p:o][q:o][u:true(p ∧ q)] andi q p (ander p q u) (andel p q u)
t [p:o][q:o][u:true(p ∧ q)] andi p q (andel p q u) (ander p q u)
= [p:o][q:o][u:true(p ∧ q)] andi (x1 p q) (x1 q p) (x2 p q u) (x3 p q u)

Figure 7: Examples of Proof Generalization via Anti-Unification

in the implementation of the Elf language [20, 21] and
exhibits good characteristics in terms of performance.
The algorithm is used for the solution of constraints
during the execution of a logic program and for per-
forming term and type reconstruction after parsing.
However, many improvements are still possible and
the subject of current investigation.

The implementation of anti-unification is not yet com-
plete, and its efficiency is still undetermined. From
examples it is clear that the algorithm can perform
useful proof generalizations, but the question exactly
how this tool is to be tied into a proof development
environment or language has not yet been settled.

The form of anti-unification would be different in a
calculus with universes. It appears plausible that in
a calculus with a cumulative hierarchy of universes
we can recover the property of first-order terms that
any pair of terms has an anti-unifier. This anti-unifier
should exist at a level at most one above the maximum
of the two patterns which are anti-unified.

From some examples it appears that the intuitive-
ness of generalizations can be significantly improved
if anti-unification takes into account additional equa-
tions which come from the object theory under consid-
eration. It is conceivable that there is an interesting
theory of equational anti-unification to be discovered,
similar to the theory of equational first-order unifica-
tion.

Acknowledgments

The author would like to thank Scott Dietzen for
a number of discussions on generalization and anti-
unification and the anonymous referees for helpful sug-
gestions. This research was supported in part by the
Office of Naval Research under contract N00014-84-K-
0415 and in part by the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 5404, mon-
itored by the Office of Naval Research under the same
contract.

References

[1] Peter B. Andrews, Sunil Issar, Dan Nesmith, and
Frank Pfenning. The TPS theorem proving sys-
tem. In M.E. Stickel, editor, 10th International
Conference on Automated Deduction, Kaiser-
slautern, Germany, pages 641–642. Springer-
Verlag LNCS 449, July 1990. System abstract.

[2] Thierry Coquand. An algorithm for testing con-
version in type theory. In Gérard Huet and
Gordon D. Plotkin, editors, Logical Frameworks.
Cambridge University Press, 1991. To appear.

[3] Thierry Coquand and Gérard Huet. The Calculus
of Constructions. Information and Computation,
76(2/3):95–120, February/March 1988.

[4] Scott Dietzen and Frank Pfenning. Higher-order
and modal logic as a framework for explanation-
based generalization. Machine Learning, 1991. To

11

appear. Available as Technical Report CMU-CS-
89-160, Carnegie Mellon University.

[5] Gilles Dowek. A proof synthesis algorithm for
a mathematical vernacular in a restriction of
the Calculus of Constructions. Unpublished
manuscript, January 1991.

[6] Dominic Duggan. Caliban: A Programming Lan-
guage and Environment Based on Types as Spec-
ifications. PhD thesis, University of Maryland,
College Park, 1991. In preparation.

[7] Conal M. Elliott. Extensions and Applications of
Higher-Order Unification. PhD thesis, School of
Computer Science, Carnegie Mellon University,
May 1990. Available as Technical Report CMU-
CS-90-134.

[8] Warren D. Goldfarb. The undecidability of the
second-order unification problem. Theoretical
Computer Science, 13:225–230, 1981.

[9] Masami Hagiya. Generalization from partial pa-
rameterization in higher-order type theory. The-
oretical Computer Science, 63:113–139, 1989.

[10] Robert Harper, Furio Honsell, and Gordon
Plotkin. A framework for defining logics. Journal
of the ACM, to appear. A preliminary version ap-
peared in Symposium on Logic in Computer Sci-
ence, pages 194–204, June 1987.

[11] Robert Harper and Robert Pollack. Type check-
ing, universe polymorphism, and typical ambigu-
ity in the Calculus of Constructions. In TAP-
SOFT ’89, Proceedings of the International Joint
Conference on Theory and Practice in Software
Development, Barcelona, Spain, pages 241–256.
Springer-Verlag LNCS 352, March 1989.

[12] Gérard Huet. A unification algorithm for typed
λ-calculus. Theoretical Computer Science, 1:27–
57, 1975.

[13] Gérard Huet. Résolution d’équations dans des
langages d’ordre 1, 2, . . . , ω. PhD thesis, Univer-
sité Paris VII, September 1976.

[14] J-L. Lassez, M.J. Maher, and K. Marriott. Uni-
fication revisited. In J. Minker, editor, Founda-
tions of Deductive Databases, chapter 15, pages
587–626. Morgan Kaufmann, 1988.

[15] Dale Miller. A logic programming language with
lambda-abstraction, function variables, and sim-
ple unification. In Peter Schroeder-Heister, ed-
itor, Extensions of Logic Programming: Inter-
national Workshop, Tübingen FRG, December
1989, pages 253–281. Springer-Verlag LNCS 475,
1991.

[16] Gopalan Nadathur and Dale Miller. An overview
of λProlog. In Robert A. Kowalski and Ken-
neth A. Bowen, editors, Logic Programming: Pro-
ceedings of the Fifth International Conference
and Symposium, Volume 1, pages 810–827, Cam-
bridge, Massachusetts, August 1988. MIT Press.

[17] Tobias Nipkow. Higher-order critical pairs. In
Sixth Annual Symposium on Logic in Computer
Science. IEEE, July 1991. To appear.

[18] Christine Paulin-Mohring. Extracting Fω pro-
grams from proofs in the calculus of construc-
tions. In Sixteenth Annual Symposium on Prin-
ciples of Programming Languages, pages 89–104.
ACM Press, January 1989.

[19] Lawrence C. Paulson and Tobias Nipkow. Isabelle
tutorial and user’s manual. Technical Report 189,
Computer Laboratory, University of Cambridge,
January 1990.

[20] Frank Pfenning. Elf: A language for logic defini-
tion and verified meta-programming. In Fourth
Annual Symposium on Logic in Computer Sci-
ence, pages 313–322. IEEE, June 1989.

[21] Frank Pfenning. Logic programming in the LF
logical framework. In Gérard Huet and Gordon D.
Plotkin, editors, Logical Frameworks. Cambridge
University Press, 1991. To appear.

[22] Gordon D. Plotkin. A note on inductive general-
ization. Machine Intelligence, 5:153–163, 1970.

[23] David Pym. Proofs, Search and Computation in
General Logic. PhD thesis, University of Edin-
burgh, 1990. Available as CST-69-90, also pub-
lished as ECS-LFCS-90-125.

[24] John C. Reynolds. Transformational systems and
the algebraic structure of atomic formulas. Ma-
chine Intelligence, 5:135–151, 1970.

[25] Anne Salvesen. The Church-Rosser theorem for
LF with βη-reduction. Unpublished notes to
a talk given at the First Workshop on Logical
Frameworks in Antibes, May 1990.

12

